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Abstract

Global optimization of continuous, non-linear functions are very hard problems, especially
when the functions are multivariate and when analytical information is not available. Heuris-
tic methods like simulated annealing provide good results. However, if time is a critical factor,
those methods may deliver suboptimal solutions and give little information about the quality
of the solutions.

Methods of Lipschitz optimization allow one to find and confirm the global minimum of
multivariate Lipschitz functions using a finite number of function evaluations. The Extended
Cutting Angle Method (ECAM), proposed by Gleb Beliakov, is a fast method to optimize a
Lipschitz function over multiple dimensions.

The first objective was to fully implement the proposed algorithm and to test it on a
family of classic global optimization problems. A second objective was to apply the algorithm
to the problem of optimizing the radiation treatment for cancer patients. In radiotherapy,
several x-ray beams are delivered to the tumor from different angles around the patient. The
ECAM was tested against a simulated annealing algorithm to find the optimal angles of the
beams in order to deliver the prescribed radiation dose to the tumor and to minimize the
damage to healthy tissue.
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Chapter 1

Introduction

1.1 Global Optimization

Optimization is a very important field in applied mathematics. These problems are solved
daily in finances, engineering, medicine, and statistics. Often those problems can be formu-
lated using linear functions or non-linear convex functions, and can be solved by efficient
algorithms in linear programming or convex analysis. Those specific areas of optimization
are very well understood. If a problem contains multiple minimas, however, the situation
changes drastically. This is where global optimization comes into play.

Global optimization is a mathematical problem that is considered to be very difficult.
Several global optimization problems have been shown to be NP-complete. While it is some-
times difficult to prove that a global optimization problem is NP-complete, solving such
problems is always a difficult task [11]. Global optimization problems are encountered in
nearly all areas of natural sciences and engineering. Whether it is a traveling salesman
problem in computer science, a protein folding problem in chemistry, or a particular shape
optimization problem in engineering, the problems pose significant challenges for most re-
searchers in each area.

Global optimization can be divided roughly into two subfields.

Probabilistic Methods are also called heuristic methods. The word heuristic is derived
from the greek “heuriskein” (to find), famously used by Archimedes in his “Eureka!,
Eureka!”. Heuristic methods make use of probability distributions. They are usually
algorithms with infinite iterations that converge to the global minimum with probabil-
ity 1 as the number of iterations approaches infinity. Probabilistic methods include:

• Simulated Annealing

• Genetic Algorithms

• Neural Networks

• Taboo Search

• Single Linkage Clustering Methods

Deterministic Methods make use of structural information about the problem. Those
methods may directly use the gradient of a function if the function is differentiable.
They may also use other information such as Lipschitz continuity. Deterministic meth-
ods include:
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• Interval Analysis

• Branch and Bound

• Two-Phase Methods

• Stochastic Adaptive Search

• Dynamical Search

• Algorithms based on local optimization.

In this paper we consider a recently proposed algorithm in the family of Branch and
Bound algorithms. It belongs to the subfield of Lipschitz optimization. The first goal of
this thesis is to fully implement the algorithm and test it on a family of classic global
optimization problems. A second goal is to apply the algorithm to the difficult problem of
radiation therapy optimization.

1.2 Radiation Therapy

Radiosurgery is a form of radiotherapy treatment, where external photon beams are delivered
to the cancer tumor of a patient. An important and complicated task in the radiosurgery
treatment of a cancer patient is the design of a treatment plan. Radiation simulation algo-
rithms are used to calculate the dose distribution in human tissues. The data gathered with
these algorithms can then be used to make decisions on planning variables (i.e. beam angles,
beam intensity, beam shape, etc.).

Due to the complexity of the treatments and the difficulty of finding an optimal treatment
plan, much of the research in the field of radiation therapy is aimed at the treatment plan op-
timization through efficient algorithms. A major problem in Intensity Modulated Radiation
Therapy (IMRT) consists of optimizing the combination of beam intensity, beam segmenta-
tion and the different beam angles in three dimensions. The beam intensity and the beam
segments are usually optimized either with Direct Apperture Optimization (DAO) or with
Fluence Map Optimization (FMO). The former is often based on heuristic approaches, while
the latter is mostly solved by Linear Programming. Recent Linear Programming models also
incorporate the coplanar angles of a preselected set of beams [13].

In this paper, a deterministic global optimization approach is presented to optimize the
beam angles. Unless a preselected set of beams is optimized, as in [13], the angle optimization
problem is non-convex. In [3], a random search algorithm is used to solve the beam angles in
combination with DAO. We propose a bilevel deterministic optimization approach to solve
the beam angles directly. The advantage of the Extended Cutting Angle Method in the
radiation therapy treatment planning is that the algorithm provides a lower bound on the
global minimum. This is important for time consuming treatment in order to achieve the best
results for the treatment time. An example of time consuming treatments are treatments
with non-coplanar beams. The experimental results with coplanar beams show that the
Extended Cutting Angle Method provides good results and could be an efficient tool for the
optimization of non-coplanar beams.
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Chapter 2

The Extended Cutting Angle Method

2.1 Lipschitz Continuity and the Pijavskii-Shubert

Method

In deterministic global optimization, one makes use of the structural information about the
objective function, in order to find the global extremum. Lipschitz continuity is a structural
property that restricts the rate of change of a continuous function. A function in R is
Lipschitz-continuous over the interval [a, b], if it satisfies the inequality

|f(x1)− f(x2)| ≤ L|x1 − x2| (2.1)

for any arbitrary pair of points x1, x2 ∈ [a, b] where L ∈ (0,∞) is a fixed constant. Many
practical problems can be formulated with Lipschitz functions. In [9], it is shown that a
Lipschitz continuous function on a bounded set I is bounded on I. The Lipschitz properties
can therefore be used to construct an estimate for the global minimum and maximum of the
function. Consider the following sample points of an arbitrary Lipschitz function f(x) in R
with Lipschitz constant L

a = x0 ≤ x1 ≤ . . . ≤ xk = b (2.2)

The following functions h(x) are affine underestimates of f(x) at the given sample points

hi(x) = f(xi)− L|x− xi|, x ∈ [a, b], 1 ≤ i ≤ k. (2.3)

If we maximize the set of all hi(x), we get a function formed by the intersections of all hi(x),
namely

Hk(x) = max{hi(x) : 1 ≤ i ≤ k}, x ∈ [a, b], (2.4)

the piecewise linear underestimate for f(x). Since ∀x,Hk(x) ≤ f(x) we know that every
local minimizer in Hk(x), is also below f . Hence the global minimizer of the piecewise linear
support function Hk(x) must lie below the global minimum x∗ of f(x). The global minimizer

z∗ = min
a≤x≤b

Hk(x) (2.5)

of the piecewise linear support function is therefore a lower bound of f(x) with a tolerance
∆k = f(x∗)−z∗. Figure 2.1 shows the piecewise linear support function Hk(x) for the above
example with k = 4.
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Figure 2.1: The saw-tooth underestimate for the Lipschitzian function f(x) with 4 sample
points.

From the above explanation, we can see that ∆k is small when k is big. This observa-
tion suggests an iterative approach for building the saw-tooth underestimate Hk. Pijavskii
and Shubert introduced a sequential method to approximate the global minimum of a Lips-
chitzian function [15, 21].

Consider a function f in R with Lipschitz constant L. We want to minimize the function
by solving

min f(x) (2.6)

s.t. x ∈ [α, β].

