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Abstract

At the core of Convex Analysis and its applications are a collection of fre-
quently used operators for transforming convex functions, along with the
convex hull operation for convexifying functions. While numerical algo-
rithms are usually applied to general functions with little known structure,
we focus on the class of univariate piecewise linear-quadratic (PLQ) func-
tions, for which exact algorithms have been developed.

This thesis presents two main results. In the first part, we investigate
two convex hull algorithms for univariate PLQ functions. The first algo-
rithm is an extension of the linear-time planar Beneath-Beyond algorithm,
and performs a plane sweep that converts a function into its convex hull.
The second uses convex duality theory to deconstruct a nonconvex function
and build its convex hull using convex operators, in worst-case quadratic
time. The trade-off is complexity: the second algorithm can be significantly
simpler to implement.

The second part is concerned with the computation of convex transforms,
such as the Legendre-Fenchel transform and the Moreau Envelope. We
introduce a new family of algorithms that stores and manipulates models of
the subdifferential instead of the original function.

We performed numerical experiments comparing the two convex hull
algorithms, and comparing the new subdifferential algorithms to existing
PLQ algorithms. These experiments confirm the time complexity for the
convex hull algorithms, and show that the subdifferential algorithms have
the same complexity as the PLQ algorithms, while performing an order of
magnitude faster.
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Chapter 1

Introduction

Convex Analysis is a rich field with applications in diverse areas. For exam-
ple, it provides algorithms to compute distance transforms [8] and reverse
degradation [5] in image and signal processing, and to improve models in
machine learning [4, 23].

There are numerous operators in Convex Analysis that transform one
convex function into another. Common examples of these would be the ubiq-
uitous Legendre-Fenchel transform, the Moreau-Yoshida approximation, and
the recently-introduced Proximal Average [3]. It is natural to want fast al-
gorithms to perform these operations. Since generic numerical algorithms
do not generate an exact model of the transformed function, research has
focused on special classes of functions [9, 16, 17]. Restricting oneself to a
well-behaved class of functions can allow exact algorithms to be developed.
Piecewise linear-quadratic (PLQ) functions are such a class. They are closed
under many convex transforms, including those listed above.

Existing PLQ algorithms directly manipulate a model of a function [2].
Because the subdifferential of a PLQ function is a piecewise linear multi-
valued mapping, the subdifferentials of many transforms are related linearly
to the original subdifferentials. Goebel [12] published the exact relationship
for a number of operators. We extend his results to additional operators,
and provide a method to recover the function values.

First, we will look at algorithms for computing the convex hulls of PLQ
functions. We will recall the extension by Trienis [22] of the Beneath-Beyond
algorithm for points in a plane, to PLQ functions with unbounded domains.
We will then introduce a new algorithm for computing the convex hull of
a PLQ function, that uses only the convex conjugate and the pointwise
maximum operators.

Chapter 2 sets notations and recalls the necessary theory. Chapter 3
discusses the two convex hull algorithms for PLQ functions. After bring-
ing ourselves into the domain of convex functions, in Chapter 4 we apply
Goebel’s calculus rules to the computation of a number of convex operators,
and compare these techniques to existing PLQ algorithms. Chapter 5 con-
cludes the thesis with a results summary, and directions for future research.
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Chapter 2

Preliminaries

In this chapter, we will outline notations and recall results we will use in
the rest of the thesis.

We will denote the standard inner product on Rd with

〈x, y〉 = xT y =
d∑
i=1

xiyi,

and the quadratic energy function

q : Rd → R : x 7→ 1
2
‖x‖2.

We will write the open ball centered at x with radius ε as

B(x; ε) = {x ∈ Rd : ‖x‖ < ε}.

2.1 Convex Analysis

2.1.1 Convexity

We use standard definitions for the convexity of sets and functions.

Definition 2.1.1. A set C is convex if, and only if, (iff)

∀x1, x2 ∈ C, ∀λ ∈ [0, 1], (1− λ)x1 + λx2 ∈ C.

Another useful notion is that of the epigraph of a function.

Definition 2.1.2. Given a function f : Rd → R, its epigraph epi(f) is the
set of points in Rd+1 that are on or above the graph of f :

epi(f) = {(x, α) : f(x) ≤ α}

2



2.1. Convex Analysis

A function is defined to be convex iff its epigraph is convex. (Likewise,
a function f is concave iff −f is convex, i.e. epi(−f) is a convex set.)

We will write R̄ to mean the set R ∪ {+∞} of extended reals. When
working with a function f with bounded domain dom(f) ⊂ Rd, it will some-
times be more convenient to instead work with the extended-value function
f̄ , where

f̄(x) =

{
f(x) , if x ∈ dom(f);
+∞ , if x /∈ dom(f).

We denote the indicator function of a set S by ιS(X). This function is
defined to be zero for all elements in S, and +∞ for elements outside of S,

ιS(x) =

{
0 , if x ∈ S;
+∞ , if x /∈ S.

2.1.2 Affine and Convex Hulls

We recall the definitions of affine and convex hulls for sets in Rd, and for
convex hulls of functions.

Fact 2.1.3. The affine hull of a set S is the set of all affine combinations
of finite numbers of points in S; that is,

aff(S) =

{
n∑
i=1

λixi : xi ∈ S for i ∈ {1, . . . , n},
n∑
i=1

λi = 1, n ≥ 1

}
.

A set is affine if it is equal to its affine hull.

Fact 2.1.4. The convex hull of a set S is the smallest convex set that con-
tains S. It is also the intersection of all convex sets containing S. It can be
written as

conv(S) =

{
n∑
i=1

λixi : xi ∈ S, λi ≥ 0 for i ∈ {1, . . . , n},
n∑
i=1

λi = 1, n ≥ 1

}
.

The convex hull is, by definition, a convex set.

The closed convex hull of a function f is defined to be the largest lower
semi-continuous, convex function that underestimates f . It is written as
co(f). It can be defined via the epigraph with

(co f)(x) = inf{t : (x, t) ∈ conv epi f}.

When we refer to the convex hull of a function, we are referring to its closed
convex hull.

3



2.1. Convex Analysis

2.1.3 Set Interiors

Definition 2.1.5. The interior of a set S, int(S), is defined as

int(S) = {x ∈ S : B(x; ε) ⊆ S for some ε > 0}.

Definition 2.1.6. The relative interior of S, ri(S), is the interior of S when
considered as a subset of its affine hull, that is,

ri(S) = {x ∈ S : B(x; ε) ∩ aff(S) ⊆ S for some ε > 0}.

The relative interior will be useful when discussing function domains.

