
The Piecewise Linear-Quadratic
Model for Convex Bivariate

Functions
by

Scott Ronald Fazackerley

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Science Honours

in

The I. K. Barber School of Arts & Sciences

(Computer Science)

The University Of British Columbia

(Kelowna, Canada)

April, 2008

© Scott Ronald Fazackerley 2008



Abstract

A Piecewise Linear-Quadratic (PLQ) function is used to describe data that can be repre-
sented by continuous functions with a piecewise linear domain for which the function is either
linear or quadratic on, each piece of its domain [11]. While extensive work has been done
with PLQ models for convex univariate functions, my work investigates the development of
a two dimensional model that allows the implementation of algorithms for computing funda-
mental convex transforms. PLQ functions have been described in the literature, the efficient
implementation of the algorithms requires the careful selection of a data structure.

Initial investigation examined using a Voronoi diagram to represent the projection of the
bivariate function into R2, to take advantage of efficient algorithms for the point location
problem [3]. While suitable for representing a single PLQ, with operations for building a zero
order model from data and evaluating the function over an irregular grid, we are uncertain
if it can be extended to compute other fundamental convex transforms efficiently.

In examining the Voronoi model, we were able to extend the base concept to represent the
bivariate PLQ using two different representations: a tessellation-based model and a linear
inequality-based model. The tessellation model is restricted to representing a PLQ with a
bounded domain. The model represents data through triangular faces in a tessellation in R2

where each face is defined by its vertices and the associated function value. This model allows
for the efficient evaluation over an irregular grid, the addition of two PLQ functions with
bounded domains and multiplication by a scalar, but does not allow for the representation
of an unbounded domain. To allow for an unbounded domain, a dual model was developed
using linear inequalities to represent each face in R2. Numerical results are presented for
each model and computational complexity of model components are discussed.
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Chapter 1

Introduction

Extensive work has been completed in regards to a model for a univariate Piecewise Linear-
Quadratic (PLQ) function. A univariate PLQ is used to describe data that can be represented
by continuous functions with a piecewise linear domain for which the function is either lin-
ear or quadratic on each piece of its domain [11]. Univariate PLQ functions appear in the
fields of economic modeling, control theory and scientific computing, specifically computa-
tional convex analysis [10, 11, 13]. While work has been done with PLQ models for convex
univariate functions, a bivariate PLQ model has not yet been presented that supports ef-
ficient implementation of fundamental convex transforms. PLQ functions are closed under
standard convex operations, and can be manipulated with linear-time algorithms [11]. Effi-
cient manipulation is defined as having a storage and run-time complexity that is at worst
polynomial.

My work investigates the development of a two dimensional model that allows the imple-
mentation of algorithms for computing fundamental convex transforms. While PLQ func-
tions have been described in the literature, the efficient implementation of the algorithms
requires the careful selection of a data structure. The requirements for the model are pre-
sented in Section 1.2. Three models are examined and discussed in Section 2.

The models presented are zero-order models: only point data can be accepted as input to
the model. The algorithms presented in Section 3 and Section 4 compute function values over
the domain of the input data. Convexity is enforced over the domain of input values: points
making the function non-convex are removed such that the function remains continuous
and convex over the domain. Additionally, algorithms for converting from a bounded to an
unbounded model, evaluating, adding and (scalar) multiplying are discussed. Complexity
results are also presented, proven and validated with empirical data.

1.1 Preliminaries

In this section, we recall some basic notions from computational geometry and convex anal-
ysis.

Definition 1.1.1. Convex Set [6] A set C is convex, if the line segment between any two
points in C lies in C. That is, for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C. (1.1.1)

Definition 1.1.2. Convex Hull [6] The convex hull of a set C, denoted conv C is the set
of all convex combinations of points in C
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conv C = {θ1x1 + ... + θkxk|xi ∈ C, θi ≥ 0, i = 1, ..., k, θ1 + ... + θk = 1}. (1.1.2)

The convex hull conv C is always convex.

Definition 1.1.3. Convex Function [6] A function f : Rn → R ∪ {+∞} is convex if dom
f = {x|f(x) < ∞} is a convex set and if for all x, y ∈ domf , and θ with 0 ≤ θ ≤ 1

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (1.1.3)

A function f is strictly convex if strict inequality holds in Equation (1.1.3) for every x 6= y
and 0 < θ < 1.

Definition 1.1.4. Triangulation [8] A triangulation is a planar subdivision whose bounded
faces are triangles. We note P := {p1, p2, ..., pn} is the set of points in the plane forming the
triangulation.

Definition 1.1.5. Maximal Planar Subdivision [8] A maximal planar subdivision is a subdi-
vision S such that no edge connecting two vertices can be added to S without destroying its
planarity.

Definition 1.1.6. Euclidean Distance [8, pp. 148–149] The Euclidean distance between two
points p and q is denoted as dist(p, q). Thus, in the plane we have

dist(p, q) =
√

(px − qx)2 + (py − qy)2. (1.1.4)

Definition 1.1.7. Voronoi Diagram [8, pp. 148–149] Let P := {p1, p2, ..., pn} be a set of n
distinct points in the plane; these points are the sites. The Voronoi diagram of P is defined
as the subdivision of the plane into n cells, one for each site in P , with the property that a
point q lies in the cell corresponding to a site pi if and only if dist(q, pi) < dist(q, pj) for all
pj ∈ P with i 6= j. The Voronoi diagram of P is denoted by V or(P ). The region of a site
p is called the Voronoi cell of p and is denoted by V(p). A Voronoi diagram is pictured in
Figure 1.1(a).

Definition 1.1.8. Delaunay Triangulation [8, pp. 190–191] Let the graph G be the dual
graph of a Voronoi diagram constructed as follow: The graph G has a node for every Voronoi
cell and it has an arc between two nodes if the corresponding cells share an edge. This means
that G has an arc for every edge of Vor(P ). There is a one-to-one correspondence between
the bounded faces of G and the sites of Vor(P ). Consider the straight-line embedding of G,
where the node corresponding to the Voronoi cell V(p) is the point p, and the arc connecting
the nodes of V(p) and V(q) is the segment pq. This embedding is called the Delaunay graph
of P and is denoted by DG(P ). A Delaunay triangulation is any triangulation obtained by
adding edges to the Delaunay graph. The Delaunay triangulation of P is unique if and only
if DG(P ) is a triangulation. Thus a Delaunay triangulation can be characterized by:

2



(a) Voronoi Diagram (b) Delaunay Triangulation

Figure 1.1.1: Related Voronoi and Delaunay Diagrams

Let P be a set of n points in the plane.
i Three points pi, pj, pk ∈ P are vertices of the same face of the Delaunay

graph of P if and only if the circle through pi, pj, pk contains no points
of P in its interior.

ii Two points pi, pj ∈ P form an edge of the Delaunay graph of P if and
only if there is a closed disc C that contains pi and pj on its boundary
and does not contain any other point of P .

A Delaunay triangulation is pictured in Figure 1.1(b). This is the dual structure to the
Voronoi diagram pictured in Figure 1.1(a).

Definition 1.1.9. The centroid of a finite set of points p1, p2, ..pn is the arithmetic mean

1

n

n∑
i=0

p1. (1.1.5)

It lies inside the convex hull [12, p. 106].

Definition 1.1.10. Piecewise Linear-Quadratic (PLQ) Function [11] A function is a PLQ
function if it can be represented by continuous functions with a piecewise linear domain for
which the function is either linear or quadratic on each piece of its domain.