The Pijavskii-Shubert method starts with the evaluation of the domain boundaries α, β. For
each point, we can now construct an affine underestimate. The intersection of the two sup-
port vectors is solved as a simple linear system. The function f is then evaluated again at the
new intersection point and two new support vectors are constructed that result in two new
intersection points. At each following iteration, the minimum of all intersection points that
have not yet been evaluated forms the candidate for a function evaluation. The procedure
is continued until the underestimate model converges to the global minimum of f within a
tolerance ε or until the maximum number of iterations kmax is reached. The convergence of
the algorithm is shown in [15, 21]. The detailed steps are outlined in Algorithm 2.1

4



Algorithm 2.1: Pijavskii-Shubert Method
Input: Function f(x), starting points α, β, Lipschitz constant L
Output: Global minimum fbest
begin

k ← 0
dbest ← −∞
fbest ← min{f(α), f(β)}
Solve d = −Lx∗ + f(α) = Lx∗ + f(β)
xk ← x∗ and add (d, xk) to Hk

repeat
k ← k + 1
(d, xk)← mindH

k−1

Hk ← Hk−1 \ (d, xk)
dbest ← d
if f(xk) < fbest then

fbest ← f(xk)
end
xL ← LeftNeighbour(xk)
Solve d = −Lx∗ + f(xL) = Lx∗ + f(xk)
xk ← x∗ and add (d, xk) to Hk

xR ← RightNeighbour(xk)
Solve d = −Lx∗ + f(xk) = Lx∗ + f(xR)
xk ← x∗ and add (d, xk) to Hk

until k ≥ kmax or fbest − dbest ≤ ε

end

In the above method, an iteration creates exactly two new local minima in Hk. Hence,
the algorithm has a linear running time and is therefore very efficient for one-dimensional
problems. However, in the extension of the Pijavskii-Shubert method to Rn, the minimization
of Hk becomes an NP-hard problem, since the number of hypercone intersections grows
exponentially with the dimension. Furthermore, the algorithm involves the computationally
difficult problem of solving n-dimensional hypercone intersections [14].

In [2], based on the results of abstract convexity [17], Andramonov et al. propose a
generalized version of the Cutting Plane Method from convex analysis for the optimization
of non-convex functions. They introduce a special case of the Generalized Cutting Plane
Method, the Cutting Angle Method (CAM). The CAM minimizes Increasing Positively Ho-
mogeneous (IPH) functions of degree one by creating a saw-tooth underestimate similar to
the Pijavskii-Shubert method. Beliakov and Batten introduce a fast algorithm for the CAM
[7] that significantly reduces the minimization of Hk. The key part of the algorithm is the
formulation of the minimization of Hk as a combinatorial problem. With the Extended Cut-
ting Angle Method (ECAM), Beliakov introduces a version of the CAM that uses a different
class of support functions. As a result, the ECAM is more accurate and faster than the CAM
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[6]. The Pijavskii-Shubert algorithm presented previously is a special case of the ECAM in
one dimension.

In section 2.2 we explain the Cutting Plane Method. In Section 2.3 we explain the
generalization of the Cutting Plane Method in abstract convex analysis and in Section 2.4
the CAM. Section 2.5 deals with the extended version of the CAM, the ECAM.

2.2 Convexity and the Cutting Plane Method

The Cutting Plane Method from convex analysis is an algorithm introduced by Kelley [12] to
optimize convex functions. In order to understand the algorithm, we will introduce briefly the
notions of convexity and the subdifferential. Since we are interested primarily by functions
that are Lipschitz continuous, we will only consider functions that are finite. We start with
the introduction of convex sets.

Definition 1. A set X ⊂ Rn is called convex if ∀x1 ∈ X and ∀x2 ∈ X it contains all points

αx1 + (1− α)x2, 0 < α < 1

Now consider a finite function f .

Definition 2. The epigraph of a function f is defined by

epif = {(x, v) ∈ Rn × R : v ≥ f(x)}.

One can imagine the epigraph of a one dimensional function as being the surface that
lies above the function. Combining Definition (1) and (2), we can define a convex function.

Definition 3. A function f is called convex if epi f is a convex set.

An analytical formulation of the above definition is given in the following Lemma.

Lemma 1 ([18]). A function f is convex if and only if for all x1 and x2 and for all 0 ≤ α ≤ 1
we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

The proof is omitted here. We know that if a function is not differentiable at a point, we
do not have a gradient at that point. However, in convex analysis, a generalized version of
the gradient is introduced. It is called the subgradient. The subgradient of a convex function
f at some point x is defined as follows.

Definition 4. Let f : Rn → R be a convex function and let x ∈ domf . A vector g ∈ Rn

such that
f(y) ≥ f(x) + 〈g, y − x〉,∀y ∈ Rn

is called the subgradient of f at x.
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Definition 5. The set of all subgradients of f at x is called the subdifferential of f at x,
denoted by ∂f(x).

Now consider the subgradient g ∈ ∂f(x). In geometrical terms, the inequality in (4)
means that the affine function h(x) = f(x) + 〈g, y − x〉 lies below the function f(x). Hence,
h(x) is an affine underestimate of f at x. Notice that in [18] it is shown that for a convex
function, ∂f(x) is a nonempty, convex, closed and bounded set. Moreover, if the function f
is differentiable at x, then ∂f(x) contains only one element which is the gradient of f .

With the above definitions, we can now introduce Kelley’s Cutting Plane Method. Con-
sider the problem

min f(x) (2.7)

s.t. x ∈ D

where f : Rn → R is a convex function andD is a convex and compact set. The Cutting Plane
Method starts with taking the subgradient of f at some point x1. An affine underestimate
of f at x1 is then constructed with

h1(x) = f(x1) + 〈g1, x− x1〉.

The underestimate h1(x) is then minimized over the domain D. The resulting minimizer x∗

is taken as the starting point for the next iteration. At x2 = x∗, a new affine underestimate
is created by using the subgradient of f at x2. Hence we have

h2(x) = f(x2) + 〈g2, x− x2〉.

The two underestimates are then combined into a piecewise linear underestimate

H2(x) = max{h1(x), h2(x)}.

Minimizing the piecewise linear underestimate results in the point x∗ = minx∈DH
2(x) which

is the starting point for the next iteration. The procedure continues iteratively. At k
iterations, we therefore have a piecewise lower approximation to the function f of the form

Hk(x) = max
1≤i≤k

{f(xi) + 〈gi, x− xi〉}.

And hence
xk+1 = min

x∈D
Hk(x)

is the location of the next function evaluation. Since Hk(x) is a piecewise linear function, the
minimum is easily obtained by using linear programming techniques. The algorithm stops
when f(xk+1) = hk(xk+1) or f(xk+1)−hk(xk+1) ≤ ε for some given value ε. The convergence
of the algorithm is shown in [18].
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2.3 Abstract Convexity and the Generalized Cutting

Plane Method

In 2.2 we showed that for the optimization of a convex function, one can build a piecewise
affine convex function and find the global minimum by solving a linear program. The al-
gorithm is based on the conclusion from convex analysis that a convex function forms the
upper envelope of its affine minorants. The Generalized Cutting Plane Method takes a sim-
ilar approach for non-convex functions. The method is based on the results from abstract
convex analysis that an abstract convex function is the upper envelope of its generalized
affine minorants (sufficiently simple minorants other than affine) [17]. In the case of a Lip-
schitz function, the support functions are the saw-tooth or min-max type functions. The
restriction of certain types of abstract convex functions allows for a specific choice of support
functions.

In [17], an abstract convex function is defined as follows.

Definition 6. Given a set of real-valued functions H defined on a set X ⊂ Rn, a function
f : X → R is abstract convex with respect to H (or H-convex) if there exists a set U ⊂ H
such that ∀x ∈ X

f(x) = sup{h(x) : h ∈ U}.

Now all h(x) ∈ H that are generalized affine minorants of f are called the support set
of f with respect to the set of functions H : supp(f,H) = {h ∈ H, h ≤ f}. Analogous to
convex analysis, we have the following definition.

