イロト 不同下 イヨト イヨト

3

1/67

Contributions à l'Analyse Convexe Computationnelle (AC²)

Yves Lucet

OKANAGAN

3 juin 2008

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
			000000000000000000000000000000000000000	0000000

Outline

1 Problèmes d'optimisation

- Ensembles Compactement Epi-Lipschitz
- Analyse de sensibilité sous contraintes d'inégalités variationnelles

2 L'opérateur de moyenne proximale

- Origine et propriétés
- Primitives convexe d'opérateurs finis
- Autres Propriétés de la moyenne proximale
- 3 Analyse convexe computationnelle
 - Algorithmes rapides
 - Fonctions Linéaires-quadratiques par morceaux
 - Applications

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
			000000000000000000000000000000000000000	

Outline

1 Problèmes d'optimisation

- Ensembles Compactement Epi-Lipschitz
- Analyse de sensibilité sous contraintes d'inégalités variationnelles

2 L'opérateur de moyenne proximale

- Origine et propriétés
- Primitives convexe d'opérateurs finis
- Autres Propriétés de la moyenne proximale
- 3 Analyse convexe computationnelle
 - Algorithmes rapides
 - Fonctions Linéaires-quadratiques par morceaux

<ロ> <同> <同> < 回> < 回>

3/67

Applications

4 Conclusion

Ensembles Compactement Epi-Lipschitz

Articles

J. BORWEIN, Y. LUCET, AND B. MORDUKHOVICH, Compactly epi-lipschitzian convex sets and functions in normed spaces, Journal of Convex Analysis, 7 (2000), pp. 375–393.

Références

- J. M. BORWEIN AND H. M. STRÓJWAS, *Tangential approximations*, Nonlinear Anal., 9 (1985), pp. 1347–1366.
- J. M. BORWEIN, *Epi-Lipschitz-like sets in Banach space : theorems and examples*, Nonlinear Anal., 11 (1987), pp. 1207–1217.
 - J. M. BORWEIN AND A. S. LEWIS, *Partially finite convex programming, part 1 : Quasi relative interiors and duality theory,* Math. Programming, 57 (1992), pp. 15–48.

Ensembles Compactement Epi-Lipschitz

Motivation/Historique

- Ensembles epi-Lipchitziens [Rockafellar]
- Ensembles compactement epi-Lipschitz (CEL) [Borwein/Strojwas]
- Ensembles epi-Lipschitz like (ELL) [Rockafellar]

Compact Epi-Lipschitz

C est CEL si $\forall x \in C, \exists N_x \in \mathcal{V}(x), U \in \mathcal{V}(0), \epsilon > 0$ et K convexe compact tel que

$$0 < \lambda < \epsilon \Longrightarrow C \cap N_{x} + \lambda U \subset C + \lambda K.$$

Exemples d'ensembles CEL

- Projection d'ensembles CEL
- Sur-ensembles d'ensembles CEL
- Enveloppe convexe fermée d'ensembles CEL

イロト イポト イヨト イヨト

Ensembles Compactement Epi-Lipschitz

Caractérisation

C convexe fermé dans X un espace linéaire normé.

- C est CEL.
- **2** $\exists \Sigma$ polytope convexe tel que $0 \in int (C + \Sigma)$.
- **③** ∃*E* espace de dimension finie tel que int $(C + E) \neq \emptyset$.
- span C, est fermé, de codimension finie et ri C := int_{span C} C ≠ Ø

C est ELL.

Propriété

Supposons X un espace normé et C CEL convexe fermé. Alors tout point appartenant à la frontière de C est aussi un point d'appui propre de C.

イロト 不同下 イヨト イヨト

Ensembles Compactement Epi-Lipschitz

Fonctions CEL

Soit $f: X \to \mathbb{R} \cup \{+\infty\}$ convexe fermée.

- f est CEL.
- **2** $\exists K$ convexe compact et $f \oplus \delta_K$ est continue à 0.
- **③** ∃*K* convexe compact tel que $0 \in \text{core}(\text{dom } f \oplus \delta_K)$.