2.1.4 Subdifferential

The subdifferential is a generalization of derivatives to convex but nondif-
ferentiable functions.

Definition 2.1.7. We define the subdifferential of a convex function f :
Rd → R̄ at a point x to be the set of all subgradients s of f at x,

∂f(x) = {s ∈ Rd : ∀y ∈ Rd, f(y) ≥ f(x) + 〈s, y − x〉}.

The subdifferential is a multivalued map from Rd to Rd. We also define the
graph of the subdifferential, gph ∂f , as a subset of Rd × Rd by

(x, s) ∈ gph ∂f ⇔ s ∈ ∂f(x).

2.1.5 Convex Conjugate

The convex conjugate, also known as the Legendre-Fenchel transform, or
just the conjugate, is a fundamental transform in convex analysis. It can be
used to construct many other transforms, such as the Moreau envelope and
the proximal average.

Definition 2.1.8. For a proper function f : Rd → R, its conjugate is the
function f? : Rd → R̄ defined by

f?(y) = sup
x∈dom(f)

{〈y, x〉 − f(x)}

Using extended-value functions, we can write the conjugate without con-
straints as f?(y) = supx∈Rd{〈y, x〉− f̄(x)}. As f? is the supremum of convex
functions, it is convex.

4



2.1. Convex Analysis

Fact 2.1.9. [20, Theorem 12.2] If f is convex, then the conjugate f? is
always convex and lower semi-continuous. Furthermore, f?? is the closed
convex hull of f , and f? is proper iff f is proper.

We highlight several cases where the conjugate is easy to compute.

Fact 2.1.10. [20, p.106] The only function on Rd that is self-conjugate, i.e.
f? = f , is q(x) = 1

2‖x‖
2.

Example 2.1.11. If f(x) = ax2 + bx+ c for a > 0, b, c ∈ R, then f?(y) =
1
4a(y − b)2 − c, and f?? = f .

Example 2.1.12. If f(x) = bx + c for b, c ∈ R, then f?(y) = ι{b}(y) − c,
and f?? = f .

Example 2.1.13. If f(x) = 1
p‖x‖

p with x ∈ Rd, 1 < p < +∞, then
f?(y) = 1

q‖y‖
q, where 1

p + 1
q = 1.

2.1.6 Epi-addition and Epi-multiplication

We make use of two further operators, known as epi-addition (or inf-convolution),
and epi-multiplication. We denote these, respectively, by:

(f2g)(x) = inf
y∈Rd
{f(y) + g(x− y)}

(αFf)(x) =

{
α · f(x/α) , if α > 0;
ι{0} , if α = 0.

2.1.7 Moreau Envelope

The Moreau envelope, also known as the Moreau-Yoshida approximate, is
the inf-convolution of a function with 1

2λ‖ · ‖
2. That is,

eλf(x) = (f2λ−1q)(x) = inf
y∈Rd
{f(y) +

1
2λ
‖y − x‖2},

for λ > 0. The Moreau envelope is an underestimator of f , which converges
pointwise to f as λ ↘ 0 [21, Theorem 1.25]. By expanding the norm-
squared, we can write the Moreau envelope in terms of the conjugate as

eλf(x) =
‖x‖2

2λ
− 1
λ
g?λ(x),

5



2.1. Convex Analysis

where gλ(x) = (λf + 1
2‖ · ‖

2)(x). When f is convex, the Moreau envelope
can be written using the conjugate,

eλf = (f? + λ−1q)?.

The proximal mapping is the set of minimizers of the Moreau envelope.
It is defined as

Proxλf(x) = argmin
y∈Rd

{f(y) +
1

2λ
‖y − x‖2}.

2.1.8 Proximal Average

The proximal average is an operator for continuously transforming one func-
tion into another, and unlike the arithmetic average, it produces a proper
function even if the domains of two proper input functions f and g are
disjoint. The proximal average is the function whose proximal mapping is
the convex combination of the proximal mappings of the input functions [3,
Remark 6.2].

Definition 2.1.14. Given two proper functions f and g, and a parameter
λ ∈ [0, 1], the proximal average Pλ(f, g) : Rd → R̄ is defined as

Pλ(f, g) =
(
(1− λ)(f + µ−1q)? + λ(g + µ−1q)?

)? − µ−1q

for a smoothing parameter µ > 0.

The proximal average is self-dual, that is,

(Pλ(f, g))? = Pλ(f?, g?).

If f and g are convex, then Pλ(f, g) is also convex. Convexity with respect
to other parameters have been studied in [15]. Recent extensions to the
proximal average include the generalized kernel average of n functions in [19],
as well as the nonconvex proximal average in [13].

The proximal average can be written as a minimization problem using
[1, Formula 20],

Pλ(f, g)(x) = inf
x=(1−λ)x1+λx2

(
(1− λ)f(x1) + λg(x2) +

(1− λ)λ
2µ

‖x1 − x2‖2
)
.

We call the proximal average exact at x if the infimum is attained for x1, x2 ∈
Rd. The proximal average can also be written using Moreau envelopes as in
[1, Theorem 8.3],

Pλ(f, g)(x) = −eµ(−(1− λ)eµf − λeµg).

6



2.2. Piecewise Linear-Quadratic Functions

2.1.9 Self-Dual Smoothing Operators

We will present results on two recently published operators that are self-
dual, i.e. they satisfy

T (f?) = (Tf)?.

The first is a smoothing operator defined by Goebel in [12] as

sλf = (1− λ2)eλf + λq.

The second operator was published in [19] and is defined as

Tλf = Pλ(f, q).

In both cases, λ ∈ (0, 1).

2.2 Piecewise Linear-Quadratic Functions

Piecewise linear-quadratic (PLQ) functions are piecewise functions f : Rd →
R̄, where dom(f) is convex and partitioned into polyhedral pieces, and each
piece is assigned a linear or quadratic function. We will additionally assume
throughout this thesis that f is continuous on the interior of its domain, and
differentiable on each of its pieces, though f may fail to be differentiable at
the boundary of each piece.

The class of PLQ functions is well studied [2, 21] because it is closed
under many of the standard operations in convex analysis, such as addi-
tion, scalar multiplication, conjugation, and the Moreau envelope. When
d = 1, the class is also closed under the pointwise minimum and maximum
operations.

In this thesis, we are specifically concerned with univariate PLQ func-
tions f : R → R̄. We divide the real line into n pieces, with the ith piece
being defined by fi(x) = aix + bix + ci over the interval [xi−1, xi], where
−∞ = x0 < x1 < x2 < . . . < xn−1 < xn = +∞. Given such a function, we
represent it as the n× 4 matrix

x1 a1 b1 c1

x2 a2 b2 c2
...