Definition 7. The H-subdifferential of f at point x0 is defined by

∂Hf(x0) = {h ∈ H : h(x)− h(x0) ≤ f(x)− f(x0),∀x ∈ X}

Now consider an Increasing Positively Homogeneous function (IPH) of degree one

IPH = {f : ∀x, y ∈ Rn
+ : x ≥ y ⇒ f(x) ≥ f(y);∀x ∈ Rn

+, λ ∈ R++ : f(λx) = λf(x)} (2.8)

where Rn
+ denotes the cone of vectors with non-negative components and R++ denotes the

set (0,∞]. Andramonov et al.[2] show that a function f : Rn
+ → R is H-convex if and only if

f is IPH of degree one. Any Lipschitz function restricted to a set X ⊂ Rn
+ can be extended

to an IPH by adding a constant C ≥ 2L. The addition of a constant does not change the
minimum of the function.

Let f be an IPH function of degree one on a compact convex subset X ∈ Rn. In
order to minimize f , the generalized Cutting Plane algorithm, analogous to the Cutting
Plane algorithm, iteratively creates a piecewise function Hk(x) of H-minorants of f with the
restriction that x ∈ X. At each iteration k, the algorithm solves the following problem

minHk(x) (2.9)

s.t. x ∈ D.

8



As in the Cutting Plane Method, the solution of (2.9) serves as the starting point for the
next iteration. Andramonov et al. show that if one uses the class of support functions of
type

h(x) = min
i=1,...,n

lixi, li ∈ Rn
+, x ∈ S, (2.10)

then the algorithm will converge to the global minimum of f . The algorithm as outlined in
[17] is presented below (Algorithm 2.2).

Algorithm 2.2: Generalized Cutting Plane Method
Input: Function f(x), starting point x∗ ∈ X ⊆ Rn

Output: Global minimum fbest
begin

k ← 1
xk ← x∗

fbest ← f(xk)
repeat

Calculate hk ∈ ∂Hf(xk) such that h(xk) = f(xk) (H-subgradient of f at xk)
Hk(x)← maxi=1,...,k h

i(x),∀x ∈ X
x∗ ← minHk(x)
k ← k + 1
xk ← x∗

fbest ← min{f(xk), fbest}
until k ≥ kmax or fbest −Hk(x∗) < ε

end

2.4 The Cutting Angle Method

A special case of the generalized Cutting Plane Method is the Cutting Angle Method (CAM).
In the CAM, the restricting set X of a function f in Rn is the unit simplex S ∈ Rn. The
CAM calculates a function h ∈ H at a point x∗ (H-subgradient) with the following formula

hk(x) =

(
f(xk)

xk

)
=

(
f(xk)

xk1
,
f(xk)

xk2
, . . . ,

f(xk)

xkn

)
, xi 6= 0, i = 1, . . . , n. (2.11)

Functions like (2.11) are called support vectors in the CAM. The CAM uses the support
vectors (2.11) to build the lower estimate of f on the unit simplex S similar to the Cutting
Plane Method of Section 2.2. The original CAM presented in [2] solved the relaxed problem
(2.9) with a standard integer programming approach. This made it possible to deal with
about 100 support vectors [4]. In [7], Beliakov and Batten transform the relaxed problem
into a combinatorial problem (as explained in Section 2.5) which enables the CAM to process
hundred of thousands of support vectors. The saw-tooth underestimate of the CAM using

9



Figure 2.2: Part of a saw-tooth underestimate with support functions of type (2.11) for an
objective function of two variables in the CAM.

support functions of type (2.11) in R3 is shown in Figure 2.2.

Beliakov points out that there are some disadvantages of the CAM when support func-
tions of type (2.10) are used [6]. One disadvantage is that the Lipschitz constants are different
for every h(x) in Hk and can become very large along the rays close to the boundary of the
unit simplex S (see Figure 2.2). Also, the transformation of a Lipschitz function to IPH may
result in a loss of accuracy. Beliakov proposes a new type of support function

h(x) = min
x

(Cx+ b), C > 0, x, b ∈ Rn :
n∑
i=1

xi = 1 (2.12)

where C is a constant greater or equal to the Lipschitz constant L of f . Specifically, at
iteration k with b = f(xk)− Cxk, the above can be rewritten as

hk(x) = min
x

(f(xk)− C(xk − x)) (2.13)

In the one-dimensional case, the set Hk = {h1(x), . . . , hk(x)} is the saw-tooth underestimate
of the Pijavskii-Shubert method. However, the generalized version of the Pijavskii-Shubert

10



underestimate, namely,

Hk(x) = max
i=1,...,k

(f(xi)− C ‖ xi − x ‖) (2.14)

is different from what Beliakov proposes. He replaces the norm ‖ · ‖ with a polyhedral
distance function dP so that (2.14) becomes

Hk(x) = max
i=1,...,k

(f(xi)− CdP (x, xi)),
n∑
i=1

xi = 1. (2.15)

Beliakov shows that classes of functions which are abstract convex with respect to (2.15) are
the same classes of functions which are abstract convex with respect to (2.14). The use of the
polyhedral distance makes it possible to solve the relaxed problem very fast by enumerating
all local minima of Hk. This was already done in [5] for the fast implementation of the
CAM. Beliakov also proves that all Lipschitz functions are abstract convex with respect to
(2.13)[6]. This allows an extension of the CAM by applying (2.15) as an underestimate for
Lipschitz functions.

2.5 The Extended Cutting Angle Algorithm

2.5.1 Polyhedral Distance and Support Functions

The definition of a polyhedral distance is given in [6]. Beliakov points out that polyhedral
distances are special cases of Minokowski gauges and exhibit therefore the following property

A ‖ x− y ‖≤ dp(x, y) ≤ B ‖ x− y ‖, ∀x ∈ Rm.

This means that for any Lipschitz function, the polyhedral distance is bounded by the
Lipschitz property. Beliakov then proves that, with the help of an auxillary variable, support
functions used in (2.15) are equivalent to support functions in (2.14). In other words, in the
case of a Lipschitz underestimate, one can replace the norm by the polyhedral distance. For
the details of the proof, we refer to [6]. The auxillary equation in the case of a function in
Rm is defined as xm+1 = 1 −

∑m
i=1 xi. This results in a constraint for the variables of the

form
n∑
i=1

xi = 1 (2.16)

where n = m + 1. The additional variable and the constraint extends the function domain
and restricts it to the hyperplane that is spanned by the unit simplex. Due to the equivalence
of (2.15) and (2.14), it is now possible to use (2.13) as a support function to build the saw-
tooth underestimate. Beliakov shows that Lipschitz functions in Rm are abstract convex
with respect to (2.13) on the extended domain Rn with n = m+ 1, subject to (2.16)[6].

As a result, the extension of the CAM with the support functions of type (2.13) allows
the minimization of a Lipschitz function on a compact set D. The proof of convergence for
the Extended Cutting Angle Method (ECAM) is omitted here. We refer to [6] for the details.
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2.5.2 Saw-tooth and Calculation of Local Minima

As mentioned above, due to the use of a polyhedral distance dp instead of the norm, we build
the saw-tooth underestimate with functions of type (2.13). If we expand (2.13), we get

hk(x) = min
x

(f(xk)− Cxk + Cx).

We reformulate the equation as

hk(x) = min
x

(
f(xk)

C
− xk + x

)
.

This leads to the formulation of the support vector

lki =
f(xk)

C
− xki (2.17)

and the final formulation of the support function

hk(x) = min
x
C(lk + x). (2.18)

To minimize the saw-tooth underestimate, we first have to enumerate all minimizers that
result from the intersections of the support functions (2.18). The final form of the support
functions allows us to formulate the enumeration of the minimizers as a combinatorial prob-
lem which is the foundation of the fast implementation of the CAM and ECAM.

A minimizer in the relative interior riD needs to fulfill the necessary and sufficient con-
ditions listed in [10] applied to the support function (2.18). This results in the following
proposition.

Proposition 1 ([6]). A necessary and sufficient condition for a point x∗ ∈ riD to be a local
minimizer of HK = maxk=1,...,K h

k and hk given by (2.18), is that there exists an index set
J = {k1, k2, . . . , kn} of cardinality n, such that

d = HK(x∗) = C(lk11 + x∗1) = C(lk22 + x∗2) = . . . = C(lkn
n + x∗n),

and ∀i, i = 1, . . . , n, C(lki
i + x∗i ) < C(lki

j + x∗j), j 6= i.