Applications

- Dualité en optimisation sous contrainte avec une condition de qualification de type Slater généralisée
- Règle de la somme [Borwein/Lewis]
- Théorème minimax [Borwein/Lewis]
- Conditions nécessaires pour le contrôle optimal d'inégalités variationnelles monotones [Ye]

Analyse de sensibilité sous contraintes d'inégalités variationnelles

Articles

- Y. LUCET AND J. YE, Sensitivity analysis for the value function for optimization problems with variational inequalities constraints, SIAM J. Control Optim., 40 (2002), pp. 699–723.
- Firstum : Sensitivity analysis of the value function for optimization problems with variational inequality constraints, SIAM J. Control Optim., 41 (2002), pp. 1315–1319.

Références

- J. J. YE, Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints, SIAM J. Optim., 10 (2000), pp. 943–962.
- J. J. YE AND X. Y. YE, Necessary optimality conditions for optimization problems with variational inequality constraints, Math. Oper. Res., 22 (1997), pp. 977–997.

イロト 不同下 イヨト イヨト

9/67

Analyse de sensibilité sous contraintes d'inégalités variationnelles

OPVIC

$$\begin{array}{ll} (\mathsf{OPVIC}) & \min & f(x,y) \\ & \text{sous} & \Psi(x,y) \leq 0, \\ H(x,y) = 0, (x,y) \in C \\ & y \in \Omega, \langle F(x,y), y - z \rangle \leq 0 \ \forall z \in \Omega \end{array}$$

 $f: \mathbb{R}^{n+m} \to \mathbb{R}, \Psi: \mathbb{R}^{n+m} \to \mathbb{R}^d, F: \mathbb{R}^{n+m} \to \mathbb{R}^m$ localement Lipschitz au voisinage des solutions optimales; $C \subset \mathbb{R}^{n+m}$ fermé; $\Omega \subset R^m$ convexe fermé

GP (GP) min f(x, y)sous $\Psi(x, y) \le 0, H(x, y) = 0, (x, y) \in C$ $0 \in F(x, y) + N_{\Omega}(y)$

・ロット 全部 とう キャット

Analyse de sensibilité sous contraintes d'inégalités variationnelles

Fonction Valeur

$$\begin{array}{rl} \mathsf{V}(p,q,r) = & \min & f(x,y) \\ & \text{sous} & \Psi(x,y) \leq p, H(x,y) = q, (x,y) \in \mathcal{C} \\ & r \in F(x,y) + N_\Omega(y) \end{array}$$

Analyse de sensibilité

Sous Hypothèses de base + Hypothèse de croissance, V est semi-continue inférieurement à 0 et

$$\partial V(0) \subseteq -M^1_{CD}(\Sigma), \quad \partial^\infty V(0) \subseteq -M^0_{CD}(\Sigma)$$

Si $\partial^{\infty} V(0)$ est un singleton, V est Lipschitz. Si de plus ∂V est un singleton, V est strictement différentiable. ∂ est le sous-différentiel limite.

Analyse de sensibilité sous contraintes d'inégalités variationnelles

Problème d'optimisation à 2 niveaux

$$\begin{array}{ll} \min & f(x,z) \\ \text{contraintes} & \Psi(x,z) \leq 0, (x,z) \in C \\ & z \in S(x) = \operatorname{argmin}\{g(x,z) | \psi(x,z) \leq 0\} \end{array}$$

(x,z) est solution $\Leftrightarrow \exists u$ tel que (x,z,u) est solution de

$$\begin{array}{ll} \min & f(x,z) \\ \text{Sous} & \Psi(x,z) \leq 0, (x,z) \in \mathcal{C} \\ & \psi(x,z) \leq 0 \text{ and } u \geq 0, \langle \psi(x,z), u \rangle = 0, \\ & \nabla_z g(x,z) + \nabla_z \psi(x,z)^\top u = 0, \end{array}$$

Analyse de sensibilité sous contraintes d'inégalités variationnelles

Analyse de sensibilité

$$\begin{array}{ll} \min & f(x,z,\alpha) \\ \text{contraintes} & \Psi(x,z,\alpha) \leq 0, (x,z) \in C \\ & z \in S(x,\alpha) = \operatorname{argmin} \{g(x,z,\alpha) | \psi(x,z,\alpha) \leq 0\} \end{array}$$