...
∞ an bn cn

 .
Example 2.2.1. The univariate quadratic energy function, q(x) = 1

2x
2 is

represented by the matrix [
∞ 1

2 0 0
]
.

7



2.2. Piecewise Linear-Quadratic Functions

Example 2.2.2. The function f(x) = ||x − 1| − 1| is represented by the
matrix 

0 0 −1 0
1 0 1 0
2 0 −1 2
∞ 0 1 −2

 .
As a special case, we support representation of the indicator function for

a single point, f(x) = ι{x̄}(x) + c, where x̄ ∈ R, with the matrix:[
x̄ 0 0 c

]
Any references to PLQ functions from this point forward will be referring

to univariate PLQ functions unless stated otherwise.

8



Chapter 3

Convex Hull Algorithms

Convex hulls form a bridge between the fields of Computational Geometry
and Convex Analysis. The former typically focuses on computing the convex
hull of a set of points, lines, curves, or other objects in Euclidean space; the
latter is concerned with the convex hulls of functions. Fortunately, there is a
direct link: representing a function’s curve can enable us to use an applicable
algorithm from Computational Geometry.

The Beneath-Beyond algorithm is an incremental algorithm for comput-
ing the convex hull of a set of points in Euclidean space [7]. In the plane,
this algorithm requires O(n) time, given sorted input (this is not an issue,
as the first column of the matrix of a PLQ function is always sorted). The
convex hull of a piecewise linear function could be calculated by passing to
the Beneath-Beyond algorithm the set of points where the function is non-
differentiable. Quadratic pieces require special attention, but do not require
asymptotically more time. The initial implementation of this algorithm was
provided in [22], and it is studied further in [10].

After describing this algorithm, we present a new method for computing
convex hulls [10] by decomposing a nonconvex PLQ function into individual
convex pieces, conjugating, then applying the maximum operation to those
pieces to build the convex hull. As this algorithm stores a model that may
grow at each iteration, it takes O(n2) time in the worst case.

3.1 Direct Approach

The planar Beneath-Beyond algorithm performs a plane sweep and incre-
mentally adds points to, and removes points from, the convex hull. We
apply the same technique to a PLQ function f , performing a plane sweep
along the x-axis to find the convex hull of the epigraph. At any point in the
algorithm, the function to the left of our current position is convex.

Initially, there are a number of cases we must consider, which would
cause co f to be −∞ everywhere.

Proposition 3.1.1. [10, Proposition 4.2] Let f be a PLQ function. Then

9



3.1. Direct Approach

co f ≡ −∞ iff any of the following conditions hold.

(i) There is an x with f(x) = −∞,

(ii) a1 < 0,

(iii) an < 0,

(iv) a1 = an = 0, and b1 > bn.

The direct algorithm begins with the leftmost finite piece of f , and pro-
gresses rightward. At any point in the algorithm, the function to the left of
the current index is convex. In each iteration, two adjacent pieces of f are
considered. If those two pieces, treated as a single function, are convex, then
we move right, else we convexify the two pieces, backtracking if necessary. A
sample run of the algorithm is shown in figure 3.1. Pseudocode is presented
in Algorithm 1, which we call plq coDirect.

Notation 3.1.2. We write (fi, fi+1) to denote the ith and (i + 1)th pieces
of f considered together, i.e. f restricted to [xi−1, xi+1].

Before we begin the plane sweep, we will simplify f by replacing any
nonconvex pieces of f with their convex hulls. This simplifies the cases we
must consider to convexify each pair of pieces. A single piece fi is only
nonconvex on its domain if ai < 0, in which case we can replace the piece
with the line segment between its two endpoints.

We also need a test to know when two adjacent pieces are convex to-
gether. The following proposition treats this case.

Proposition 3.1.3. [22, Theorem 3.34] Let f be a continuous PLQ function
such that co f 6≡ −∞. Then f is nonconvex iff there are two adjacent pieces
fi (on [xi−1, xi]) and fi+1 (on [xi, xi+1]) such that f ′i(xi) > f ′i+1(xi).

In order to construct the convex hull of two adjacent PLQ functions
on line 21 of Algorithm 1, three cases must be considered. If both pieces
fi, fi+1 are quadratic (that is, ai, ai+1 > 0), then the following system must
be solved for xα, xβ to find a tangent line joining the pieces.

f ′i(xα) = f ′i+1(xβ) (3.1)
f ′i(xα)(x− xα) + fi(xα) = f ′i+1(xβ)(x− xβ) + fi+1(xβ) (3.2)

xα ∈ [xi−1, xi] (3.3)
xβ ∈ [xi, xi+1] (3.4)

10



3.1. Direct Approach
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(a) Initial, nonconvex PLQ func-
tion. The first two pieces are
nonconvex; convexify and move
forward.
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(b) Two linear pieces are non-
convex. Collapse to one piece
and backtrack.
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(c) Quadratic-linear nonconvex
case. Convexify; the slope at −5
is unchanged, so advance.
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(d) Linear-quadratic case. We
need to backtrack again.
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(e) Several more iterations lead
to the convex hull.

Figure 3.1: Demonstration of the steps of the plq coDirect algorithm.
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3.1. Direct Approach

Algorithm 1: plq coDirect
Input: f (a PLQ function)
Output: co f (a convex PLQ function)
begin1

if any conditions in Proposition 3.1.1 hold then2

co f ← −∞3

return4

end5

for i← 1 to n do6

if ai < 0 then7

Replace the ith piece of f with the linear function between8

(xi−1, f(xi−1)) and (xi, f(xi));
end9

end10

// Plane sweep.11

i0 ← i← the index of the first finite piece of f ;12

if ← the index of the last finite piece of f ;13

// Let N denote the number of finite pieces of f.14

while (i ≤ if − 1) and (N ≥ 2) do15

if f ′i(xi) ≤ f ′i+1(xi) then16

// (fi, fi+1) are convex.17

i← i+ 1; // Add fi to the convex hull and advance.18

else19

// Convexify fi and fi+1.20

Replace (fi, fi+1) with co((fi, fi+1)) on [xi−1, xi+1] in f ;21

Update if according to inserted/removed pieces;22

if f ′i−1(xi−1) > f ′i(xi−1) then23

// (fi−1, fi) has lost convexity.24

i← max(i− 1, 1);25

else26

i← the index of the rightmost piece in [xi−1, xi+1];27

// f is now convex on [xi0 , xi].28

end29

end30

end31

co f ← f ;32

end33
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3.1. Direct Approach

In this case, an additional linear piece will be inserted into f on [xα, xβ],
possibly replacing one or both quadratic pieces when xα = xi−1 or xβ = xi+1.
A quadratic-quadratic convex hull is demonstrated in Figure 3.2.