Again, for the proof of the above proposition, we refer to [6]. In geometrical terms,
the above proposition can be explained as follows. The point x∗ represents a point of
intersection of n polyhedral cones in the saw-tooth underestimateHk. A cone P k is defined by
n hyperplanes with slope C. Therefore x∗ is the intersection of n edges of those hyperplanes,
each with slope C in the direction of xi. Thus, the i-th edge of a cone is denoted by C(li+x

∗
i ).

In order to find the point of intersection of n cones, according to Proposition 1, we list
the n cones as an ordered index set J with indices {k1, k2, . . . , kn}, one index per cone. We
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Figure 2.3: Part of a saw-tooth underestimate with support functions of type (2.13) for an
objective function of two variables in the ECAM.

list each cone as a set of n support vectors, representing the n edges of the cone. We write
this combination of vectors in matrix form

L =


lk11 lk12 . . . lk1n
lk21 lk22 . . . lk2n
...

...
. . .

...

lkn
1 lkn

2 . . . lkn
n

 . (2.19)

From Proposition 1 we can solve now for x∗ with

x∗1 =
d

C
− lk11 , x

∗
2 =

d

C
− lk22 , . . . , x

∗
n =

d

C
− lkn

n . (2.20)

Because of constraint (2.16), if we add the individual xi, i = 1, . . . , n together, we can set
the sum equal to 1. It follows that

n∑
i=1

x∗i =
n∑
i=1

(
d

C
− lki

i

)
= d

n∑
i=1

1

C
−

n∑
i=1

lki
i = d

n∑
i=1

1

C
− Trace(L) = 1.

Solving for d, we get

d =
Trace(L) + 1∑n

i=1
1
C

. (2.21)
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Once we have d, we can calculate the position of the minimizer with (2.20). The last part

of Proposition 1 also requires that d = C(lki
i + x∗i ) = C(l

kj

j + x∗j) < C(lki
j + x∗j), j 6= i which

results in the constraint
lki
i < l

kj

i . (2.22)

Constraint (2.22) means that the diagonal entries of L must be dominated by the entries
in their column. In geometrical terms, this means that the minimizer cannot lie below an
intersection of other edges of the same cones. The last constraint for the minimizer x∗ says
that any edge of a cone that does not belong to the intersection L should not be above the
minimizer. Hence

∀r 6∈ L,∃i : Lii ≥ lki
i . (2.23)

Beliakov groups constraints (2.22),(2.23) and equations (2.21), (2.20) in the following The-
orem.

Theorem 1 ([6]). Let the support vectors lk, k = 1, . . . , K be defined by (2.17). Let x∗ be a
local minimizer of HK in riD and d = HK(x∗). Then the matrix L defined by (2.19) and
corresponding to x∗ enjoys the following properties:

(1) lki
i < l

kj

i , i = 1, . . . , n, j = 1, . . . , n, i 6= j;

(2) ∀r 6∈ L,∃i : Lii ≥ lri , i = 1, . . . , n;

(3) d = Trace(L)+1Pn
i=1

1
C

;

(4) x∗i = d
C
− lki

i .

Theorem 1 allows us to identify a minimizer with a combination of n support vectors.
To find all the minima of HK at iteration K, one could test all possible permutations of n
support vectors from the set of K vectors {l1, l2, . . . , lK}. This amounts to a running time
complexity of O

((
K
n

))
which is a polynomial running time.

The next section presents another approach that allows the enumeration of the local
minima in a running time complexity of O (log q) where q is the number of local minima in
HK .

2.5.3 Fast Enumeration of Local Minima

In the fast implementation of the CAM, Beliakov showed how to build combinations of L
incrementally, by starting with an initial set L0 = {l1, l2, . . . , ln} [7]. The idea is similar
to the top down approach in Dynamic Programming. A newly created support vector lk is
added and the new underestimate is calculated by

Hk(x) = max{Hk−1(x), hk(x)}, k = n+ 1, . . . , K. (2.24)

Suppose we store all the minimizers in a tree structure T . If we start with L0 as a root
node, we calculate the intersection point x∗ from L0 using condition (4) in (1). We then add
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a new cone hn+1(x∗). With (2.17), we compute the new support vector ln+1. Now since we
want to calculate the intersection of the new cones with the initial n cones in L0, we create
n permutations of the root node L0 with ln+1 which represents the n new intersections of
Hn with the new cone.

For the next iteration, since the new cone hn+1(x∗) lies above the intersection L0, it is
clear that L0 is not part of Hn+1 anymore. Hence, Hn+1 consists only of the leaves of T .
We denote V n = Leaves(T n) as the n leaves of T n. Analogous to (2.9) we find the lowest
minimizer L∗ in V n+1 with the help of equation (4) in Theorem 1. As before, a new cone
hn+2(x∗) is formed and the new intersections are calculated through permutations of ln+2

with all the leaves L and verification of condition (1) and (2) of those permutations.
Assume, however, that at iteration k we permute lk with all the leaves V k. The running

time complexity becomes O
(
V k
)
. Furthermore, some of those permutations would also lie

below Hk. Fortunately, we do not need to permute lk with all of the leaves V k. Beliakov
showed that it is only necessary to permute a vector lk with leaves that fail condition (2) in
Theorem 1[7]. Indeed, looking at Theorem 1, the only new combinations of leaves with lk

that could satisfy condition (2) are the ones whose parent node fails condition (2) because
of lk. This means we do not have to check leaves of parents that satisfy condition (2).

Since we store all the nodes in a tree structure, starting with the root node L0, we can
perform a depth-first search and check for each node L if it satisfies condition (2) with lr = lk.
The root node will always fail this condition, since otherwise we would not have any leaves.
However, as soon as we encounter a node that satisfies condition (2), we can discard it and
all of its children. We can prune this branch of the tree. This reduces the running time
complexity from O

(
V k
)

to O
(
log(V k)

)
. Also, testing for condition (2) can be done in O (1)

operations since we need to compare only the vector at position i in L where the parent
failed against lr.

The detailed steps of the above procedure are outlined in Procedure UpdateTree.
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Procedure UpdateTree(L, lk, T k−1, V k−1)

Input: Node L, new support vector lk, tree T k−1 with leaves V k−1

Output: Tree T k with leaves V k

begin
if Lii < lri then

if L is not a leaf then
for i← 1 to n do

child←Child(L,i)
UpdateTree(child, lk, T k−1, V k−1)

else
for i← 1 to n do

child← L
childi ← lk

if child satisfies condition (1) then

d← Trace(child)+1Pn
i=1

1
C

if d < fbest then
Add child as new leaf to L

else
Delete child

else
Delete child.

else
T k ← T k−1

V k ← V k−1

end

2.5.4 Starting Points

In [6], Beliakov shows that the ECAM evaluates f only at points x inside the search domain
A of the ECAM. The set A is defined by the combination L0 of the first n support vectors.
For f(x) : Rn → R, A is therefore determined by the following n inequalities

C(x∗j − x
kj

j ) < C(x∗i − x
ki
i ), i = 1, . . . , n, j = 1, . . . , n, i 6= j. (2.25)

For solving the problem (2.9), we want the ECAM to find the minimizers in the compact set
D, where D is a polytope. Hence D needs to lie inside A such that D ⊂ A. However, we
want the distance dp from any point x on the boundary ∂A of A to any point y ∈ D to be
greater than the distance from x to the closest vertex defining D. In [6], this is defined as

∀x ∈ ∂A : max
k=1,...,n

f(xk)− Cdp(x, xk) ≥ max
y∈D

f(y)− Cdp(x, y). (2.26)
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In practice, this is achieved by taking the first n points x1, x2, . . . , xn sufficiently far apart.
In general, we choose xk, k = 1, . . . , n such that xk is roughly a distance of 1

4
of the length

of the corresponding axis in D apart from the next vertex defining D.