1.2 Problem Definition

We desire to produce a model for a bivariate PLQ function that will be both efficient in space
and run-time complexity for building and representing the PLQ as a numerical model, as

3



well as having an efficient run-time complexity under fundamental convex transforms. The
initial goal is to represent zero order data, with the user providing input data in terms of a
series of points as (xi, yi, zi) in R3. The model is required to remove any co-planar points
inside a face on the convex hull. This results in storage complexity of the model being less
than or equal to that of the size of the initial data set. This will minimize the amount of
storage required to represent the model without loss of generality.

Figure 1.1(a) represents 401 input points over a regular grid. When represented with the
PLQ model, as there are numerous co-planar points, the results are simplified such that the
model is defined by only 9 vertices as in Figure 1.1(b). With a strictly convex input set as in
Figure 1.1(c), which represents 401 input points over a regular grid, no simplification occurs
in the representation of the model. Figure 1.1(d) contains 401 vertices due to the fact that
the function is strictly convex and no simplification can occur. With the zero-order model,
limitations in terms of complexity will be encountered with data that represents a strictly
convex function as no more than three points are co-planar on the convex hull. Thus no
simplification will occur, presenting a upper bound for storage complexity.

In addition to supporting algorithms to allow for the efficient transformation of the model
from one form to another, the model must support the following operations in an efficient
manner:

� building a model from zero-order data,

� evaluating the model over an irregular grid of points,

� multiplying by a scalar value, and

� adding of two PLQ functions.

4



(a) Convex input points for f(x, y) = |x|+ |y| (b) Zero-Order model of f(x, y) = |x|+ |y|

(c) Strictly Convex input points for f(x, ) = x2+y2 (d) Zero-Order Model of f(x, y) = x2 + y2

Figure 1.2.1: Model Representation over a Convex Set
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Chapter 2

Model Selection

2.1 Tessellation-based Model

In examining the problem, it was felt that a PLQ function could be encoded using a Delaunay
triangulation, where each data point in the zero-order model would represent a vertex. The
Delaunay triangulation is a dual structure of the Voronoi diagram, which has previously
been used to encode a convex hull as a finite set of intersecting half-spaces [3], where each
face is defined by a Voronoi center V .

The Delaunay triangulation was chosen over the Voronoi diagram as we could explicitly
define the domain over which a function is defined. A user would define the vertex point
value in the model and the algorithm would compute and project triangulations into R2.
Encoded with each triangulation would be the value of the function as a linear-quadratic
equation. Thus a PLQ function in R3 is encoded as a matrix containing triangulations as T
in R2 associated with the corresponding linear-quadratic equation as

f(Xi) =

(
ai,1 ai,2

ai,3 ai,4

)
X2

i +

(
bi,1

bi,2

)
Xi + ci. (2.1.1)

where Xi is the point (xi, yi) at which the linear-quadratic function is to be evaluated.
Equation (2.1.1) encodes the function value of each part of the PLQ to the boundaries of
the polytope. To encode the information as a one-dimensional array we rewrite Equation
(2.1.1) as (

ai
1,1 ai

1,2 ai
2,1 ai

2,2 bi
1,1 bi

1,2 ci
)
. (2.1.2)

By definition, the points P := {p1, p2, ..., pn} that form the set of points in the plane,
have a one-to-one mapping onto T , but now we can explicitly define the boundaries over
which Equation (2.1.1) applies. What we need is not unlike the process of building a terrain
map, but with the constraints applied by the conditions of a bivariate PLQ.

The model that we propose, is a function proj : A ⊂ R3 → R
2, that assigns a linear-

quadratic function value, f(p) to every point within a planar subdivision in the domain A.
As with a terrain map, the value of the bivariate PLQ is not necessary known at every point
in the zero-order model, but defined at certain points such that we only know the value of
the function proj at a finite set P ⊂ A [8].

The initial challenge is how to determine a triangulation of P , such that each pi ∈ P is a
vertex for each planar sub-division and that each planar sub-division is a triangle. Following
that, we then need to project the triangulation from R

3 → R
2. Additionally, we need

to compute the function coefficient values for Equation (2.1.1) for each planar subdivision.
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Initial investigation was completed with the Scilab mathematical package [2]. Unfortunately,
Scilab does not have the necessary functionality to support the operations we were looking
for without a significant amount of time invested into writing the basic algorithms. The
mathematical package MATLAB [1] was found to offer the necessary functionality to support
the desired operations. The nature of the specific algorithms will be expanded in the following
sections.

Using MATLAB as the computational platform, we were able to develop a data structure
that met the requirements to encode a bivariate PLQ. Each planar subdivision is defined by a
tessellation which is composed of two separate parts: one being the set of points (xi, yi) ∈ P ,
which is now a maximal planar subdivision, and the other being a triangulation of P , which
is defined as follows

Definition 2.1.1. Triangulation of P [8, p. 185] A triangulation T of P is a maximal
planar subdivision whose vertex set is P

To build the bivariate PLQ from zero-order data, a convex hull algorithm was run on the
data set in R3 . The resulting convex hull was then projected into R2, providing the required
triangulations. Additionally, the coefficient values for Equation (2.1.1) were computed from
vertex points in the convex hull, forming the necessary components to represent the bivariate
PLQ. The data structure has two distinct components: a matrix of (xi, yi) ∈ P where P
contains the location in R2 of each vertex. A second matrix encodes triangulation ti ∈ D as
a set of indexes into P along with the corresponding linear-quadratic as in Equation (2.1.2).
Let D be a triangulation T that satisfies the properties of a Delaunay tessellation. The
model can be written

P =


x1 y1

x2 y2

· ·
· ·
· ·

xnv ynv

 (2.1.3)

D =


i1,1 i1,2 i1,3 a1,1 a1,2 a1,3 a1,4 b1,1 b1,2 c1

i2,1 i2,2 i2,3 a2,1 a2,2 a2,3 a2,4 b2,1 b2,2 c2

· · · · · · · · · ·
· · · · · · · · · ·

int,1 int,2 int,3 ant,1 ant,2 ant,3 ant,4 bnt,1 bnt,2 cnt

 (2.1.4)

where ij,k, (k ∈ {1, 2, 3} and j = 1..nt) are the indexes of the associated points in P with nv

and nt being the number of vertexes and triangulations respectively.
This model supports the desired convex transformation operations efficiently. The de-

scription and analysis of each component is discussed in Chapter 3. The storage complexity
of the model is O(n) in terms of the number of triangulations as there is one entry for each
triangulations and at most 3 vertexes for each triangulation. The only shortcoming to rep-
resenting a bivariate PLQ with this data structure is that it cannot represent an unbounded
bivariate PLQ due to the fact that the union of the bounded faces of a triangulation D is

7



the convex hull of P [8]; hence, it cannot encode an unbounded region and is limited to
representing bounded domains.

2.2 Inequality-based Model

In order to support the inclusion of unbounded domains into the model, a dual model was
investigated using inequalities instead of vertices in P to define each triangulation ti ∈ T .

This is accomplished through a series of operations that convert a tessellation-based
PLQ to an inequality-based PLQ. Each ti ∈ T is now represented by several half-spaces
in R2 with the associated linear-quadratic equation. The matrix P is replaced by a list
of inequalities I, where (mi, si, bi) ∈ I are the set of half-spaces that define T . Each
component of (mi, si, bi) ∈ I encodes the slope m, the sign of the inequality s and the
intercept b respectively. Let I be a set of inequalities, T be a set of triangulations, C be a
set of centroids and N be a set of neighbouring faces. The model becomes

I =


m1 s1 b1

m2 s2 b2

· · ·
· · ·
· · ·

mns sns bns

 (2.2.1)

T =


i1,1 i1,2 i1,3 a1,1 a1,2 a1,3 a1,4 b1,1 b1,2 c1

i2,1 i2,2 i2,3 a2,1 a2,2 a2,3 a2,4 b2,1 b2,2 c2

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

int,1 int,2 int,3 ant,1 ant,2 ant,3 ant,4 bnt,1 bnt,2 cnt

 (2.2.2)

C =


x1 y1

x2 y2

· ·
· ·
· ·

xnt ynt

 (2.2.3)

N =


i1,1 · i1,nn1

i2,1 · i2,nn2

· · ·
· · ·
· · ·

int,1 · int,nnt

 (2.2.4)

where ij,k, k ∈ {1, 2, 3} in the second matrix are the indexes of the associated inequalities in
I and ns, nt, nnt are the number of half-spaces, the number of triangulations and the number
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of neighbours for a specific triangulation respectively. The array of lists N maintains the
indexes of each neighbouring triangulation is T to a triangulation ti.