If fi is quadratic and fi+1 is linear, then we find a tangent line connecting
fi at xα to the right endpoint of fi+1. We set f to be this tangent line on
[xα, xi+1]. Note that xα may be xi−1, in which case the quadratic piece
will be removed. Symmetry handles the case where fi is linear and fi+1 is
quadratic; see Figure 3.3. The system we now solve is

f ′i(xα)(xi+1 − xα) + fi(xα) = fi+1(xi+1) (3.5)
xα ∈ [xi−1, xi]

Care must be given to the linear-quadratic case. After solving a linear-
quadratic system and convexifying (fi, fi+1), if we have lost convexity at
xi−1, we first check to see if fi−1 is quadratic. If it is, then we may enter
a cycle of alternately convexifying (fi−1, fi) and (fi, fi+1), converging to
the convex hull of f on [xi−1, xi+1]. As the linear function fi is repeatedly
shifted downward, we treat this as a special case and remove fi from the
model, solving the quadratic-quadratic system (Equations 3.1–3.4) to find
the tangent line for fi−1 and fi+1.

The simplest case to handle is when both fi and fi+1 are linear func-
tions. We are convexifying because (fi, fi+1) are nonconvex, implying that
bi > bi+1. Here we replace both linear pieces with a single linear function
connecting the points (xi−1, fi(xi−1)) and (xi+1, fi+1(xi+1)). Figure 3.4 pro-
vides an example of this case.

Special attention may be necessary in implementing the last two cases,
when a linear piece extends to ±∞ (e.g. xi+1 = ∞ in (3.5)). These cases
are handled by finding a line whose slope is that of the unbounded piece.
Examples of these cases are shown in Figures 3.3(b), 3.4(b), and 3.4(c).

After inserting co((fi, fi+1)) into f , we would like to increment the index
i and consider the next two pieces in the function. By Proposition 3.1.3,
f is convex iff its slope increases at each of the breaks in its domain. The
function (fi, fi+1) is now convex, however, if the slope of f approaching xi
from the right has decreased, then (fi−1, fi) may fail to be convex. Hence
the algorithm must backtrack and reconsider (fi−1, fi).

Lemma 3.1.4. With consecutive backtracks, every backtrack after the first
reduces the two pieces currently being considered to a single linear piece.

Proof. After convexifying (fi, fi+1), Algorithm 1 only backtracks when nec-
essary, i.e. when f ′i(xi−1) decreases sufficiently. The only time f ′i(xi−1)

13
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Figure 3.2: Quadratic-quadratic convex hull case.
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Figure 3.3: Linear-quadratic convex hull case.
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Figure 3.4: Linear-linear convex hull case.
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3.1. Direct Approach

decreases is when a linear piece is inserted on some interval [xi−1, xβ], for
xi−1 < xβ ≤ xi.

Hence, after backtracking, the right piece will be linear. After the first
backtrack, we will be in either the quadratic-linear case or the linear-linear
case. The only way backtracking can happen in these cases is if the current
two pieces are replaced by a single linear piece. By induction, this holds for
all consecutive backtracks beyond the first.

Proposition 3.1.5. Algorithm 1 runs in optimal linear time and space.

Proof. Assume co f 6≡ −∞. Convexifying pieces in lines 6–10 requires O(1)
time for each piece. To show that the while loop on lines 15–31 requires linear
time, note again that each iteration requires constant time. The while loop
terminates either when we reach the rightmost finite piece of f , or when f
contains a single finite piece. In every iteration, we make progress to at least
one of these conditions.

Moving right will lead to the first condition being satisfied. If we don’t
move right, then we have lost convexity at xi−1. There are four subcases to
consider, based on the types of the original fi, fi+1 being convexified.

(i) Linear-linear: Taking the convex hull of two linear pieces always pro-
duces a single linear piece on [xi−1, xi+1], so progress is made toward
N reaching 1.

(ii) Quadratic-linear: The only way for Algorithm 1 to decrease f ′i(xi−1)
is to insert a linear piece extending rightward from xi−1. As fi+1 is
linear, this means again that (fi, fi+1) has collapsed to a single linear
piece.

(iii) Quadratic-quadratic: As in case (ii), a linear piece has been inserted
whose left endpoint is xi−1. In the quadratic-quadratic case we look
for the linear function tangent to both quadratic pieces, so consider
the right endpoint of the linear function, xβ. If xβ = xi+1, then again
co((fi, fi+1)) is now a single linear piece. If xβ < xi+1, then the convex
hull is a linear-quadratic function, which is handled in the next case
(after convexification).

(iv) Linear-quadratic: If xβ = xi+1, then (fi, fi+1) collapses to a single
piece. Otherwise, co((fi, fi+1)) still contains two pieces. As we have
lost convexity at xi−1, consider the type of fi−1.

16



3.1. Direct Approach

If fi−1 is quadratic, then backtracking as usual will lead to a cycle of
repeatedly convexifying (fi−1, fi) and (fi, fi+1), so remove the linear
piece and solve the quadratic system instead.

If fi−1 is linear, then it is necessary to backtrack without decrementing
the number of pieces. We claim that this can happen at most once
before adding fi+1 to the convex hull. Fix x̄ as the current value of
xi−1, and let fj denote, across all iterations, the piece of f whose right
endpoint is the value of xi before any backtracking. (Currently, fj =
fi.) By Lemma 3.1.4, each consecutive backtrack will now decrease N ,
and the right piece in all these backtracks will be fj .

When consecutive backtracking is no longer necessary, we will again
consider having convexified (fj , fj+1) in the linear-quadratic case, and
assume f is still nonconvex at xj−1. We enumerate the reasons why
backtracking stopped.

(a) If j = 1, then we have convexified (f1, f2), and consequently move
forward (we cannot backtrack any further).

(b) If fj−1 is quadratic, then we the use quadratic-quadratic system as
above, and either move forward, or when the two quadratic pieces
collapse to one, backtrack.

(c) If fj−1 is linear, it may be necessary to backtrack again without
collapsing (fj , fj+1). Note that, as there was at least one consec-
utive backtrack to get to this point, xj−1 is now strictly less than
x̄, and also that xj−1 is one of the partition points that was in
f when we assigned x̄ (backtracking cannot introduce new parti-
tion points). Hence there is a finite number of partition points
that xj−1 can take on in this case, and once xj−1 moves left be-
yond a partition point, it is deleted from the model and cannot be
considered by a future linear-quadratic case.