2.5.5 Constraints

In section 2.5.2 and 2.5.3 we showed, based on Proposition 1, how to find and enumerate the
local minimizers. However, Proposition 1 applies only to minimizers in the relative interior
riD of the compact set D. But for the ECAM to be able to converge, we also need to
enumerate the minimizers on the boundary ∂D of D.

In procedure UpdateTree in section 2.5.3, we do not check if a newly generated intersec-
tion lies inside or outside D. Hence, if at some iteration k we are calculating the position
x∗ ∈ A(L∗) of the lowest minimizer L∗ in V k, we either have x∗ ∈ D or x∗ 6∈ D. In the
latter case, we want to see if there is a minimizer x∗∗ on the boundary ∂D in the direction
of x∗ ∈ A(L∗) \D. Note that here A(L∗) is a polytope that is a partition of A(L0). To find
x∗∗ we solve the following constrained problem

min maxi=1,...,nC(xi + lki
i ) (2.27)

s.t. x ∈ D ∩ A(L∗).

Again, D∩A(L∗) is a polytope and with the addition of a helper variable, we can transform
(2.27) into a Linear Programming problem and solve for x∗∗

min v (2.28)

s.t. x ∈ D ∩ A(L∗),

C(xi + lki
i ) ≤ v, i = 1, . . . , n.

When there are large numbers of support vectors, solving the above linear program in each
iteration becomes very inefficient. Therefore, in practice, we use a projection as an approxi-
mation of the minimizer on ∂D. If x∗ 6∈ D, x∗ is projected onto ∂D to get x∗∗. In the ECAM
algorithm, we then evaluate f(x∗∗) and if f(x∗∗) < fbest, we record x∗∗ and let fbest = f(x∗∗).
The function value f(x∗∗) and the point x∗∗ are then used to generate the new support vector
and {x∗∗, d =∞} is moved back into V k.

2.5.6 The ECAM Algorithm

We are now able to explain the full ECAM algorithm. In section 2.5.3, we introduced the
tree T of all nodes and the set of all leaves V of this tree. In the implementation, the tree
T k−1 and T k occupy the same memory space. The tree T k is in fact the same tree as T k−1

with possible children added to the leaves. The set V is implemented as a priority queue
that allows for removal of its elements. The full ECAM algorithm is outlined in Algorithm
2.4
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Algorithm 2.4: Extended Cutting Angle Method
Input: Function f(x), Lipschitz constant C, kmax, domain D ⊆ Rn

Output: Global minimum fbest
begin

Choose xk, k = 1, . . . , n according to (2.26)
for i← 1 to n do

construct li according to (2.17)
Li ← li

end
sort vectors in L in order to satisfy condition (2) of Theorem 1
L0 ← L
T n ← L0

V n ← L0

k ← n
fbest = mink=1,...,n f(xk)
repeat

L∗ ← minV k

x∗ ← x∗(L∗) using condition (4) of Theorem 1
if x∗ 6∈ D then

Solve problem (2.28)
end
f ∗ ← f(x∗)
fbest ← min{f(xk), fbest}
k ← k + 1
Form lk using lki = f(xk)

C
− xki

T k, V k ← UpdateTree(L∗, lk, T k−1, V k−1)
until k ≥ kmax or fbest − d(L∗) < ε

end
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Chapter 3

Radiation Therapy and the Beam
Angle Optimization

3.1 External Beam Radiation Therapy

Despite scientific achievements in cell biology and biochemistry, cancer remains one of the
biggest challenges for modern Health Care departments and organizatinos. In Canada alone,
an estimated 159,900 new cases of cancer occured in 2007 [1]. Radiation therapy, along with
surgery and chemotherapy, is one of the most important treatment methods for cancer.
More than 50% of all cancer patients will receive radiation therapy at some stage during
their treatment.

A common method of radiation treatment is the external beam radiation therapy. In
most cases of external beam radiation therapy, a photon or electron beam is formed outside
the patient body and aimed at the tumor. As the beam passes through the tumor tissue, it
creates an ionizing radiation that either directly destroys the DNA structure of the tumor
cells or indirectly damages the cell structures through a reaction with other molecules. In
either case, the damage results eventually in the death of the cells. Since the beam also
traverses the tissue that surrounds the tumor, the healthy cells that lie in the way of the
beam are damaged too. One advantage of radiation therapy is that healthy tissue cells
are more likely to recover from the damage than cancerous cells. A correctly prescribed
radiation dose is therefore able to destroy the tumor cells while at the same time allowing
healthy tissue to recover. However, the healthy tissue damage has important implications
on side effects, especially for cells that belong to critical organs. In external beam radiation
therapy, it is therefore desirable to minimize the damage to the Organs At Risk (OAR) and
Other Healthy Tissue (OHT ) that occurs during the delivery of the prescribed radiation
dose to the tumor.

A simple approach to minimize the radiation dose on the OHT and the OAR is the use
of multiple beams from different angles. The beams are all aimed at the Planning Target
Volume (PTV ). The intersection of the beams at the PTV creates a higher dose in the
tumor cells than in the healthy cells that lie in the rays of the beam. Figure 3.2 shows the
intersection of four beams and the corresponding dose intensity. As one can see from Figure
3.2 that one gains more flexibility to shape the intersection of the beams if more beams are
available. Most patients receive radiation treatment on a so called medical linear accelerator.
The patient lies on a table, and the head of the linear accelerator is turned around the
patient for each beam position. This means that the head of the linear accelerator needs to
be turned for each beam angle. Hence, the disadvantage of a large number of beams is that
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Figure 3.1: A cross-section of the pelvis with the dose distribution matrix of six beams
at different angles in a radiation treatment for prostate cancer. In this example, no beam
intensity modulation is performed and each beam has the same weight.

the treatment time increases significantly.

3.2 Intensity Modulated Radiation Therapy

In Intensity Modulated Radiation Therapy (IMRT), the beam is shaped in the direction of
the Beam’s Eye View (BEV) and the intensity is modulated in order to achieve a dose
distribution that closely follows the shape of the tumor and avoids the OAR. In order to
form the beam in the two mentioned directions, either custom made solid compensators are
attached to the head of the linear accelerator or a Multileaf Collimator (MLC) is used.

An MLC is a device that is attached to the head of the linear accelerator and usually
consists of a rectangular opening. A set of metal leaves are attached at two opposing sides
of the opening controlled by a computer, these leaves can be inserted into the opening to
block parts of the beam. For a picture of an MLC, see Figure 3.2a1. In an IMRT treatment
with MLC, the leaves are usually inserted until the BEV takes the shape of the tumor. The
beam is then fired a first time for a specified amount of time which is called a Monitor Unit.
The leaves configuration is then changed in order to fire the beam a second time. The leaves
configuration should now block the parts of the tumor that are rather thin. The reason is,

1Figure 3.2a with permission from Elekta AB. c©Copyright 2008 Elekta AB (publ). All rights reserved.
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(a) (b)

Figure 3.2: A multileaf collimator and its use in the segmentation of a dose distribution.

that those parts usually receive enough radiation with the first monitor unit and a second
shot would only damage the healthy tissue in the line of the beam. A leaf configuration
together with a monitor unit is called a Segment or an Aperture. Several segments are
superimposed to generate a custom shape of the beam. Figure 3.2b shows the addition of
the different segments and the contour plot of the resulting dose.

3.3 Optimization Approaches

A complete problem formulation for radiation treatment optimization involves hundreds of
variables. Traditionally, the problem is reduced to a subset of variables in order to use a
mathematical programming approach that is suitable for the selected subset. Optimality
in radiation treatment is hard to quantify. Radiation oncologists use dose computation
algorithms to calculate a cumulative Dose Volume Histogram (DVH) to decide on the quality
of the suggested treatment plan. The DVH shows the curves for each type of tissue, PTV ,
OHT , OAR, that are the fraction of the volume of each tissue as a function of the relative
dose. The dose computation algorithms make use of the density information available from
Computer Tomography (CT) scans. Dose computation algorithms range from simple fitting
methods that correct reference dose values to the tissue density, up to very sophisticated
Monte Carlo simulations that produce accurate dose data. The dose computation divides
the BEV up into a grid of rectangles. Each rectangle represents a small part of the beam.
This partial beam is also called a pencil beam or beamlet. We denote a beamlet with p.