The inequality model introduces two additional components that are used to support the
efficient transformations as a third and fourth element. The third element is a matrix of
centroids. Each row stores the centroid for the triangulation defined by the given row. The
fourth element is a cell list, and stores a list of indexes to the neighbours of the triangulation
defined by a given row. A cell list is a data structure specific to MATLAB which allows
each row to have a different number of elements. This is critical and is done to minimize the
storage complexity as each triangulation can have a different number of neighbour. This list
must also be able to grow in case new neighbouring triangulations are added.

This model supports the desired convex transformation operations in terms of efficient
evaluation, addition and multiplication, but must be constructed from a bounded bivariate
PLQ model. The description and analysis of each component is discussed in Chapter 4.

9



Chapter 3

Algorithms for the Bounded
Tessellation-Based Bivariate PLQ
Model

3.1 Build Algorithm

In constructing a bivariate PLQ, both the tessellation and the inequality-based models rely
on the same initial build function. The build function, working only with zero-order data,
receives as input an irregular grid of points X in R2 and a vector of corresponding function
values, f(X). The build algorithm is

Algorithm 1: PLQ2 build Algorithm

Input: X, f
Output: a tessellation-based bounded PLQ2
begin

initialization;
Compute the convex hull, H of the data set in R3;
Project the vertices P that form H into R2;
Compute the Delaunay triangulation D ∀p ∈ P ;
forall ti ∈ D do

compute the coefficients for linear-quadratic function;
end
Return PLQ;

end

The convex hull algorithm used in this implementation, is based on the Quickhull algo-
rithm [4]. The algorithm will remove extra points that are located on the interior of each
triangulation [8, 4].

Let us recall some facts

� The number of points processed by the convex hull algorithm is proportional to the
number of vertices in the output and runs in O(n log h), where h is the output size [7].

� A convex polytope P with n vertices has at most 2n− 4 faces [8, p. 237].

� The implementation of Quickhull in MATLAB produces a convex hull with triangular
faces with three vertices.

10



� The expected number of triangles created by the Delaunay Triangulation algorithm is
as most 9 ∗ n + 1 [8, p. 197].

Proposition 3.1.1. The PLQ2 build algorithm runs in O(n log h).

Proof. Let P be a convex polytope produced by the algorithm in O(n log h) which has at
most 2h− 4 facets. The projection of P from R

3 → R
2 requires each face to be visited only

once and for each face, only three points are projected. Thus, let P be the set of points in
R

2 and the total number of operations to project into R2 is 3 ∗ (2n− 4) = 6n− 12 = O(n).
By Definition 1.1.8, the Delaunay triangulation D of a set P of 6n − 12 points can be

computed in O(n log n) and produces at most 9 ∗ (6n − 12) − 1 = 54n − 107 faces. For a
single face, the linear-quadratic equation coefficients is computed in O(1). It then follows
that the coefficients for all triangulations in D can be computed in O(54n−107) = O(n). So
the total number of operations required for the PLQ2 build algorithms is O(nlogh)+O(n)+
O(nlogn) + O(n) = O(nlogh).

3.2 Evaluation Algorithm

The evaluation of the bounded bivariate PLQ function over a set of points (xi, yi) ∈ X is
achieved exploiting the fact that the model is based on a tessellation. MATLAB includes
a function called tsearch in the convex hull package that allows a point or set of points to
be evaluated over a Delaunay triangulation D and will return the index of the face that the
point is included in. By definition D encodes a convex hull which is a continuous piecewise
function. If a point (x, y) falls on the boundary of a triangulation, it can be evaluated as
part of either triangulation. If a point that is being evaluated is not in the domain of the
model, the value returned is +∞.

Algorithm 2: PLQ2 eval Algorithm

Input: PLQ2,X
Output: a vector of values Z
begin

initialization;
forall (xi, yi) ∈ D do

Compute facet indexes j ∈ I from D;
end
forall i do

evaluate the linear-quadratic function at (xi, yi) associated with the facet at
index ji;
insert results of evaluation at Z(i);

end
Return Z;

end

The computational complexity of the tsearch algorithm as published in MATLAB was
not available through the literature. Thus, an empirical approach was taken to evaluate
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the run-time complexity of the bounded evaluation algorithm. A series of experiments were
run with two different scenarios: the first being evaluating a fixed number of points over an
increasing number of facets in the model. The second being the evaluation of an increasing
number of points over a fixed number of facets in the model.

Conjecture 3.2.1. Tsearch runs in O(nk), where n in the number of facets in D and k is
the number of points being evaluated.

In Figure 3.1(a), 100 points were evaluated in a PLQ model that had a maximal number
of n facets (strictly convex data) with n growing to 80,000. It was observed that the time
for evaluating a fixed number of points increased linearly with the number of facets in the
model. In Figure 3.1(b), the number of input points to be evaluated was increased up to
250,000 points over a model with 80,000 facets in D. The computational time was found
to increase linearly as the number of points being evaluated. Thus the tsearch algorithm
appears to run in O(nk).

Returning to the PLQ2 eval algorithm, we continue with analyzing the remainder of the
algorithm.

Proposition 3.2.1. Assuming that tsearch runs in O(nk), the PLQ2 eval algorithm runs in
O(nk).

Proof. Let X be a set of input points of size k over D with n facets. From Conjecture 3.2.1,
the runtime complexity will be O(nk) producing an index list I of size k as per the definition
of the function in MATLAB. To evaluate the function value at each point in X, the linear-
quadratic function to be evaluated can be accessed and evaluated in O(1) + 7 = O(1). It
then follows that accessing k linear-quadratic functions can be completed in O(k) and the
runtime complexity of the algorithm is O(nk) + O(k) = O(nk).

Note: A better implementation of tsearch may improve its complexity to O(n log k)
therefore improving the complexity of PLQ2 eval to O(n log k + k).
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(a) Timing results for evaluating a fixed number of
points in the tessellation over an increasing number
of facets

(b) Timing results for evaluating a increasing num-
ber of input points over 80,000 facets

Figure 3.2.1: Empirical results from the tsearch algorithm in MATLAB

3.3 Addition Algorithm

The PLQ2 add algorithm takes as input, two bounded bivariate models and returns a bi-
variate PLQ that is the addition of the two input models. The addition algorithm is a union
of the vertex points P in D under evaluation of both input models. The algorithm is as
follows.