(x,z) est solution $\Leftrightarrow \exists u$ tel que (x,z,u) est solution de

$$\begin{array}{ll} \min & f(x,z,\alpha) \\ \text{sous} & \Psi(x,z,\alpha) \leq 0, (x,z) \in C \\ & \psi(x,z,\alpha) \leq 0 \text{ and } u \geq 0, \langle \psi(x,z,\alpha), u \rangle = 0, \\ & \nabla_z g(x,z,\alpha) + \nabla_z \psi(x,z,\alpha)^\top u = 0, \end{array}$$

000000000000000000000000000000000000000	line	Optimisation	Moyenne proximale	AC2	Conclusion
				000000000000000000000000000000000000000	

Outline

Ou

Problèmes d'optimisation

- Ensembles Compactement Epi-Lipschitz
- Analyse de sensibilité sous contraintes d'inégalités variationnelles
- 2 L'opérateur de moyenne proximale
 - Origine et propriétés
 - Primitives convexe d'opérateurs finis
 - Autres Propriétés de la moyenne proximale
- 3 Analyse convexe computationnelle
 - Algorithmes rapides
 - Fonctions Linéaires-quadratiques par morceaux
 - Applications

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Origine et propriétés				

Articles

H. H. BAUSCHKE, Y. LUCET, AND M. TRIENIS, *How to transform one convex function continuously into another*, SIAM Rev., 50 (2008), pp. 115–132.

Références

H. H. BAUSCHKE, E. MATOUŠKOVÁ, AND S. REICH, *Projection and proximal point methods : Convergence results and counterexamples*, Nonlinear Anal., 56 (2004), pp. 715–738.

	 ın	0
\mathbf{u}	 	c

15/67

Origine et propriétés

Moyenne arithmétique

Comment transformer continuement f_0 en f_1 ?

 $f_0(x) = 2x + 2, f_1(x) = x^2.$

$$[(1-\lambda)f_0 + \lambda f_1](x) = \lambda x^2 + (2-2\lambda)x + 2 - 2\lambda$$

Le problème des domaines

$$a_0(x) = -\ln(-x), \ a_1(x) := -\ln(x).$$

Alors dom $a_0 \cap$ dom $a_1 = \emptyset$ et $a_\lambda := (1 - \lambda)a_0 + \lambda a_1 \equiv +\infty.$

Par ailleurs : $\overline{(1-\lambda)} \operatorname{epi} a_0 + \lambda \operatorname{epi} a_1 = \operatorname{epi}(0)$

Outim	00000000	000000000000000000000000000000000000000		000
Origin	e et propriétés			
	Outils d'analyse conv	vexe		
	Conjuguée convex	$xe \ f^*(x^*) = \sup_{x} [\langle x, x^* \rangle]$	-f(x)]	
	• Sous-différentiel $\partial f(x) = \{x^* \mid f(x)\}$	$(x) + \langle y - x, x^* \rangle \leq f(y)$	(∀ <i>y</i>)}	
	• Opérateur proxime $Prox(f) = (\partial f + f)$	$al(d)^{-1} = Argmin_x f(x) - blue(x)$	$+ \ s - x\ ^2$	
	 ∂f maximal mono définie et Lipschit 	$\operatorname{ptone} \Rightarrow \operatorname{Prox}(f) ext{ est ur}$ z de constante 1 [Minty]	ne fonction partout	
	• L'ensemble des op	pérateurs proximaux est	CONVEXE [Moreau 1965]	
	f_0	$\mathcal{P}(f_0, \lambda, f_1)$	f_1	
		<u>↑</u>	\downarrow	
	$Proxf_0 \longrightarrow$	$\lambda_0 \operatorname{Prox} f_0 + \lambda_1 \operatorname{Prox} f_1$	$\longleftarrow Proxf_1$	DKANAGAN
			(日)(四)(四)(四)(四)(四)	900

ACO

16 / 67

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Origine et propriétés				

Définition

$$\mathcal{P}(f_0, \lambda, f_1) = \left((1 - \lambda)(f_0 + \frac{1}{2} \| \cdot \|^2)^* + \lambda(f_1 + \frac{1}{2} \| \cdot \|^2)^* \right)^* - \frac{1}{2} \| \cdot \|^2$$

Propriétés

•
$$\mathcal{P}(f_0, 0, f_1) = f_0, \ \mathcal{P}(f_0, 1, f_1) = f_1$$

(*P*(f₀, λ, f₁))* = *P*(f₀*, λ, f₁*) : La conjuguée de la moyenne proximale est la moyenne proximale des conjuguées.