To compute the total dose matrix D, we divide the area of interest into cross sections
or slices. These slices correspond usually to medical image slices from the CT scan. The
cross sections are then divided into a grid of tissue cubes, also called voxels. For every pencil
beam p with a monitor unit weight wp, the dose computation algorithm calculates the dose
value Dp

ij that is delivered to each voxel

Dij =
n∑
p=1

wpD
p
ij, (3.1)

where n is the number of pencil beams and i and j indicate the position of the voxel in the
dose grid.
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A traditional optimization approach for IMRT is the so called Fluence Map Optimization
or simply fluence optimization. In fluence optimization, the weights of the pencil beams
are optimized. The fluence map is the BEV grid representing all the beamlets, where each
rectangle has a color (value) assigned that represents the weight. Once the optimal weight
for each beam is known, a leaf sequence algorithm is run to translate the fluence map into
deliverable sequence configurations. To reduce the complexity, a fixed set of equispaced
beam angles is considered.

A fast way to solve for the fluence map is to use linear programming. Shepard [20]
formulates a typical linear program as follows

min
w

θT
∑

(k,l)∈T

Dkl + θR
∑

(k,l)∈R

Dkl + θH
∑

(k,l)∈H

Dkl (3.2)

s.t. Dij =
∑n

p=1wpD
p
ij ∀(i, j),

γ ≤ Dkl ∀(k, l) ∈ T ,
wp ≥ 0,

where T is the PTV , R is the OAR, and H is the OHT . The number θ represents the
weighted factor for the corresponding tissue type and γ represents a lower bound on the
tumor voxel. Problem 3.2 is especially well suited for configurations with small number of
beam angles. The reason is, that there is no upper bound on the tumor which translates to
a high flexibility for the dose distribution. However, this leads also to areas of normal tissues
with high dosage (hot spots). A solution that enforces more dose uniformity is the following
model, also proposed by Shepard [20]

min
w

θR
∑

(k,l)∈R

Dkl + θH
∑

(k,l)∈H

Dkl (3.3)

s.t. Dij =
∑n

p=1wpD
p
ij ∀(i, j),

γL ≤ Dkl ≤ γU ∀(k, l) ∈ T ,
wm ≤ α

n

∑n
p=1wp, m = 1, 2, . . . , n,

wp ≥ 0.

Here, in addition to the lower bound γL, there is also an upper bound γU on the tumor voxels.
This guarantees that the optimizer will not choose a beam configuration that results in a very
high dose concentration at some tumor location and consequently, at the surrounding healthy
tissue. There is also a bound on the pencil beam weight. Namely, a single beamlet weight
cannot exceed α times the mean beam weight. This results in a more evenly distributed
dose.

Shepard mentions that the disadvantage of the linear models is that only linear constraints
can be imposed to the model. However, especially regarding the DVH, non-linear constraints
are often desirable. He therefore proposes a non-linear weighted least squares model

min
w≥0

θT
∑

(i,j)∈T

(Dij(w)− δij)2 + θR
∑

(i,j)∈R

(Dij(w)− δij)2 + θH
∑

(i,j)∈H

(Dij(w)− δij)2. (3.4)
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In the weighted least squares model, the tissue weights θ and the pencil beam weights w
remain the same as in the linear model. However, in this model, the square of the difference
of the dose Dij, calculated from (3.1), and the prescribed dose δ is minimized. Typically, δ is
taken to be zero for the OAR and the OHT. Notice that this problem formulation is convex
and bound-constrained.

The weighted least square model can be used in traditional fluence map optimization.
It is also used in more recent optimization approaches like Direct Aperture Optimization
(DAO) [19]. In DAO, one optimizes directly the segment configurations rather than an
intensity map that is later translated into a segment configuration. The advantage over
fluence map optimization is that fewer segments are required to deliver the prescribed dose.
In a typical fluence map optimization the number of segments required for an optimized
intensity map with N different intensities is approximately 2N to 3N . This creates large
number of segments resulting in a large monitor unit to dose ratio. The large number of
segments also creates uncertainities in leakage, scatter radiation, and other negative effects
[19]. In DAO, however, one can specify the number of segments as a constraint. DAO does
not directly optimize the pencil beam weights but rather the leaf configuration. Hence, in
DAO, (3.4) becomes simply

min
w≥0

θT
∑

(i,j)∈T

(Dij − δij)2 + θR
∑

(i,j)∈R

(Dij − δij)2 + θH
∑

(i,j)∈H

(Dij − δij)2 (3.5)

where Dij does not depend on the pencil beam weight w but rather on the entire segment
configuration (leaf configuration and segment weight). However, pencil beams are still used
in DAO to accelerate the optimization process. Instead of recomputing the whole dose after
each leaf movement, the optimizer verifies which pencil beam is affected by the movement
and adds or substracts the pencil beam dose to the total dose.

Due to the high complexity and the non-convexity of the DAO problem, simulated anneal-
ing is used to optimize the segment configurations. In DAO, as in fluence map optimization,
a predefined set of beam angles is selected. The final number of beams is formulated as
a constraint and the optimizer solves for the optimal beam angles and the corresponding
segments.

3.4 Problem formulation

One objective of this thesis is to investigate the behaviour of the ECAM algorithm on the
optimization of the beam angles. Rather than computing a subset of optimal angles from a
preselected set of beams, the ECAM treats the angles as a continuous variables. In a typical
IMRT treatment, the angles are either all coplanar, i.e. the linear accelerator turns around
the patient who lies on a fixed table, or the angles are non-coplanar, in which case the table
can be turned in order to introduce a spherical coordinate system for the beam angles. The
advantage of coplanar beams is that the treatment time is shorter. Sometimes, however, a
non-coplanar beam configuration is needed to reach complicated forms of tumors. In the
coplanar case, one variable per beam is required where as the non-coplanar case requires two
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variables per beam. In the scope of this paper, we treat only the case of coplanar beams. We
then look at the behaviour of the ECAM in the coplanar case and discuss potential solutions
for the non-coplanar case.

3.4.1 Bilevel Approach

Due to the high complexity of the full problem, a separation of variables is necessary. The
ECAM is able to handle up to 10 variables fairly well. This suggests that the ECAM should
be used to optimize the beam angles since in a typical treatment, usually 3 to 7 beams
are used. A common MLC can have between 40 to 100 leafs. The segment optimization
requires therefore several hundred variables, depending on the number of segments. This is
impractical for the ECAM. Hence, we treat the problem as a bilevel optimization problem.
The upper level optimization involves the beam angles and is solved by the ECAM. At each
iteration of the ECAM, the lower level optimization is invoked. The lower level optimization
solves for the segment configuration. The general formulation of the upper level problem is
therefore

min
x∈Rn

f(x) (3.6)

where n is the number of beams and xi, i = 1, . . . , n are the beam angles. The function f
represents the lower level problem. Since this paper focuses more on the behaviour of the
ECAM towards the upper level problem, we use a simplified approach to solve the lower
level problem. In fact, we introduce a very simple mixed approach of DAO and fluence
optimization. We divide the collimator up into s rectangular openings, similar to the fluence
map approach. Contrary to the fluence map approach, we use rather large openings in order
to keep s small. We treat those openings as separate segments. Hence, one can now look
at the optimization problem as a sort of DAO approach, since we use fixed segments that
are directly deliverable. To provide a fast solution for the lower level, we then use linear
programming to determine the weight of each segment. In our problem formulation, we use
a slight modification of (3.2) with the beam weight constraint from (3.3)

f(x) = min
w

θT
∑

(k,l)∈T

Dkl(w) + θR
∑

(k,l)∈R

Dkl(w) + θH
∑

(k,l)∈H

Dkl(w) (3.7)

s.t. Dij =
∑n

s=1wsD
s
ij ∀(i, j),

γ ≤ Dkl ∀(k, l) ∈ T ,
wm ≤ α

n

∑n
p=1ws, m = 1, 2, . . . , n,

ws ≥ 0.

