me_nep2d - 2D Moreau envelope for convex functions, NEP algorithm
Compute numerically the discrete Moreau envelope of a set of spatial points (Xr(i1),Xc(i2),f(i1,i2)) at slopes (Sr(j1),Sc(j2)), i.e.
2 2
M(j1,j2) = min [ f(i1,i2) + (Sr(j1) - Xr(i1)) + (Sc(j2) - Xc(i2)) ].
i1,i2
It reduces computation to one dimension, and computes the Legendre conjugate with the Non-Expansive Prox algorithm thereby resulting
in a theta(n*m + m1*m2) linear-time algorithm.
Note that the algorithm requires the underlying function f to have a nonexpansive proximal mapping to return the correct result (see me_nep).
function f=f(lambda,x),f=lambda * x.^2,endfunction
function g=g(lambda1,lambda2,x,y),g=f(lambda1,x)+f(lambda2,y),endfunction
lambda1=1;lambda2=2;
x1=(-10:10)';x2=(-5:5)';
[X, Y]=ndgrid(x1,x2);F=g(lambda1,lambda2,X,Y);
s1=(-4:4)';s2=(-5:6)';
Xr=x1;Xc=x2;Sr=s1;Sc=s2;
desired=me_nep2d(x1,x2,F,s1,s2);
//1d computation for separable function
Ms1=me_direct(x1,f(lambda1,x1),s1);
Ms2=me_direct(x2,f(lambda2,x2),s2);
t1 = Ms1 * ones(1,size(Ms2,1));
t2 = ones(size(Ms1,1),1) * Ms2';
correct=t1+t2;
b = and(correct == desired);
me_brute2d, me_direct2d, me_llt2d, me_pe2d, me_nep,
Yves Lucet, University of British Columbia, BC, Canada