17/67

• $\operatorname{Prox} \mathcal{P}(f_0, \lambda, f_1) = (1 - \lambda) \operatorname{Prox} f_0 + \lambda \operatorname{Prox} f_1$

•
$$\mathcal{P}(f, \frac{1}{2}, f^*) = \frac{1}{2} \| \cdot \|^2$$

• dom $\mathcal{P}(f_0, \lambda, f_1) = (1 - \lambda) \operatorname{dom} f_0 + \lambda \operatorname{dom} f_1$

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Origino et propriétée				

Origine et propriétés

Moyenne proximale vs. moyenne arithmétique

0.75

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Origine et propriétés				

Moyenne proximale de $f_0(x) = x$ avec $f_1(x) = -x$

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Origine et propriétés				

Moyenne proximale de $f_0 = I_{\{1\}}$ avec $f_1 = I_{\{-1\}}$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Origine et propriétés				

Moyenne proximale de $f_0 = -\ln(-x)$ avec $f_1 = -\ln(x)$

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
0.1.1				

Épi-continuité

Définition. (Épi-convergence et épi-topologie) Soient $g, (g_n)_{n \in \mathbb{N}} : \mathbb{R}^d \to]-\infty, +\infty]$. La suite $(g_n)_{n \in \mathbb{N}}$ épi-converge vers g, si pour tout $x \in \mathbb{R}^d$,

•
$$\forall (x_n)_{n\in\mathbb{N}} \to x, g(x) \leq \underline{\lim} g_n(x_n).$$

•
$$\exists (x_n)_{n\in\mathbb{N}} \to x \ \overline{\lim} g_n(x_n) \leq g(x).$$

Homotopie

Théorème

Pour \mathcal{F} équipé de l'épi-topologie, l'opérateur de moyenne proximale

$$\mathcal{P}\colon \mathcal{F} imes [0,1] imes \mathcal{F} o \mathcal{F}$$

est continue.

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Origine et propriétés				

Stricte convexité et régularité

Théorème. $f_0 \in \mathcal{F}$, $f_1 \in \mathcal{F}$, $\lambda \in]0, 1[$, $f_{\lambda} := \mathcal{P}(f_0, \lambda, f_1)$. Supposons dom f_0 ou dom f_1 égale \mathbb{R}^d et dom f_0^* or dom f_1^* égale \mathbb{R}^d . Alors

- dom f_{λ} et dom f_{λ}^* ont pour domaine \mathbb{R}^d
- Si f_0 ou f_1 est différentiable partout alors f_λ l'est aussi.
- Si f₀ ou f₁ est strictement convexe avec une conjuguée ayant pour domaine ℝ^d alors f_λ est strictement convexe

Remarque. La moyenne arithmétique préserve la convexité stricte d'une fonction mais ne préserve pas la différentiabilité si l'autre fonction n'est pas régulière

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Primitives conv	exe d'onérateurs finis			

Articles

H. H. BAUSCHKE, Y. LUCET, AND X. WANG, Primal-dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators, SIAM J. Control Optim., 46 (2007), pp. 2031–2051.

Références

D. LAMBERT, J.-P. CROUZEIX, V. H. NGUYEN, AND J.-J. STRODIOT, *Finite convex integration*, J. Convex Anal., 11 (2004), pp. 131–146.

イロト イポト イヨト イヨト

Primitives convexe d'opérateurs finis

Primitives Convexes

Pour $(x_i, x_i^*)_{i=1,..,n}$, trouver f convexe telle que $x_i^* \in \partial f(x_i)$ Pour $A : x_i \mapsto x_i^*$, trouver f convexe telle que gra $A \subseteq$ gra ∂f .