Thus, though a single linear-quadratic piece may require O(n) time,
partition points removed from the model will not be considered by fu-
ture linear-quadratic cases, so O(n) work is done by all linear-quadratic
cases.

The other three cases always progress toward either i = if or N = 1,
so overall, Algorithm 1 runs in linear time.

The function f begins with O(n) pieces, and each iteration adds at
most one piece (a tangent line between two quadratics), or deletes at
most one piece, hence Algorithm 1 requires linear space as well.

17



3.2. Convex Duality Approach

3.2 Convex Duality Approach

An alternate method that we present to compute the convex hull is based
on dividing a PLQ function into individual pieces, each of which is convex.
Consider a PLQ function f with n pieces. Assuming co f 6≡ −∞, this
method will also assume that each individual piece is convex (convexifying
individual pieces may initially be necessary, as with the direct algorithm).
We name this algorithm plq coSplit.

Define the functions (gi)ni=1 by

gi(x) =

{
fi(x) , if x ∈ [xi−1, xi]
+∞ , otherwise

Each gi is the extended-value function of fi restricted to [xi−1, xi]. We can
write f = min gi. Also, as each gi is convex, co gi = gi. Hence we can write
co f as

co f = co min gi = co min co gi.

From here, we apply the following theorem.

Theorem 3.2.1. [14, Theorem X.2.4.4] Let g1, . . . , gn be proper, lower
semi-continuous functions. Then

(co max(g1, . . . , gn))? = co min(g?1, . . . , g
?
n).

This holds for an arbitrary finite number of functions.

By applying Theorem 3.2.1 with [14, Proposition X.2.6.1], we rewrite
the convex hull of f as

co f = co min(co g1, . . . , co gn) = (max(g?1, . . . , g
?
n))?. (3.6)

This formulation provides a basis for computing the convex hull of f . Doing
this requires the ability to compute the conjugate of already-convex func-
tions, and to construct the pointwise maximum of n convex functions. The
conjugate of each gi is easily found via an explicit formula in [2, Proposition
5.2]. The complete method is presented in Algorithm 2.

As the difference in line counts suggests, Algorithm 2 requires less work
to implement, provided that algorithms are already available for computing
the maximum and conjugate of convex PLQ functions.

18
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Algorithm 2: plq coSplit
Input: f (a PLQ function)
Output: co f (a convex PLQ function)
begin1

Check if co f ≡ −∞, and return if necessary;2

Convexify individual nonconvex pieces of f ;3

g ← −∞;4

for i← 1 to n do5

Construct gi as above;6

g ← max(g, g?i );7

end8

co f ← g?;9

end10

Proposition 3.2.2. Algorithm 2 has linear space complexity, worst-case
quadratic time complexity, and best-case linear time complexity.

Proof. Each gi contains a single piece, hence g?i will contain O(1) pieces.
Every iteration, g will have O(1) partition points added to it, in the case
where the partition points in g?i are not partition points of g. After n
iterations, g will contain O(n) pieces. As every call to max is a linear
operation, across all calls to max we take O(n2) time.

If every gi after the first introduces no new pieces into g, then each call
to max will take constant time, making the algorithm run in linear time.
This is the case, e.g., when computing the convex hull of a piecewise affine
interpolation of the function f(x) = −1

2 |x|
2.

3.3 Performance Comparison

To compare the plq coDirect and plq coSplit algorithms, we compute the
convex hull of a piecewise affine function with an increasing number of pieces.
The results may be seen in Figures 3.5 and 3.6.

Figure 3.5 confirms that the worst-case complexity is attained for both
algorithms when computing co(1

2‖ · ‖
2), with plq coDirect running in linear

time and plq coSplit showing quadratic performance. As the model of the
convex hull does grow to contain n pieces, quadratic growth is expected.
In contrast, when computing co(−1

2‖ · ‖
2) in Figure 3.6, plq coSplit’s model

does not grow, and ultimately a model with a single piece is produced (a
linear function between the bounds of the domain).
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Figure 3.5: Run time (seconds) of the convex hull algorithms computing the
convex hull of an n-piece piecewise linear approximation of f(x) = 1

2x
2 on

[−n/2, n/2].

In both graphs, plq coDirect performs significantly better. Besides quadratic
worse-case complexity, plq coSplit is also making use of entire lower-level
algorithms, so overhead invoking these subroutines certainly contributes to
plq coSplit’s poorer performance.

All experiments were run on a quad-core 64-bit 2.0GHz HP HDX 18 lap-
top with 4GB RAM, running Gentoo Linux 10.0. Implementation was done
under Scilab 5.1.1, extending the Computational Convex Analysis toolbox
freely available from [18].
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Chapter 4

Graph-Matrix Calculus

We will now present a new class of algorithms for computing transforms of
convex functions, based on unary “calculus rules” [12] for the subdifferen-
tial of a convex function. We recall these rules, then provide formulas for
additional unary operators, and two binary operators. We then apply these
rules to PLQ functions, and describe how to recover an exact model of a
function from a transformed subdifferential.

4.1 Representation of PLQ Functions

Ultimately, we wish to be able to perform a transform of a convex PLQ
function f ,

g = Tf,

by looking at the graph of the subdifferential of f ,

gph ∂f = {(x, y) : x ∈ dom f, y ∈ ∂f(x)},

and computing the subdifferential of the transform via a matrix multiplica-
tion

gph ∂(Tf) = A gph ∂f,

for some matrix A ∈ R2d×2d.
For univariate PLQ functions, A ∈ R2×2, and gph ∂f must be repre-

sented in a way suitable for multiplying by A. The data structure used for
this graph must also contain a constant of integration, to be able to use
integration to recover the PLQ matrix model, and evaluate the function at
points in its domain. Conversely, differentiation is able to convert a PLQ
matrix model into what we call a GPH matrix,x0 x1 x2 . . . xn xn+1

s0 s1 s2 . . . sn sn+1

f0 f1 f2 . . . fn fn+1

 .
The subdifferential of a PLQ function, when single-valued, is a piecewise

affine function, and the subdifferential of a convex PLQ function is made up
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4.1. Representation of PLQ Functions

of line segments connected end-to-end that extend to infinity in both direc-
tions. We note xi points in dom f , si subgradients of f at xi, and fi constants
of integration (fi = f(xi)). The matrix above stores enough points (xi, si)
on this graph to be able to recover the entire graph of the subdifferential
via piecewise linear interpolation of (xi, si) for all i ∈ {0, . . . , n+ 1}.