Notice that in the above formulation, we replaced wp by ws. This means that the weight w
is not associated to a pencil beam anymore, but rather to a segment that belongs to a beam
angle x from the upper level problem. We also remove the upper bound on the tumor. This
allows us to test the ECAM with small numbers of beams without rendering the problem
infeasible. To achieve some form of uniform dose distribution, we use constraints on the
beam intensities similar to (3.3).
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There are, of course, more sophisticated models to solve the above optimization problems.
Partial volume constraints and biological models of cell response are just two examples of
many that can be incorporated into a more advanced problem formulation. Those models,
however, are outside the scope of this thesis.
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Chapter 4

Numerical Results

4.1 Generic Test Problems

In the numerical experiments, we first tested ECAM on a family of classic global optimization
functions. Most functions were taken from [6] to test the behaviour of the algorithm. The
multivariate functions range from two to four dimensions.

4.1.1 Problem Descriptions

Problem 1 (One)

f(x) = 1

L = 0.5, 0 ≤ xi ≤ 2, i = 1, . . . , n.

Problem 2 (Convex)

f(x) =
n∑
i=1

x2
i

L = 5.7,−2 ≤ xi ≤ 2, i = 1, . . . , n.

Problem 3 (Sum of sine)

f(x) =
n∑
i=0

sin(xi)

L = 4.5, 0 ≤ xi ≤ 4, i = 1, . . . , n.

Problem 4 (Six hump camel back)

f(x) =

(
4− 2.1x2

1 +
x2

1

3

)
x2

1 + x1x2 + 4
(
x2

2 − 1
)
x2

2

L = 100,−2 ≤ xi ≤ 2, i = 1, 2.

Problem 5 (Product of sine)

f(x) = sin(x1) sin(x1x2) . . . sin(x1 · · ·xn)

L = 100, 0 ≤ xi ≤ 4, i = 1, . . . , n.
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Problem 6 (Griewanks)

f(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1

L = 10,−50 ≤ xi ≤ 50, i = 1, . . . , n.

4.1.2 Results

The generic test function experiments were done with Linux on a Macbook Pro laptop
computer with an Intel R©CoreTM2 Duo processor with 2.4 GHz and 4 GB of memory.

Problem n iterations CPU upper bound lower bound minimum
(sec) fbest h

1 2 250 0.01 1.0 0.95 1
2 2 4000 0.09 0.0 -0.004999 0
3 2 250 0.0 -1.9996 -2.0492 -2
4 2 10000 0.12 -1.0316 -1.08015 -1.03162
5 2 50000 0.61 -0.9999 -1.2317 -1.0
6 2 100000 1.37 0.000002 -1.199989 0.0
1 3 10000 0.82 1.0 0.9596 1
2 3 4000 0.28 0.004325 -0.1256 0.0
3 3 50000 16.65 -2.9990 -8.6650 -3
5 3 50000 8.64 -0.9893 -7.5563 -1.0
6 3 50000 11.92 0.0023 -31.5504 0.0
5 4 10000 7.69 -0.8597 -33.1997 -1.0
6 4 60000 142.45 0.0334 -13.9190 0.0

Table 4.1: Generic Test Functions.

The results show a fast convergence towards the minimum. The algorithm was not run
until convergence because a large number of iterations is required to obtain convergence to
a tolerance similar to those used in local search algorithms. In fact the available memory
on the test machine would not suffice to accommodate the number of support vectors. The
fixed number of iterations is therefore taken as stopping condition. The real minimum in
the right most column allows to assess the quality of the solution. The lower bound is the
minimum of the saw tooth underestimate at termination.

One can observe that there are differences of the previous results with the results pre-
sented in [6]. One reason of these differences is the choice of the starting points. In our
experiments, the starting points are chosen manually where as in [6] the choice of the start-
ing points is performed with calculations and function sampling. Also, if a minimizer is
projected onto the boundary ∂D, we evaluate it immediately in our implementation whereas
in [6], the model value of the projected minimizer is calculated and the minimizer is moved
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(a) 5 beams with no optimization. (b) 5 beams after bilevel optimization.

Figure 4.1: The IMRT problem using a cylindrical water phantom with a U-shaped target
surrounding the organ at risk.

back into V k without direct evaluation. Beliakov incorporated his implementation of the
ECAM in the GANSO package, http://www.ganso.com.au. The GANSO package also
uses transformations of the original search domain.

4.2 IMRT Problem

4.2.1 Problem Descriptions

In the numerical experiments, we compared the ECAM with an implementation of Simulated
Annealing (SA). For the Simulated Annealing algorithm, Everett (Skip) Carter’s public
available package was used [8]. The cooling schedule used in the package is the following.

Tk =
T0

1.0 + kα

where Tk is the temperature at the current annealing iteration k, T0 is the initial temperature
depending on the problem configuration, and α is a scaling factor. The implementation of
the Simulated Annealing method does not consider domain constraints. We therefore impose
the box constraints at each function evaluation by penalizing the function with infinity if
the evaluation location is outside the domain.

Instead of real patient data, a cylindrical water phantom is used for the IMRT problem.
The PTV consists of a U-shaped structure around a small cube that represents the OAR.
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This is a standard IMRT problem that is also used in [20]. The challenge for the optimizer is
to cross the straight line beams in order to fully irradiate the U-shaped PTV while avoiding
the OAR cube in the middle. A visualization of the problem is shown in Figure 4.1.

Problem 1 uses formula 3.7 with 3 coplanar beams. One beam is fixed at 180 ◦C and the
other two move freely between [0◦,119◦] and [240◦,359◦].

Problem 2 uses formula 3.7 with 5 coplanar beams. However, since the 5 beams provide
a more uniform dose distribution, the tumor upper bound from 3.3 is added as a
constraint. Note that in a typical treatment with coplanar beams, around 5 to 7
beams are used. 7 beams provide usually more accurate results but incur a longer
treatment time.

4.2.2 Results

The IMRT experiments were done on a Linux desktop computer with an Intel R©CoreTM2
Quad processor with 2.4 GHz and 4 GB of memory. For the dose computation, the radiother-
apy treatment planning software PLanUNC 6.6.10 from the University of North Carolina was
used. The dose computation for each segment was parallelized using the Message Passing
Interface (MPI).

Problem Iterations CPU upper bound lower bound Figure
(sec) fbest h

1 (ECAM L = 200) 826 986 7978.99 7978.49 4.2a
1 (ECAM L = 150) 272 329 7973.91 7973.41 4.2b
1 (SA T0 = 1000) 1000 548 8000.12 4.2c
1 (SA T0 = 2000) 1000 408 8007.85 4.2d

Table 4.2: IMRT Problem 1.

The behaviour of the algorithms on Problem 1 is shown in Figure 4.2. Figure 4.2a and
4.2b show the ECAM with different Lipschitz constants. In Figure 4.2a, one can see how
the ECAM clusters around the local minima and eventually focuses the function evaluations
to the global minimum. Figure 4.2c and 4.2d show the SA algorithm with different starting
temperatures. In Figure 4.2c, the algorithm chooses a more “greedy” strategy and ends up
in the global minimum. In Figure 4.2d, the algorithm accepts more risky steps and ends up
in a local minimum.

