me_direct - [For comparison only] Moreau envelope, direct computation
Warning: This function is provided only for comparison purposes and unit testing, use more efficient linear-time algorithms for faster computation.
Compute numerically the discrete Moreau envelope of a set of planar points (X(i),f(i)) at slopes S(j), i.e.
2
M(j) = min f(i) + || s(j) - x(i) ||.
i
2
p(j) in Argmin f(i) + || s(j) - x(i) ||.
i
2
P(j) = Argmin f(i) + || s(j) - x(i) ||.
i
It uses straight computation for a quadratic-time algorithm theta(n*m) with n=length(X)=length(f) and m=length(S).
X=[-5:0.5:5]';
Y=X.^2;
S=(Y(2:size(Y,1))-Y(1:size(Y,1)-1))./(X(2:size(X,1))-X(1:size(X,1)-1));
[M,p,P]=me_direct(X,Y,S)
me_direct2d, me_llt, me_nep, me_pe, me_brute2d,
Yves Lucet, University of British Columbia, BC, Canada