The columns on the GPH matrix are stored in lexicographically increas-
ing order. That is, for i ≤ j, we have xi ≤ xj , and also si ≤ sj . If xi = xj
then fi = fj . The values {x1, . . . , xn} are divisions between the pieces of f ,
though they are not necessarily distinct: if f is nondifferentiable at a break
x̄, then there will be two columns i < j with xi = xj = x̄, and si < sj will
be the slopes of f approaching x̄ from the left and right, respectively.

The values x0 and xn+1 are in the matrix to store the subdifferential of
f on (−∞, x1] and [xn,+∞), respectively. The line segment from (x1, s1)
to (x0, s0) is extrapolated to infinity, and correspondingly with (xn, sn) and
(xn+1, sn+1). To represent f being bounded on the left (resp. right), x0 = x1

(resp. xn+1 = xn) indicates a ray extending vertically to −∞ (resp. +∞).
In this case, we set f0 (resp. fn+1) to +∞. Except for f0 and fn+1, all other
fi and all xi, si must be finite.

Example 4.1.1. The quadratic energy function may be represented by the
GPH matrix 0 2

0 4
0 4

 .
Example 4.1.2. The absolute value function may be encoded as the GPH
matrix −1 0 0 1

−1 −1 1 1
1 0 0 1

 .
Example 4.1.3. The function where f(x) = 0 on x ∈ [−1, 1] and f(x) =
x2 − 1 elsewhere may be stored as−2 −1 −1 1 1 2

−4 −2 0 0 2 4
3 0 0 0 0 3

 .
Example 4.1.4. The function where f(x) = x2 for x < 0, f(x) = 0 for
x ∈ [0, 1], and f(x) = x− 1 for x > 1 may be represented by the matrix−1 0 1 1 2

−2 0 0 1 1
−1 0 0 0 1

 .
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4.1. Representation of PLQ Functions

There is no unique GPH matrix representation for a PLQ function. Re-
dundant points may be stored in the middle of the matrix, and the two
endpoints (x0, s0) and (xn+1, sn+1) can be slid along their respective rays.
While normalized GPH rules could be set, this would require normalization
after many transformations, as the transformation matrix A can change
gph ∂f drastically. Frequent cleaning could incur significant overhead, so
we instead suggest that a separate algorithm be provided to “clean” the
GPH matrix when desired, removing duplicate points.

To represent the special case of the point-indicator function f(x) =
ι{x̄}(x) + c, we use the matrix x̄ x̄

s0 s1

c c

 (with any s0 < s1).

This matrix is the vertical line at x = x̄. An affine function f(x) = ax + b
is stored as a matrix whose graph is a horizontal line, x0 x1

a a
ax0 + b ax1 + b

 (with any x0 < x1).

Likewise, a quadratic f(x) = ax2 + bx+ c is encoded as x0 x1

2ax0 + b 2ax1 + b
ax2

0 + bx0 + c ax2
1 + bx1 + c

 (with any x0 < x1).

Given a matrix x0 x1

s0 s1

f0 f1

 ,
if x0 < x1 and s0 < s1, then f is a quadratic function that can be recovered
with the following formulas.

f(x) = ax2 + bx+ c

a =
s1 − s0

2(x1 − x0)
b = s0 − 2ax0

c = y0 − ax2
0 − bx0
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4.2. Goebel’s Graph-Matrix Calculus

The case where x0 = x1 and s0 = s1 does not form a valid GPH matrix, as
two distinct points are required to extrapolate to a maximal graph.

Considering that gph ∂f is stored in the first two rows of the GPH matrix,
we are now able to calculate A gph ∂f with a simple matrix multiplication.

4.2 Goebel’s Graph-Matrix Calculus

Numerous calculus rules were originally published in [12], then slightly ex-
tended in [11], showing how the graph of the subdifferential of a convex
function is affected under core convex transformations operating on a single
function. Specifically, (i), (ii), (iii), (iv), (vii), and (viii) were given in [12],
and (v), (vi), and (ix) were introduced in [11].

Theorem 4.2.1 (Goebel’s Graph-Matrix Calculus for unary operators).
Let f : Rd → R be a proper, lower semi-continuous, convex function. Then
the following rules hold, for all α > 0, β ≥ 0, and λ ∈ [0, 1].

(i) gph ∂(f?) =
[

0 Id
Id 0

]
gph ∂f .

(ii) gph ∂(f + βq) =
[

Id 0
β Id Id

]
gph ∂f .

(iii) gph ∂(αf) =
[
Id 0
0 α Id

]
gph ∂f .

(iv) gph ∂(eβf) =
[
Id β Id
0 Id

]
gph ∂f .

(v) gph ∂(αFf) =
[
α Id 0

0 Id

]
gph ∂f .

(vi) gph ∂f(α·) =
[
α−1 Id 0

0 α Id

]
gph ∂f .

(vii) gph Proxβ(f) =
[
Id β Id
Id 0

]
gph ∂f .

(viii) gph ∂(sλf) =
[

Id λ Id
λ Id Id

]
gph ∂f .

(ix) gph ∂(Tλf) =
[
(1− λ

2 ) Id λ
2 Id

λ
2 Id (1− λ

2 ) Id

]
gph ∂f .
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4.2. Goebel’s Graph-Matrix Calculus

Proof. Let J =
[

0 Id
Id 0

]
. Formula (i) is shown via

(x, y) ∈ gph ∂f ⇔ y ∈ ∂f(x)⇔ x ∈ ∂f?(y)⇔ (y, x) ∈ gph ∂f.

For (ii), we note that ∂(f + βq) = ∂f + β∂q = ∂f + β Id, thus (x, y) ∈
gph ∂f ⇔ (x, y + βx) ∈ gph ∂(f + βq). We get (iii) using ∂(αf) = α(∂f):

y ∈ ∂f(x)⇔ αy ∈ ∂(αf)(x)⇔ αy ∈ α∂f(x)⇔ (x, αy) ∈ gph ∂f.

Similarly, ∂(eβf) = ∂(f2β−1q) = ∂(f? + βq)?, and using previous rules
yields (iv). To obtain (v), we use the identity αFf = (αf?)?, and applying
the two previous rules gives

gph ∂(αf?)? = J gph ∂(αf?) = J

[
Id 0
0 α Id

]
gph ∂f? = J

[
Id 0
0 α Id

]
J gph ∂f

=
[
α Id 0

0 Id

]
gph ∂f.

