Scilab Function
Last update : 1/5/2008
me_pe - Moreau envelope, PE algorithm
Calling Sequence
- M = me_pe(x0,xn,f)
Parameters
-
x0
: real number. Lower bound of the interval.
-
xn
: real number. Upper bound of the interval.
-
f
: column vector. The value of the function on the grid
X=(x0:h:xn)'; where n=length(f), and h=(xn-x0)/(n-1); so f(i)=fu(X(i)) for some function fu.
-
M
: column vector. Contains the value of the Moreau envelope M of the function f evaluated on at the points S(j). In other words: M(j) = Min(||S(j) - X(i)||^2 + f(i) | over all indexes i)
Description
Compute numerically the discrete Moreau envelope of a set of planar points (X(i),f(i)) at slopes S(j)=X(j), i.e.
2
M(j) = min f(i) + || s(j) - x(i) ||.
i
It reduces computation to a 1,..,n grid with
2 2 2
M(j)= h * min [ ||j-i|| + f(x_0 + i * h) / h ]
i
The algorithms runs in linear time Theta(n) with
n=length(X)=length(f) by computing the lower parabolic envelope (PE).
Examples
X=[-5:0.5:5]';
Y=X.^2;
M=me_pe(-5,5,Y)
See Also
me_pe2d, me_direct, me_llt, me_nep,
Author
Yves Lucet, University of British Columbia, BC, Canada
Bibliography
Y. Lucet, 2007, Fast Moreau Envelope Computation I: Numerical Algorithms, Numerical Algorithms, 43(3):235-249
P. F. Felzenszwalb and D. P. Huttenlocher, 2004, Distance transforms of sampled functions, Tech. Rep. TR2004-1963,
Cornell Computing and Information Science.