Algorithm 3: PLQ2 add Algorithm

Input: PLQa, PLQb
Output: a PLQ that is a summation of the two input models
begin

initialization;
for each vertex point pi ∈ Pa in PLQ2a do

evaluate the function value of pi under PLQb to form a vector Za;
end
for each vertex point pj ∈ Pb in PLQ2b do

evaluate the function value of pj under PLQa to form a vector Zb;
end
Concatenate Pa and Pb to form a new point list Pc;
Concatenate Za and Zb to form a new point list Zc;
Evaluate Pc and Zc under the PLQ2 build to build PLQ2c;
Return PLQ2c;

end

Proposition 3.3.1. The PLQ2 add algorithm runs in O(n2).
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Proof. Let n be the number of triangulations in PLQa and m be the number of triangulations
in PLQb. Let j be the number of vertex points in PLQa (at most j = 3n) and k be the
number of vertex points in PLQb (at most k = 3m). It then follows that the evaluation
of PLQa in PLQb is O(3nm) and the evaluation of PLQb in PLQa is O(3mn). When
n = m, the total cost is O(3n2) + O(3n2) = O(n2) with j + k = 3m + 3n = 6n points.
The computational complexity of building the resulting new PLQ from the data points
by Proposition 3.1.1 is O(6n log 6n) = O(n log n). It then follows that the computational
complexity for the addition algorithm is O(n2) + O(n log n) = O(n2).

3.4 Scalar Multiplication Algorithm

Scalar multiplication for a PLQ function is a straightforward linear-time algorithm in which
the linear-quadratic equation for each face in the PLQ model is multiplied by a scalar value.

Algorithm 4: PLQ2 mult Algorithm

Input: PLQ2,c
Output: a PLQ2 that has been scalar multiplied by c
begin

initialization;
forall triangulations ti ∈ D in PLQ2 do

multiply the linear-quadratic equation at index i by the constant c;
end
Return PLQ2;

end

Proposition 3.4.1. The PLQ2 mult algorithm runs in O(n).

Proof. Let n be the number of triangulations in the PLQ and let x be a scalar value. Loop-
ing on n, indexing the value of the linear-quadratic function for each triangulation in R2

can be completed in O(1) by the fact that indexing into a matrix can be done in linear
time. Computing the new linear-quadratic equation from the scalar multiplication of k
with the linear-quadratic equation, Equation (2.1.2), is completed in O(1). Updating the
linear-quadratic equation at index i can be done in linear time. In then follows that each
triangulation’s linear-quadratic equation must be accessed taking n operations. Hence the
total number of operations is n ∗ (O(1) + O(1) + O(1)) = O(n).

14



Chapter 4

Algorithms for the Unbounded
Inequality-Based Bivariate PLQ
Model

4.1 Algorithm for Converting a Tessellation-Based

Model to an Inequality-Based Model

The algorithm to convert a bounded tessellation-based bivariate PLQ to an unbounded
bivariate inequality-based PLQ takes as an argument a bounded PLQ and returns and un-
bounded PLQ as IPLQ2. The algorithm is composed of three distinct operations: first, the
bounded tessellation model is converted to an inequality model. Second, the unbounded
region is constructed as a IPLQ2 model, and third, the two models are joined together.

The first set of operations is computed by treating each vertex point of a specific tri-
angulation as the intersection of two inequalities formed by the intersection point and the
remaining two vertices. This method exploits the property of the Delaunay Triangulation in
MATLAB, in such that each face is triangular and will only have three vertices. The slope
m and intercept value b of each inequality are computed from the vertex information. Each
inequality ineq is encoded in the point-slope form of y = mx + b as (m sign b). The in-
equality value sign must then be determined. By the properties of a closed convex polytope,
any point that is on the boundary of the polytope is within the convex hull, thus as each
inequality ineq is uniquely formed by only two vertices. The third vertex that is not taking
part in the formation of the inequality ineq is used as a test point as it will, by definition,
be in the half-space that forms part of the initial triangulation. Values of sign are encoded
as in Table 4.1.1.

Special consideration must be given to cases where the slope m of the line is +∞ or −∞
as the inequality is in the form of y = mx + b. To capture and encode this information, a
special case is allowed where m can take on the values of +∞ or −∞. In this case, the value
of b encodes the value of the x-intercept.

Inequalities, as described in Equation (2.2.1) are stored in a matrix of inequalities and
each face then maintains a list of indices to the required inequality. As the model is being
constructed, duplicate checking is conducted to ensure that existence of an equality in the
matrix is unique.

The unbounded region around the convex polytope that represents the triangulation in
R

2 is computed by touring around the exterior of the convex hull. Based on the properties of
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Sign Value
≥ encoded as 1
= encoded as 0
≤ encoded as -1

Table 4.1.1: Sign value encoding for inequalities for the bounded polytope

the convex hull, for a convex hull tour, the first point past the current segment being tested,
will be used as a test point to determine the unbounded regions. The computation of the
convex hull of the bounded model is performed using the convhull function in MATLAB [1, 4]
and the vertex points from the Delaunay triangulation is R2. This returns the vertices that
form the convex hull in a strict ordering, such that indexing through the vertices will form a
tour around the convex hull returning to the original vertex. The assumption is made that
the hull consists of at least three points. If the convex hull has only two points, then it is a
line and is treated as a special case.

Unlike the bounded region where a point on the boundary of a polytope is inclusive of
the region, in the unbounded region a point on the boundary of the convex polytope may
not belong to the half-space defined by the inequalities defining the region. Thus < and >
were added as special cases for unbounded conditions: if a point is sitting on the convex hull
of the tessellation in R2, it is in the bounded model. As there could exist a discontinuity
between the convex set and the unbounded region, a point on the hull cannot be equal to
the linear-quadratic equation for both spaces. Thus, the unbounded region as expressed by
the inequalities, must bound the convex hull with a strict inequality, hence the need for the
introduction of < and > as in table 4.1.2.

In the calculation of the inequalities forming the unbounded region, the tour around the
hull will form a series of unbounded faces consisting of two inequalities; The first, will be the
strict inequality that forms the boundary of the convex hull. The second point may either
be an inequality or strict inequality as it is only forming a partition between two unbounded
faces that evaluate to +∞. Each unbounded region will be formed by no more than two
separate inequalities. Again, as with the bounded region, cases of infinite slope are encoded
in the same fashion. The tessellation of the unbounded regions are encoded in the same
fashion with the IPQ2 data structure.

With conversion of the bounded model to an unbounded model, being represented by
two separate parts, the unbounded and bounded inequality models are merged into a single
data structure. This can be accomplished by a concatenation of the two models, but as
at least half of the inequalities that form the unbounded region take part in the formation
of the bounded inequality model, duplication of inequalities is inevitable. Thus, duplicate
inequalities are removed and existence of inequalities in one list need to be verified in the
other.

MATLAB does not contain a native binary search method, which would be a suitable
algorithm for checking the existence of an inequality in a matrix of inequalities. In the
MATLAB file exchange, a binary search algorithm (that given a value in a sorted vector,
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Sign Value
> encoded as 2
≥ encoded as 1
= encoded as 0
≤ encoded as -1
< encoded as -2

Table 4.1.2: Sign value encoding for inequalities for bounded and unbounded regions

returns the index of location where the value is) was found [9]. As this algorithm only
supports vectors, the method was expanded to support a row search in a matrix, such that
the algorithm returns the index of a row match for a given inequality. Utilizing this method,
the two models can be merged and for duplicate entries, as the binary search returns the
index of the initial duplicate row, the reference is updated such that the model being merged
has its duplicated entries updated with the indexes from the base model.

In looking forward to other parts of the algorithm, additional information needs to be
encoded during the conversion algorithm. Unlike the Voronoi diagram, the Delaunay tes-
sellation does not maintain uniqueness in terms of using a center to treat the problem as a
point location problem. In order to accelerate the evaluation, additional methods have been
introduced such that each triangulation also has an associated center of gravity or centroid
as seen in Model (2.2.3). Thus, the centroid is computed for each face and stored in the
triangulation row entry.