Using both multiplication rules (iii) and (v), and rewriting f(α·) as α(α−1Ff)
leads to

gph ∂f(α·) = gph ∂(α(α−1Ff)) =
[
Id 0
0 α Id

] [
α−1 Id 0

0 Id

]
gph ∂f

=
[
α−1 Id 0

0 α Id

]
gph ∂f,

thus showing (vi). From [5, Section 2.2], we have Proxβ f = (Id +β∂f)−1,
so

gph(Id +β∂f) =
[
Id 0
Id β Id

]
,

and inverting the graph gives (vii). By writing out the definition of sλf and
expanding based on previous rules,

gph ∂(sλf) = gph ∂((1− λ2)eλf + λq)

=
[

Id 0
λ Id Id

] [
Id 0
0 (1− λ2) Id

] [
Id λ Id
0 Id

]
gph ∂f,

and matrix multiplication proves (viii). The proof of (ix) is postponed until
after the next theorem.
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We also recall rules in [11] for calculation of the transformed subdifferen-
tial under the binary operations of addition, infimal convolution, and taking
the proximal average.

Theorem 4.2.2 (Graph-Matrix Calculus for binary operators).
Let f1 and f2 be two proper, lower semi-continuous, convex functions. Then
the following rules hold (for i ∈ {1, 2}).

(i) Addition rule: If ri dom f1 ∩ ri dom f2 6= ∅, then

(x, s) ∈ gph ∂(f1 + f2)⇔ ∃(xi, si) ∈ gph ∂fi such that

{
x = x1 = x2,

s = s1 + s2.

(ii) Inf-convolution rule: If ∂f1(x1) ∩ ∂f2(x2) 6= ∅, then

(x1 + x2, s) ∈ gph ∂(f12f2)⇔ (xi, s) ∈ gph ∂fi.

(iii) Proximal average rule: Let λ ∈ (0, 1) and µ = 1. Assume that
Pλ(f1, f2) is exact at x = (1− λ)x1 + λx2, where xi ∈ dom fi for i ∈ {1, 2}.
Then:

(x, s) ∈ gph ∂Pλ(f1, f2)⇔


s1 ∈ ∂f1(x1)
s2 ∈ ∂f2(x2)
s = x1 + s1 − x = x2 + s2 = x

Proof. As f1, f2 are convex, we have by [14, Corollary XI.3.1.2]: ∂f1(x) +
∂f2(x) = ∂(f1 + f2)(x). Hence,

s ∈ ∂(f1 + f2)(x)⇔ s = s1 + s2 for si ∈ ∂f(xi).

Similarly, [14, Corollary XI.3.4.2] gives ∂f1(x1)∩ ∂f2(x2) = ∂(f12f2)(x), so

s ∈ ∂(f12f2)(x)⇔ ∃x1, x2, s ∈ ∂f1(x1) and s ∈ ∂f2(x2).

Using ∂Pλ(f1, f2)(x) = −x+
⋂
i:λi>0(∂fi(xi) + xi) from [1, Theorem 7.1],

s ∈ ∂Pλ(f1, f2)(x)⇔

{
s = x1 + s1 − x , for some s1 ∈ ∂f1(x1);
s = x2 + s2 − x , for some s2 ∈ ∂f2(x2).

We now include the proof of Theorem 4.2.1(ix).
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4.3. Transforms of PLQ Functions

Proof. Using the definition of Tλf = Pλ(f, q), and that s2 ∈ ∂q(x2)⇔ s2 =
x2, we have

(x, s) ∈ gph ∂(Tλf)⇔


x = (1− λ)s1 + λs2

s = x1 + s1 − x
s = x2 + s2 − x

Solving for x and s yields

x = (1− λ

2
)x1 +

λ

2
s1

s =
1
2
x1 + (1− λ

2
)s1

which are the coefficients in Theorem 4.2.1(ix).

4.3 Transforms of PLQ Functions

Given a convex PLQ function f in GPH matrix format, Theorem 4.2.1
shows how to compute many of the fundamental unary convex transforms.
Having computed A gph ∂f , we still need to recover at least one constant of
integration to be able to make use of this new graph. We present ways to
transform fi values from ∂f ’s graph to new values in A∂f ’s graph. Unlike
the matrices presented by Theorem 4.2.1, the method to compute new fi’s
depends highly on the transform being performed.

We set our notations first. We will assume we are transforming a con-
vex function f given by the GPH matrix [xf , sf , yf ]T , and that we have
calculated xg, sg for the transformed function g = Tf given by [xg, sg, yg]T .
The notation x.*y denotes elementwise multiplication, and x.^n denotes
elementwise exponentiation.

Recovery of yg when g = αf or g = f + βq is straightforward: yg = αyf
in the first case, and yg = yf + (β/2)xf.^2 in the second. The following two
Propositions show how to compute the transforms of other unary operators.

Proposition 4.3.1. To compute the Legendre-Fenchel transform, g = f?,
yg can be calculated via yg = sf.*xf − yf .

Proof. As f is convex, looking for a maximizer of g(s) = f?(s) = maxx(〈s, x〉−
f(x)) means finding x, s such that s ∈ ∂f(x). For all i ∈ {0, . . . , n+ 1}, we
know that (sf )i ∈ ∂f((xf )i), hence yg = g(xg) = g(sf ) = sf.*xf − yf .
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4.3. Transforms of PLQ Functions

Proposition 4.3.2. Under the Moreau envelope g = eβf , we have that
yg = yf + (β/2)sf.^2.

Proof. The Moreau envelope can be written as eβf = (f? + β−1q)?. By the
previous Proposition as well as Theorem 4.2.1(i),

f? :=

x1

s1

y1

 =

 sf
xf

sf.*xf − yf

 .
Then, if we consider the function f? + β−1q,

f? + β−1q :=

x2

s2

y2

 =

 x1

s1 + (1/β)x1

y1 + (1/2β)x1.^2

 .
Conjugating again,

g = (f? + β−1q)? :=

xgsg
yg

 =

 s2

x2

s2.*x2 − y2

 .
Expanding yg yields yg = (β/2)sf.^2.

To compute the sum of two convex PLQ functions f and g finite at more
than a single point, the x-axis must be repartitioned to include all of the
distinct elements in xf and xg. Pseudocode is presented in Algorithm 3.
The algorithm requires complexity in time and space linear in the number
of pieces of f and g, as Line 3 merges two sorted sequences, after which
each partition is only considered once, in O(1) time. Note that additional
(linear) work may be required before entering the for loop to determine in
which pieces of f and g the entries of x fall.

The proximal average also requires more work to implement than the
unary operators we have shown.

