me_pe2d - 2D Moreau envelope, PE algorithm
Compute numerically the discrete Moreau envelope of a set of spatial points (X(i1,i2),f(i1,i2)) at slopes (X(j1,j2)). It reduces computation to one dimension, and uses the one-dimensional parabolic envelope algorithm (see me_pe) resulting in a theta(n*m) linear-time algorithm.
function f=f(lambda,x),f=lambda * x.^2,endfunction
function g=g(lambda1,lambda2,x,y),g=f(lambda1,x)+f(lambda2,y),endfunction
lambda1=1;lambda2=2;
x1=(-10:10)';x2=(-5:5)';
[X, Y]=ndgrid(x1,x2);F=g(lambda1,lambda2,X,Y);
s1=(-4:4)';s2=(-5:6)';
Xr=x1;Xc=x2;Sr=s1;Sc=s2;
desired=me_pe2d(x1,x2,F,s1,s2);
//1d computation for separable function
Ms1=me_direct(x1,f(lambda1,x1),s1);
Ms2=me_direct(x2,f(lambda2,x2),s2);
t1 = Ms1 * ones(1,size(Ms2,1));
t2 = ones(size(Ms1,1),1) * Ms2';
correct=t1+t2;
b = and(correct == desired);
me_brute2d, me_direct2d, me_llt2d, me_nep2d, me_pe,
Yves Lucet, University of British Columbia, BC, Canada