Additionally, a neighbour list is constructed during the conversion that allows each tri-
angulation to maintain a list of other triangulations it is next to. For each triangulation ti,
an index list of neighbouring triangulations is maintained such that the neighbour will only
appear in the list if and only if it has a common edge with ti. The centroid and neighbour
list methods have not been fully implemented for the unbounded regions.
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Algorithm 5: PLQ2 convert to IPLQ2 Algorithm

Input: PLQ2
Output: as inequality-based PLQ2
begin

initialization;
forall triangulations ti ∈ D in PLQ2 do

Compute the linear-equalities that form the triangulation;
Compute the centroid for the face;
forall edges in the triangulation do

record the index of the neighbouring triangulation;
end
Check for duplicate entries in the existing list of inequalities;

end
Compute the convex hull on P forming k + 1 hull points and k edges;
forall edges k in the convex hull do

compute the 2 bounding inequalities and build 2k unbounded faces with at
most 2k inequalities;

end
forall unbounded inequalities do

check to see if it exists in the list of bounded equalities and if it does update
the index in the face inequality reference list;

end
Concatenate the two models;
Return the inequality-based IPLQ2;

end

Proposition 4.1.1. The PLQ2 convert to IPLQ2 algorithm runs in O(n2).

We now recall some facts

� Let P be a set of n points in the plane, not all collinear, and let k denote the number
of points in P that lie on the boundary of the convex hull of P . Then any triangulation
of P has 2n− 2− k triangles and 3n− 3− k edges.

� The Delaunay triangulation contains at most O(nd/2) simplexes, thus in R2, for n input
points, there will be at most O(n) triangulations. For d = 2 the model will have at
most O(k) triangulations.

� In the plane R2, if there are b vertices on the convex hull, then any triangulation of
the points has at most 2n− 2− b triangles, plus one exterior face [8].

� The centroids of a set of n points in d dimensions can be computed trivially in O(dn) =
O(n) [12, p. 106].

We are now ready to prove Proposition 4.1.1

18



Proof. Let Q be a bounded bivariate PLQ model with n input points with at most n trian-
gulations ti ∈ D. For each ti, there are three vertices that form the face thus the face has
three edges for which three linear-inequalities are needed to represent the triangulation. The
equation of each edge is computed in linear time using the point slope and intercept form for
each set of points. Each face can be represented by 3 inequalities in O(1) and all inequalities
calculated are n ∗O(1) = O(n). Checking to see if a single inequality exist in the inequality
list is in O(log m) where m is the number of inequalities. It follows, as the model has at most
n triangulation, and each has 3 edges, that m = 3n and O(log m) = O(log(3n)) = O(log n);
thus, for n faces, checking for duplicates is O(n log n).

To compute the centroid of the new triangulation, the centroid for a single triangulation
can be computed in O(p) where p = 3 and is the number of vertices in the triangulation.
Thus, for n triangulations, the complexity is O(3n) = O(n).

To compute the neighbour list, each triangulation maintains three vertices. For each set
of vertex that participates in an edge, we index into the triangulation matrix and recover
the members in at worst O(n). A bottleneck is introduced by the fact that a single vertex
could be a member of every triangulation in the model; hence its triangulation membership
is n. This cycle is repeated for each vertex in the triangulation; thus for n triangulations,
the worst case complexity for building the neighbour list is O(n ∗ n) = O(n2).

To compute the unbounded regions, by Definition 1.1.8 and 1.1.5 the Delaunay tessella-
tion is a maximal planar subdivision, thus each point in R2 is a vertex. It then follows that
there are b vertices and b number of points, thus b = n and the number of triangles is

2n− 2− b + 1 = 2n− 2− n + 1

= n− 2 + 1

= n− 1.

Thus, the number of triangles is at most n − 1 for D. Let k be the number of edges in the
convex hull of D. The number of edges in the convex hull is be related to the number of
triangles as 2m − 2 − k where m is the number of input points. Thus, for the unbounded
PLQ where n is the number of triangles, the number of edges is n = 2m−2−k. With m = n
we have n = 2n− 2− k so k = n− 2 = O(n).

There are at most n− 2 edges in the convex hull of D and for each edge, two inequalities
are required which can be each computed in O(1). Hence, at most 2k = 2n− 4 inequalities
are required, each taking O(1), and the inequalities for the unbounded region are computed
in O(n) with at most 2n− 4 inequalities.

In joining the two models, the existence of an unbounded inequality in bounded equality
list can be checked in O(log n). Thus 2n−4 inequalities can be checked in O((2n−4) log n) =
O(n log n). With any duplicate inequalities removed, the two models can be concatenated in
O(1). It follows that the run time complexity for the conversion of a bounded tessellation-
based bivariate PLQ to an unbounded inequality-based bivariate PLQ without the neighbour
list structure or centroid list is O(n) + O(n log n) + O(n) + O(n log n) + O(1) = O(nlogn).
Additionally, the run time complexity for the conversion of a bounded tessellation-based
bivariate PLQ to an unbounded inequality-based bivariate PLQ with the neighbour list
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structure or centroid list is O(n) + O(n) + O(n2) + O(n log n) + O(n) + O(n log n) + O(1) =
O(n2).

4.2 Evaluation Algorithm

The evaluation of an unbounded inequality-based bivariate PLQ over a set of points (xi, yi) ∈
X is achieved by searching through the triangulations formed by the inequalities and deter-
mining if a specific point is within a given region. MATLAB does not support functionality
to search through triangulations as defined by inequalities, thus for the initial method, the
triangulations will be toured through in order. Fortunately, the triangulations have an in-
herent natural ordering from the build function. By definition, if a point (x, y) falls on the
boundary of a triangulation, it can be evaluated as part of either facet. If a point that
is being evaluated is not in the domain of the model, the index is returned as +∞. Two
different methods are presented. Only Method A will be proven as Method B is not fully
implemented.

In order to accelerate the evaluation, points are ordered in lexicographic order to exploit
the fact that in the process of the build operation, there is an inherent ordering of trian-
gulations. Thus, it is possible, if both X and T share the same ordering, to determine the
triangulation in which each point is located in a linear fashion. Once a triangulation is found
to bound the point under evaluation, it is evaluated using the associated linear-quadratic
function.

Algorithm 6: IPLQ2 eval Algorithm

Input: IPLQ2,X
Output: a vector of values Z
begin

initialization;
Order X in increasing lexicographic order;
Set i, j = 0;
for each xi ∈ X do

if xi satisfies the constraints of the triangulation tj then
evaluate with associated linear-quadratic to Z and check xi+1;

end
check xi in tj+1;
if j ≥ size(T ), the number of triangulations then

reset j = 0;
end

end
Reorder Z to original order;
Return Z;

end

A second approach was investigated to improve the performance. Using the centroids
for each face, it was conjectured that the problem could be framed as a point location
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type problem. Even though locating a point to a given center may not absolutely locate a
point within a face, we conjecture that this significantly decrease the search space. Once
a point has been located to a centroid, the point is evaluated under the bounds of the
triangulation associated with the given centroid. If the point is not in the bounded region,
we take the next closest centroid and so on. The points under evaluation are still ordered in
increasing lexicographic order, and once a triangulation is found that contains a point, then
all subsequent points are evaluated under that triangulation until a point is found that is
not in the bounded face. At this point, the centroid search is computed again and repeated
until all points have been evaluated.

Algorithm 7: IPLQ2 eval v2 Algorithm

Data: IPLQ2,X
Result: a vector of values Z
begin

initialization;
Order X in increasing lexicographic order;
Set i, j = 0;
forall xi ∈ X do

Search the j triangulations for the closest centroid;
if the point is in triangulation t then

evaluate with associated linear-quadratic to Z;
check xi+1 is in the face;

end
check xi in the next closest face;

end
Reorder Z to original order;
Return Z;

end

We first recall known results

� Sorting a set of items has a computational run-time complexity of O(nlogn) and a
storage complexity of O(n).