Proposition 4.3.3. Let f1 = [x1, s1, y1] and f2 = [x2, s2, y2] be convex PLQ
functions in GPH matrix format, and λ ∈ [0, 1]. Define the operator P by
P = (Id +∂f2)−1(Id +∂f1). Then the proximal average Pλ(f1, f2) = [x, s, y]
is given by:

x = (1− λ)x1 + λPx1

s = x1 + s1 − x = x2 + s2 − x

y = (1− λ)(y1 +
1
2
x1.^2) + λ(f2(Px1) +

1
2

(Px1).^2)− 1
2
x.^2
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4.3. Transforms of PLQ Functions

Algorithm 3: gph add
Input: f, g (convex PLQ functions, in GPH matrix format)
Output: h (a convex PLQ function, in GPH matrix format)
begin1

h← [];2

x← the ascending distinct partition points in xf and xg;3

for each interval [xi, xi+1] produced by the partition x do4

Append to h a column for the right slope at xi by adding the5

corresponding right slopes and function values of f and g at
xi;
Append to h another column for the left slopes and function6

values at xi+1;
end7

if f(x) =∞ or g(x) =∞ for x < x1 then8

Bound h on the left with a column [x1, s1 − 1,∞]T ;9

end10

if f(x) =∞ or g(x) =∞ for x < xn then11

Bound h on the right with a column [xn, sn + 1,∞]T ;12

end13

h← UniqueColumns(h);14

end15
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4.4. Comparison of Algorithms

Proof. In order to calculate the proximal average at x, we must find the
x1, x2 that make the proximal average exact. To do this, we parametrize
the graph with respect to x1 and find the corresponding x2. The formula for
s was stated in Theorem 4.2.2. From s, we can see that x1 + s1 = x2 + s2,
so (Id +∂f1)(x1) = (Id +∂f2)(x2). Thus x2 = Px1 gives the points that
correspond to x1, i.e.

x2 = (Id +∂f2)−1(Id +∂f1)(x1).

By using a reformulation of the proximal average [1, Proposition 4.3],

Pλ(f1, f2) = inf
x=(1−λ)x1+λx2

((1− λ)(f1 + q)(x1) + λ(f2 + q)(x2)− q(x)) ,

and substituting x2, we arrive at the formula for y.

It is important to note that (y1 + 1
2x1.^2), (f2(Px1) + 1

2(Px1).^2), and
(1

2x.^2) are independent of λ. These values can be precomputed to reduce
the time needed to compute the proximal average for various λ and fixed
f1, f2, x. The proximal average PLQ algorithm does not use such a pre-
computation scheme. This technique was demonstrated in [11] to compute
Pλ(1

2‖ · ‖
2, ι{0} + 1) for many λ (Figure 4.1), and significant performance

increases were noticed. The PLQ algorithm required 117 seconds, while the
GPH algorithm for multiple λ took only 33 seconds.

4.4 Comparison of Algorithms

To compare the performance of GPH algorithms with existing algorithms,
we implemented many of these GPH algorithms alongside their PLQ coun-
terparts in [18]. The results may be seen in Figures 4.2 and 4.3.

We included four algorithms in our experiments. PLQ is the existing
algorithm that works with PLQ functions directly. GPH is our new algo-
rithm that works with GPH matrices. In Figure 4.2, LLT is the Linear-time
Legendre Transform [16]. Finally, OPT is an algorithm using the n1fc1 non-
smooth bundle method solver built into Scilab 5.1.1 [6] with a warm-start
from the previously computed point.

First, we look at computing the conjugate, (x4)?, in Figure 4.2. The
general OPT algorithm does not perform as well as specialized algorithms
(Figure 4.2(a)), and removing OPT from the picture makes it clear that,
although both algorithms clearly require linear time, GPH is outperforming
PLQ significantly (Figure 4.2(b)). The PLQ conjugate algorithm makes use
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4.4. Comparison of Algorithms

Figure 4.1: The proximal average of f1(x) = 1
2‖ · ‖

2 and f2(x) = ι{0}(x) + 1
as λ ranges from 0 (blue) to 1 (red).

of a “clean” function to normalize its matrix, whereas this is not necessary for
the GPH matrix. The GPH algorithm, which produces an exact transformed
model, shows comparable performance to the inexact LLT algorithm.

We also used the proximal average algorithm for comparison (Figure
4.3). The results were much the same: OPT was the slowest algorithm;
PLQ performed much better; and GPH showed significant improvement
over both algorithms.

All experiments were performed on the same computer as in Section 3.3.
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Figure 4.2: Comparison of conjugate algorithms computing (x4)? approxi-
mated by n-piece piecewise linear functions on [−10, 10].
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Chapter 5

Conclusion

We have provided two means to compute the convex hulls of continuous
piecewise linear-quadratic functions. The first algorithm requires treating a
number of special cases at each iteration, but runs in optimal linear time.
The second requires worst-case quadratic time and runs slower than the
first even when it achieves its best-case linear time, but requires less effort
to implement.

We also showed that by storing the graph of the subdifferential of a
PLQ function in matrix form, it is possible to build a class of algorithms
that computes many convex transforms of convex PLQ functions via ma-
trix multiplication, followed by a linear-time calculation of the value of the
transformed function. We included complete algorithms for scalar multi-
plication, addition of the scaled energy function, addition of two functions,
the Legendre-Fenchel transform, the Moreau envelope, and the proximal
average. Because these calculations are matrix and elementwise vector op-
erations, and because no subalgorithms are necessary, we experienced sig-
nificant performance gains over algorithms working with PLQ functions di-
rectly.

For both sets of algorithms, we experimentally validated our results with
implementations in the Computational Convex Analysis toolbox [18].

Directions for future work include extending the univariate PLQ frame-
work to model bivariate PLQ functions. Representation of the domain of a
function becomes critical, and it is necessary to find a representation that
aids the computation of the conjugate, from which other operators may be
built. Computing the convex hull of a bivariate PLQ function is also im-
portant, however certain techniques can be ruled out: the duality approach
of Section 3.2 cannot be directly applied, as the pointwise maximum of two
convex bivariate PLQ functions, while convex, may fail to be PLQ (see
Figure 5.1).

Another direction to take would be to extend the Graph-Matrix Cal-
culus algorithms to work with nonconvex functions. Additionally, instead
of relying on convex hull algorithms to be able to use convex algorithms
on nonconvex functions, individual algorithms may be extended to handle
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Chapter 5. Conclusion
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Figure 5.1: f(x, y) = 1
2(x2 + y2). g(x, y) = 4. max(f, g) is not a PLQ

function, as one piece of its domain is a circle about (0, 0), which is not
polyhedral as the PLQ class requires.

nonconvex cases as well.
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