Problem 1 shows clearly the advantages and disadvantages of each algorithm. The SA
algorithm is faster at large numbers of iterations than the ECAM. This is expected since SA
does not need to maintain a large tree structure. Also, the behaviour of SA changes with the
starting temperature. The choice of the right starting temperature is probably as tricky as
the choice of the correct Lipschitz constant for the ECAM. In both cases, presampling of the
function might be of some help. The advantage of the ECAM is the guaranteed convergence
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(a) ECAM, 826 iterations (L = 200). (b) ECAM, 272 iterations (L = 150)

(c) SA, 1000 iterations (T0 = 1000). (d) SA, 1000 iterations (T0 = 2000)

Figure 4.2: ECAM and Simulated Annealing (SA) for a problem with two variables. The
problem involves one fixed beam at 180◦ and two beams with angles in [0◦,119◦] and
[240◦,359◦].

to the global minimum. Furthermore, if the Lipschitz constant is low, the algorithm does
find the minimum faster than SA.

In the experiments with Problem 2, the ECAM implementation from the GANSO package
was used to solve the problem. The results are shown in Table 4.2.2. In Table 4.2.2, the
experiments are grouped by the number of iterations.

In this experiment we can see that SA performs better than ECAM. However, one must
take into consideration the structure of the problem. In Problem 2, the five beams are all
coplanar and restricted to a relatively small range of [0◦,72◦]. This results in very few local
minima and this configuration is therefore not an optimal problem to show the efficiency of
the ECAM over SA. However, if one extends Problem 2 with the use of non-coplanar beams,

30



Problem Iterations CPU upper bound lower bound
(sec) fbest h

2 (ECAM L = 150) 1000 1930 7930.89 5060.87
2 (SA T0 = 400) 1000 719 7821.31
2 (ECAM L = 150) 2000 3844 7939.31 5622.69
2 (SA T0 = 400) 2000 1788 7801.77

Table 4.3: IMRT Problem 2.

the search domain will contain significantly more local minima and will extend to R10. In
fact, Pugachev et al. show that non-coplanar beams result in significant improvements for
nasopharyngeal cases and paraspinal cases [16]. Also, Wang et al. show in [22] that the use
of 5 non-coplanar beams provides better results than the use of 9 coplanar beams in the case
of paranasal sinus carcinoma.

The focus of this thesis was to implement and apply the ECAM to the IMRT problem.
The restriction to coplanar problems was intentional due to the scope and the time constraint
of the thesis. For future work, we suggest to investigate the ECAM on several problems with
non-coplanar beams. The data from Problem 1 suggest that the ECAM will provide better
results in cases with multiple local minimas.
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Chapter 5

Conclusion

In the first part of this paper we discussed Lipschitz continuity and the difficulties that arise
if one extends the one dimensional Pijavskii-Shubert to multiple dimensions. We then intro-
duced the notions of convexity, abstract convexity and the General Cutting Plane method.
We then explained the Cutting Angle Method and the Extended Cutting Angle Method.

In the second part of the thesis, we introduced the field of radiation therapy planning.
We discussed several optimization approaches and we proposed a new bilevel approach to
solve the beam angle and the beam segments simultaneously. In the last part of the thesis,
we first tested the implementation of the ECAM on several test functions. We then tested
the bilevel approach with the Extended Cutting Angle Method and Simulated Annealing.

The Extended Cutting Angle method provides accurate results of the global minimum for
each function tested. Problem 1 showed the advantages of ECAM over Simulated Annealing.
In cases where Simulated Annealing does not find the global minimum, ECAM does find it
or gives us at least a lower bound on the minimum. This is of significant importance for time
consuming treatments where good results are crucial to justify the treatment time. This is
especially the case for non-coplanar beams. In this thesis we did not have enough time to
investigate the behaviour of ECAM vs. SA on non-coplanar beams. However, the early
data from Problem 1 indicates that ECAM behaves better when multiple local minima are
present. Problem 2 used a large number of beams with restricted range of movement. This
leads to fewer local minima and is therefore not the best test case to show the performance
of ECAM. Future work should therefore focus on the optimization of non-coplanar beams.
Due to the proposed bilevel approach, several lower level optimization approaches like DAO,
LP, or projection methods can be tested interchangeably without affecting the upper level
optimization.

32



Bibliography

[1] Canadian cancer statistics 2007, tech. rep., Canadian Cancer Society/National Cancer
Institute of Canada, Toronto, Canada, April 2007.

[2] M. Andramonov and A. M. Rubinov, Cutting angle methods in global optimization,
Applied Mathematics Letters, 12 (1999), pp. 95–100.

[3] J. L. Bedford and S. Webb, Direct-aperture optimization applied to selection of
beam orientation in intensity-modulated radiation therapy, Physics in Medicine and Bi-
ology, (2007).

[4] G. Beliakov, Geometry and combinatorics of the cutting angle method, Optimization,
52 (2003), pp. 379–394.

[5] , The cutting angle method - a tool for constrained global optimization, Optimization
Methods and Software, 19 (2004), pp. 137–151.

[6] , Extended cutting angle method of global optimization, Pacific Journal of Optimiza-
tion, 4 (2008), pp. 153–176.

[7] G. Beliakov and L. M. Batten, Fast algorithm for the cutting angle method of
global minimization, Journal of Global Optimization, 24 (2002), pp. 149–161.

[8] E. S. Carter. http://www.taygeta.com/annealing/simanneal.html.

[9] D. J. Estep, Practical Analysis in One Variable, Springer, 2002, ch. 8.6, pp. 93–94.

[10] C. A. Floudas, Deterministic Global Optimization: Theory, Methods and Applica-
tions, vol. 37 of Nonconvex Optimization and its Applications, Springer, 1999.

[11] R. J. V. Iwaarden, An Improved Unconstrained Global Optimization Algorithm, PhD
thesis, University of Colorado, Denver, 1996.

[12] J. E. Kelley, The cutting-plane method for solving convex programs, Journal of the
Society for Industrial and Applied Mathematics, 8 (1960), pp. 703–712.

[13] E. K. Lee, T. Fox, and I. Crocker, Simultaneous beam geometry and intensity map
optimization in intensity-modulated radiation therapy, International Journal of Radia-
tion Oncology, Biology, Physics, 64 (2006), pp. 301–320.

33



[14] R. H. Mladineo, An algorithm for finding the global maximum of a multimodal, mul-
tivariate function, Mathematical Programming, 34 (1986), pp. 188–200.

[15] S. A. Pijavskii, An algorithm for finding the absolute extremum of a function, USSR
Computational Mathematics and Mathematical Physics, (1972), pp. 57–67.

[16] A. Pugachev, J. G. Li, A. L. Boyer, and L. Xing, Role of non-coplanar beams
in imrt, Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd
Annual International Conference of the IEEE., 1 (2000), pp. 456–459.

[17] A. M. Rubinov, Abstract Convexity and Global Optimization, Nonconvex Optimization
and its Applications, Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht,
The Netherlands, 2000.

[18] A. P. Ruszczynski, Nonlinear Optimization, Princeton University Press, 41 Wiliam
Street, Princeton, New Jersey 08540, 2006.

[19] D. M. Shepard, M. A. Earl, X. A. Li, S. Naqvi, and C. Yu, Direct aperture
optimization: A turnkey solution for step-and-shoot imrt, Medical Physics, 29 (2002),
pp. 1007–1018.

[20] D. M. Shepard, M. C. Ferris, G. H. Olivera, and T. R. Mackie, Optimizing
the delivery of radiation therapy to cancer patients, SIAM Review, 41 (1999), pp. 721–
744.

[21] B. O. Shubert, A sequential method seeking the global maximum of a function, SIAM
Journal on Numerical Analysis, 9 (1972), pp. 379–388.

[22] X. Wang, X. Zhang, L. Dong, H. Liu, M. Gillin, A. Ahamad, K. Ang, and
R. Mohan, Effectiveness of noncoplanar imrt planning using a parallelized multires-
olution beam angle optimization method for paranasal sinus carcinoma., International
Journal of Radiation Oncology, Biology, Physics, 1 (2005), pp. 594–601.

34