� Searching a set of sorted items has a computational run-time complexity of O(logn).

� If a point p is inside the convex hull of a Delaunay triangulation, its nearest vertex
need not be one of the vertices of the triangle containing p.

Proposition 4.2.1. The evaluation of k points in a model of n triangulations using Algo-
rithm 6 takes O(kn).

Proof. Let k be the number of points (xi, yi) ∈ X where 0 ≤ i < k to be evaluated in
a bivariate inequality-based model IPLQ2, that contains n triangulations. Ordering of X
is accomplished using a standard sorting algorithm which runs in O(klogk). For a single
(xi, yi), the worst case is that n triangulations must be searched until a legitimate bounded
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triangulation can be found. If this is the case for every xi ∈ X, then locating the valid
triangulation for each point is O(kn).

Once a legitimate bounded triangulation is found for a point, the linear-quadratic function
can be evaluated in O(1) as stated in Proposition 3.2.1. It then follows that the evaluation
of k points can be completed in O(k) which is also a tight bound as all k points must
be evaluated; the linear-quadratic function evaluation is Θ(k). Returning the points to
their original order is O(k). The worst-case run time complexity for evaluating k points is
O(klogk) + O(kn) + O(8) + O(k) = O(kn).

Conjecture 4.2.1. Algorithm 7 has a run-time complexity of O(n)

4.3 Addition

4.3.1 Algorithm

The IPLQ2 add algorithm takes as input, two unbounded inequality-based bivariate PLQ
models of size n and returns an inequality-based bivariate PLQ that is the addition of the
two input models. The addition method for the inequality-based model is functionally very
similar to the bounded addition but operationally it is quite different. The addition algorithm
starts with one inequality-based PLQ as a base model PLQ2a. To PLQ2a, the inequalities
from the second PLQ, PLQ2b are added one-by-one. As each inequality is added, it will
intersect n triangulations and divide into 2n convex polytope tessellations. The resulting
split may not be triangular and on each new tessellation, the centroid and neighbour list is
calculated. Once all of the inequalities have been added, the resulting model contains the
union of the tessellations from PLQ2a and PLQ2b, but the linear-quadratic function value
for each tessellation must be computed.

Using the new centroid list C ′, the centroids are evaluated under PLQ2a and PLQ2b
except instead of evaluating the point, the linear-quadratic function is extracted from each
and the summation of the two linear-quadratic equations stored in the relative tessellation
associated with each ci ∈ C′. We conjecture that this problem can be formulated as a map
overlay problem which Becker et al. have shown to have a complexity of Θ(n2)[5]. This
method is not fully implemented at this time.

The addition method utilizes the neighbour list to determine the direction of intersection
when an inequality is added to streamline the addition process. The algorithm is as follows:
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Algorithm 8: IPLQ2 add Algorithm

Input: IPLQ2a,IPLQ2b
Output: IPLQ2 which is the summation of the two input IPLQ2
begin

initialization;
Order X in increasing lexicographic order;
Set i, j = 0;
forall inequalities ii ∈ I in PLQ2b do

Add the inequality to PLQ2a as PLQ2c;
Locate a triangulation cut by the inequality;
forall triangulations bisected by the inequality do

form two new tessellations for each face split;
Compute the centroids for each new face formed;

end

end
Evaluate the centroids for each face under PLQ2a and extract the linear-quadratic
functions;
Evaluate the centroids for each face under PLQ2b and extract the linear-quadratic
functions;
Sum the two sets of linear-quadratic functions;
Update the linear-quadratic functions for each tessellation in PLQ2c;
Return PLQ2c;

end

Proposition 4.3.1. The addition algorithm has a computational run time complexity of
O(n3) and a computational storage complexity of O(n2).

Proof. Let PLQ2a be an unbounded inequality-based bivariate PLQ model of n triangula-
tions and let PLQ2b be an unbounded inequality-based bivariate PLQ model of m trian-
gulations. As PLQb have n triangulations, by conjecture 4.1.1, it contains no more than
2n−4 = O(n) inequalities. For each inequality in PLQb, it is added to PLQa which contains
n triangulations and if n triangulations are bisected, 2n tessellations are formed from the
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addition of a single inequality. Thus adding n inequalities forms at most n2 new faces

n +
2n∑

i=n+1

i = n +
n∑

i=1
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i +
n∑

i=1

n

= n +
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2
+ n2

= n +
n2

2
+

n

2
+ n2

=
3n2

2
+

3n

2
= O(n2)

For each inequality that is added, 2n tessellation are formed and 2n centroids are com-
puted in O(n) as stated in Section 5; thus for n inequalities added, n2 centroids C ′ are
computed. To extract the linear-quadratic function from PLQ2a and PLQ2b, C is eval-
uated under each model, returning the function instead of the resultant of the function.
By Proposition 4.3.1 the extraction of the linear-quadratics functions is in O(kn), where
k = n2 thus the complexity is O(2n3). Updating the linear-quadratic function in PLQ2c
can be completed in O(n2) as it is the operation of indexing into a matrix of size n2.
Thus, the complete complexity for adding two unbounded inequality-based bivariate PLQ’s
is O(n2) + O(n3) + O(n2) = O(n3).

Corollary 4.3.1. If the complexity of IPLQ2 eval is O(n+k) then the complexity of IPLQ2 add
is O(n2).

4.4 Scalar Multiplication Algorithm

Scalar multiplication for the inequality-based PLQ is a straightforward linear-time algorithm
in which the linear-quadratic equation for each face in the PLQ model in multiplied by a
scalar value. It does not effect any other component of the data structure.
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Algorithm 9: IPLQ2 mult Algorithm

Input: IPLQ2,c
Output: an IPLQ2 that has been scalar multiplied by c
begin

initialization;
forall each triangulation ti ∈ D in PLQ2 do

multiply the linear-quadratic equation at index i by the constant c;
end
Return PLQ2;

end

Proposition 4.4.1. The IPLQ2 mult algorithm runs in O(n).
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The following complexities were found for each model:

Operation
Model build eval add mult

Tessellation O(nlogn) O(nk) O(n2) O(n)
Inequality O(n2) O(nk) O(n3) O(n)
Voronoi1 O(nlogn) O(n + k)2 O(n2) O(n)

Table 5.1.1: Complexity Results for Fundamental Convex Transforms

It was observed empirically that, for functions that contained large amounts of linear data
the algorithms tended to perform better than the upper bound. Overall, for linear encoded
data, the models perform empirically better than the worst case complexity. Encoding
strictly convex functions does present a challenge for this model as little or no simplification or
reduction in the size of the input compared to the output can occur, leading to a performance
bottleneck.

It was also observed that most methods that generate or permeate the model are output
sensitive in terms of the number of faces generated. As previously mentioned, as this is a
zero order model, strictly convex data cannot be efficiently encoded. Thus, as the model
improves and is able to encode quadratic information, a performance increase may be seen
as the number of faces required to encode data over a given region may decrease.

Limitations also exist with the tessellation-based model for strictly convex functions
with a large number of parts in a small area. The convex hull algorithm starts to reach a
performance barrier when the angles of each triangulation become extremely small, such that
trouble is encountered when trying to resolve the location of a point. With the introduction
of a model that allows for the encoding of quadratic information, this should no longer be a
barrier to performance. A possible way to extend the tessellation-based model to functions

1Results for the Voronoi model are conjectured.
2Since both the Vertices and the list of points to evaluate can are sorted, this amounts to merging to

sorted sequences (n+k) + sorting : n log n + k log k but the vertices can be maintained sorted i.e. sorted
in the build. So the cost drops to n+ k log k. If the set of k points is a grid (as is most often the case), it is
assumed already sorted along each axis (so trivially sorted in the plane) so the cost is now n+k.

If nothing is sorted, evaluation can still be done in k log n by repeatedly searching in the sorted list of
vertices.
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with unbounded domains would be to store vertices and half-lines separating the unbounded
faces (e.g. each vertex is associated with a list of directions corresponding to the edges of
the tessellation going through that vertex). Such information is redundant for vertices in
the interior of the domain (since it can be extracted from the other vertices) but is critical
for vertices on the boundary of the domain to handle unbounded faces.

Additional work needs to be carried out to complete the implementation for the IPLQ2 eval
and IPLQ2 add methods as well as verifying and improving the run time complexity. We
know that the addition algorithm when formulated as a map overlay type problem can have
a run time complexity of O(n2), while our method is still bounded by O(n3) with the bot-
tleneck being the extraction and summation of the linear-quadratic equation for each new
face. Future Work will focus on streamlining and improving this functionality to bring the
method within the Ω(n2) bound. Further work will also be conducted into improving the
evaluation method with improved search methods.

Further work will investigate if a PLQ function can be encoded using a Voronoi diagram,
which will be computed from the initial Delaunay tessellation. Voronoi diagrams have previ-
ously been used to encode a convex hull as a finite set of intersecting half-spaces [3]. A user
would define the point value in the model and the algorithm would compute and project a
Voronoi diagram into R2. Encoded with each center would be the value of the function as
a linear-quadratic equation. Thus a PLQ function in R3 is encoded as a matrix containing
Voronoi centers (xi, yi) ∈ V in R2 associated with the corresponding linear-quadratic equa-
tion. Equation (2.1.1) encodes the function value of each part of the PLQ to the boundaries
of the polytope for the Voronoi diagram in R2 containing the Voronoi centers V .

Adding the location of each Voronoi center (xi, yi) ∈ V with Equation (2.1.2) a PLQ
function is encoded into a single matrix as

x1 y1 a1,1 a1,2 a1,3 a1,4 b1,1 b1,2 c1

x2 y2 a2,1 a2,2 a2,3 a2,4 b2,1 b2,2 c2

· · · · · · · ·
· · · · · · · ·
xi yi ai,1 ai,2 ai,3 ai,4 bi,5 bi,6 ci

 . (5.1.1)

This model has desirable characteristics due to the properties of Voronoi diagrams. As
previously stated, the Voronoi diagram of a set on n sites in the plane can be computed with
a line sweep algorithm in O(nlogn) and with a storage complexity of O(n) [8, 3] with the
storage complexity for the complete model being O(n).

The desirability of this model is further enhanced in terms of evaluating the bivariate
PLQ over a set of points, xi, yi ∈ X. This problem can be treated as a variant of the post-
office problem [8, 3] with solutions for a single point query in O(nlogn) [3], noting that with
a Voronoi diagram, each Voronoi cell is uniquely defined by xi, yi ∈ V , and by definition, a
given cell contains all points closer to va than to any other center vi ∈ V .

We feel that this model may provide a good basis for a bivariate PLQ in R3, but uncer-
tainty exists regarding the addition function. We anticipate that the addition of two Voronoi
models may be treated as a map overlay problem and future work will focus on investigation
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of this function for this possible model. Provided that this is the case, then we will have two
possible models to represent bivariate PLQ functions.

As the model presented only represents zero order data, the data structure can become
large for strictly convex functions. With the introduction of a first and second order model,
improved encoding will occur to reduce the storage complexity. Additional limitations exist
in the current model for dense tessellation where the linear-quadratic function value between
triangulations is very small, such that they can be joined into a single face to reduce the
overall complexity of the model; thus, a clean function needs to be introduced to allow for
the accommodation of such functionality.

Questions still exist in terms of the ratio between the input size k and the output size n
and further work needs to be done to investigate this relationship. With respect to the code
library, continual improvement is needed to add support for degenerate cases in addition
to improving test coverage and unit testing. Additionally, support for other fundamental
convex transforms needs to be expanded. Work to parallelize methods may be undertaken
to improve the run time performance of addition and conversion methods.
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Chapter 6

APPENDIX

Numerical Examples The following sections include numerous examples of using the specific
methods previously introduced. All examples are run in MATLAB R2007b.

6.1 Building a Tessellation-Based PLQ from

Pointwise Data

6.1.1 Example

Building a tessellation-based PLQ from pointwise data involves two steps. First, the function
data must be formed as two separate elements; the first, X, is a 2xn matrix that represents
the points in R2 that the function is defined over. The point sampling does not have to
be regular. The second element is a vector f(X) which represents the function value over
X. Building the function involves a call to PLQ2 build with X and f(X) being passes as
parameters. The function will return a structure the contains two elements. The first element
is a matrix X, the vertices for the triangulations that define the PLQ. The second element
is a matrix TES that contains the vertex indices for each triangulation and the linear-
quadratic function associated with each triangulation. It should be noted that MATLAB
uses 1 based indexing for arrays and matrices. A helper method PLQ2 show tes which
takes as an argument a tessellation-based PLQ2, will produce a graph is R2 that graphically
represents that triangulation produced.

%define a series of points and the function value
>> [x y] = meshgrid(-10:2:10);
>> x = reshape(x,size(x,1)^2,1);
>> y = reshape(y,size(y,1)^2,1);
>> f = abs(x) + abs(y);
>> X = [x y];
>> plq2 = PLQ2_build(X ,f);

%The structure of the model
>> plq2

plq2 =

TES: [8x10 double]
X: [9x2 double]

%The vertexes
>> plq2.X
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(a) Tessellation in R2 produced by the build method (b) Run Times for the PLQ2 build Method

Figure 6.1.1: Build Method Results

ans =

-10 -10
-10 0
-10 10
0 -10
0 0
0 10

10 -10
10 0
10 10

%The faces
>> plq2.TES

ans =

2 4 5 0 0 0 0 -1 -1 0
1 4 2 0 0 0 0 -1 -1 0
5 4 8 0 0 0 0 1 -1 0
8 4 7 0 0 0 0 1 -1 0
6 2 5 0 0 0 0 -1 1 0
3 2 6 0 0 0 0 -1 1 0
5 8 6 0 0 0 0 1 1 0
6 8 9 0 0 0 0 1 1 0

>> PLQ2_show_tes(plq2);

The results of the call to the helper function PLQ2 show tes can be seen in figure 6.1(a).
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Figure 6.1.2: Evaluation of a tessellation-based PLQ2

6.1.2 Comments

input size 25 441 1681 6561 40401 160801
number of triangulations 32 800 3200 12800 80000 320000

time(seconds) 0.0071 0.1943 0.4179 1.6626 9.8149 61.9158

Table 6.1.1: Complexity Results of the Build Method for a Strictly Convex Function

In looking at the empirical run time complexity from timing results from MATLAB as in
Table 6.1.1 and in Figure 6.1(b), the function appears to progress beneath the conjectured
run time complexity of O(n log n). The storage complexity also appears to be in O(n) as the
number of triangulations generated increases linearly with the number of input points.

6.2 Evaluating a Bounded PLQ

6.2.1 Example

Evaluating tessellation-based PLQ from pointwise data involves two steps. First, a matrix
of the points X in 2 x n over which the function is to be evaluated. Once the points X have
been defined, the second step is to invoke the function involves with call to PLQ2 eval with
PLQ2 and X being passed as parameters. The parameters PLQ2 is the model over which
X is being evaluated. The function will return a vector of function values for each xi ∈ X

%using the model PLQ2 defined previously
%define a matrix of points to be evaluated
>> ti = -10:10:10;
>> [XI,YI] = meshgrid(ti,ti);
>> xx = reshape(XI,size(XI,1)^2,1);
>> yy = reshape(YI,size(YI,1)^2,1);
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>> XX = [xx yy];
%and evaluate
>> z = PLQ2_eval(plq2,XX);
>> z

z =

20
10
20
10
0

10
20
10
20

To plot the results graphically, a regular grid can be defined as above and plotted as

>> ZI = griddata(xx,yy,z,XI,YI);
>> mesh(XI,YI,ZI), hold
>> g2 = plot3(xx,yy,z,’.’),hold off
Current plot held

g2 =

160.0221

with the results of the plot show in figure 6.1.1.

6.2.2 Comments

The empirical results have previously been presented in Section 3.2 and it was seen that the
evaluation is bounded by O(nk)

6.3 Adding Two Bounded PLQ’s

6.3.1 Example

Adding two tessellation-based PLQ’s is accomplished with call to PLQ2 add with two PLQ’s,
PLQa and PLQb being passed as parameters. The function will return a PLQ that is the
summation of the two models. The two models do not have to be defined over the same
domain.

%define model
>> [x y] = meshgrid(-10:5:10);
>> x = reshape(x,size(x,1)^2,1);
>> y = reshape(y,size(y,1)^2,1);
>> f = abs(x) + abs(y);
>> X = [x y];
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>> plq2a = PLQ2_build(X ,f);
>> size(plq2a.TES)

ans =

8 10
%define model 2

>> [x y] = meshgrid(-10:5:10);
>> x = reshape(x,size(x,1)^2,1);
>> y = reshape(y,size(y,1)^2,1);
>> f = x.^2 + y.^2;
>> X = [x y];
>> plq2b = PLQ2_build(X ,f);
>> size(plq2b.TES)

ans =

32 10

%and add the two models
>>plq2c = PLQ2_add(plq2a,plq2b);
>>size(plq2c.TES)

ans =

32 10

6.3.2 Comments

In this example, two functions are added producing a third. Due to the increasing size of the
data structure, the results are show graphically. Figure 6.1(a) and Figure 6.1(b) represent
the two functions that are being added together. The results of the summation are shown
in Figure 6.1(c).

An important observation must be made with the bounded tessellation-based PLQ2 add;
if the two models have different domains, the resulting domain will be the intersection of the
two models as the model only represents values that are defined. Hence, it is possible to have
a reduction in number of faces in the model due to this property. Another observation was
that in testing, the bounded tessellation-based PLQ2 add tended to run in O(n) as in Figure
6.1(d) suggesting that the average run time complexity may be less that the theoretical worst
case run time complexity of O(n2).
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(a) PLQa (b) PLQb

(c) PLQc: the Results of the Addition of PLQa and
PLQb

(d) Run Time for the Addition of Two PLQ Models

Figure 6.3.1: The Addition of Two PLQ Models
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6.4 Scalar Multiplication of a tessellation-based PLQ

6.4.1 Example

Multiplying a tessellation-based PLQ by a scalar constant is computed by a call to PLQ2 mult
with PLQ2 and k being passes as parameters where k is the scalar constant. The function
will return a tessellation-based PLQ.

>> plq2

plq2 =

TES: [8x10 double]
X: [9x2 double]

>> plq2.TES

ans =

2 4 5 0 0 0 0 -1 -1 0
1 4 2 0 0 0 0 -1 -1 0
5 4 8 0 0 0 0 1 -1 0
8 4 7 0 0 0 0 1 -1 0
6 2 5 0 0 0 0 -1 1 0
3 2 6 0 0 0 0 -1 1 0
5 8 6 0 0 0 0 1 1 0
6 8 9 0 0 0 0 1 1 0

>> plq2 = PLQ2_mult(plq2,10);
>> plq2.TES

ans =

2 4 5 0 0 0 0 -10 -10 0
1 4 2 0 0 0 0 -10 -10 0
5 4 8 0 0 0 0 10 -10 0
8 4 7 0 0 0 0 10 -10 0
6 2 5 0 0 0 0 -10 10 0
3 2 6 0 0 0 0 -10 10 0
5 8 6 0 0 0 0 10 10 0
6 8 9 0 0 0 0 10 10 0

6.4.2 Comments

Visually, the results can seen in figure 6.1(a) and 6.1(b) where a function has been multiplied
by a constant, k = 10. In looking at the empirical run time complexity as in figure 6.1(c) is
seen to be linear with an increasing number of triangulations in the model. This supports
conjecture 3.4.1 that the algorithm runs in O(n) in terms of the number of triangulation in
the model.
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(a) PLQ Before Multiplication by a Scalar Constant (b) PLQ After Multiplication by a Scalar Constant

(c) PLQ2 Mult Run Time Complexity

Figure 6.4.1: PLQ Multiplication
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Figure 6.5.1: Run Time Complexity for Model Conversion

6.5 Converting a tessellation-based PLQ to an

inequality-based PLQ

6.5.1 Example

Converting from a bounded tessellation-based PLQ model to an inequality-based PLQ model
can be done with a single call to the method PLQ2 convert to IPLQ2 which will return an
inequality-based PLQ. In the example, a simple tessellation-based PLQ is converted to an
inequality-based PLQ.

>>plq2 =

TES: [8x10 double]
X: [9x2 double]

>> iplq2 = PLQ2_convert_to_IPLQ2(plq2);

>> iplq2

iplq2 =

ineq: [20x3 double]
faces: {12x2 cell}

It should be observed that the number of faces in the model has increased from 8 to 12 for
this example. This is due to the fact that the tessellation-based model is a bounded model
and when converted to an inequality-based model, the domain is expanded such that the
entire R2 space is encoded; hence the need for additional faces.
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6.5.2 Comments

A simulation was run over a series of models with an increasing number of tessellations up
to 20,000 faces. The model that was used was a strictly convex function such that it would
generate a worst case scenario. The results are seen in figure 6.5 which shows processor
time plotted against the size of the model. Additionally, the theoretical O(n2) is shown as
a comparison. It appears that the empirical run time complexity supports Proposition 4.1.1
such that the worst case run time complexity is O(n2).

38



6.6 Evaluating an inequality-based PLQ

6.6.1 Example

Evaluating tessellation-based IPLQ from pointwise data involves two steps. First, a matrix
of the points X in 2 x n over which the function is to be evaluated. Once the points X have
been defined, the second step is to invoke the function involves with call to IPLQ2 eval with
IPLQ2 and X being passes as parameters. The parameter ILQ2 is the model over which
X is being evaluated. The function will return a vector of function values for each xi ∈ X

%using the model IPLQ2 defined previously
>> ti = -10:10:10;
>> [XI,YI] = meshgrid(ti,ti);
>> xx = reshape(XI,size(XI,1)^2,1);
>> yy = reshape(YI,size(YI,1)^2,1);
>> XX = [xx yy];
%and evaluate
>> z = IPLQ2_eval(iplq2,XX);
>> z

z =

20
10
20
10
0

10
20
10
20

6.6.2 Comments

Two separate tests were run, one looking at the empirical run time complexity with a varying
number of input points over a fixed number of tessellation. The second evaluated the run
time complexity with a fixed number of points over a varying number of tessellations. Both
exhibited linear behavior over the scope of the test. A third test was run looking at varying
both the number of points k and the number of tessellations k. Empirically, the inequal-
ity evaluation performs in a linear fashion over nk as seen in figure 6.1(c) which supports
conjecture 4.2.1

6.7 Additional Methods

Usage of the additional methods supporting multiplication and addition for the inequality
model follow the examples for the tessellation-based model.
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(a) Evaluation with a Constant Number of Points (b) Evaluation with a Constant Number of Faces

(c) IPLQ2 eval Run Time Complexity Over nk

Figure 6.6.1: IPLQ Evaluation
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