La question originelle

- R. T. Rockafellar avec en plus la contrainte que la construction doit respecter la symétrie des données vis à vis de la dualité convexe.
- Applications : sauvegarde de données convexes, représentation de fonctions convexes, données générées par des processus d'Hamilton-Jacobi.

Propriété clef

$$s \in \partial f(x) \Leftrightarrow x \in \partial f^*(s)$$
 i.e. $\partial f^* = (\partial f)^{-1}$

25 / 67

- Si f est une solution, alors f + K est aussi une solution
- Même à une constant prés, il n'y a pas unicité.
 f(x) = x², and f(x) = 2|x|.

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	

Primitives convexe d'opérateurs finis

Monotonie cyclique

 $n \in \{2, 3, \ldots\}$. A est *n*-cycliquement monotone si

$$\begin{array}{c} (a_1, a_1^*) \in \operatorname{gra} A, \\ \vdots \\ (a_n, a_n^*) \in \operatorname{gra} A \\ a_{n+1} := a_1 \end{array} \right\} \quad \Rightarrow \quad \sum_{i=1}^n \langle a_{i+1} - a_i, a_i^* \rangle \le 0$$

La 2-monotonie se simplifie en

$$ig(orall (x,x^*)\in \operatorname{gra} Aig)ig(orall (y,y^*)\in \operatorname{gra} Aig) \quad \langle x-y,x^*-y^*
angle \geq 0,$$

i.e., en la monotonie classique.

A est cycliquement monotone si A est *m*-cycliquement monotone pour tout $m \in \{2, 3, ...\}$.

Dutline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Primitives conv	exe d'opérateurs finis			

Définition de primitive

 $f \in \Gamma$ est une primitive de $A : \mathbb{R}^d \Rightarrow \mathbb{R}^d$ si gra $A \subseteq$ gra ∂f quand A est fini : $x_i^* \in \partial f(x_i)$

Rockafellar

- Tout opérateur cycliquement monotone A admet une primitive
- Les opérateurs maximaux cycliquement monotones sont les sous-différentiels des fonctions convexes semi-continues inférieurement propres.
- Si A est maximal cycliquement monotone alors 2 primitives de A ne diffèrent que par une constante

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000		
Primitives com	vexe d'opérateurs finis			

Les fonctions ancêtres communs sont définies par

For
$$(a_1, a_1^*) \in \text{gra } A$$
, $C_{A,2,(a_1,a_1^*)}(x, x^*) = \langle x, a_1^* \rangle + \langle a_1, x^* \rangle - \langle a_1, a_1^* \rangle$,
et pour tout $n \in \{3, 4, ...\}$,
 $C_{A,n,(a_1,a_1^*)}(x, x^*) =$
$$\sup_{\substack{(a_2,a_2^*) \in \text{gra } A, \\ \vdots \\ (a_{n-1},a_{n-1}^*) \in \text{gra } A}} \left(\sum_{i=1}^{n-2} \langle a_{i+1} - a_i, a_i^* \rangle \right) + \langle x - a_{n-1}, a_{n-1}^* \rangle + \langle a_1, x^* \rangle.$$

イロト イポト イヨト イヨト 一日

29/67

Outline	Optimisation	Moyenne proximale	AC2	Conclusio
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Fonctions de Rockafellar

$$\forall (a, a^*) \in \operatorname{gra} A \quad R_{A,(a,a^*)}(x) = \sup_{n \in \{2,3,\ldots\}} C_{A,n,(a,a^*)}(x,0).$$

Propriétés

nitives convexe d'opérat<u>eurs finis</u>

- A cycliquement monotone, $(a, a^*) \in \operatorname{gra} A$
 - $R_{A,(a,a^*)}$ est convexe semi-continue inférieurement propre avec $R_{A,(a,a^*)}(a) = 0.$

・ロット 全部 とう キャット

30 / 67

- $R_{A,(a,a^*)}$ est une primitive de A : gra $A \subseteq$ gra $\partial R_{A,(a,a^*)}$.
- $R_{A,a} = \min \{ f \in \Gamma(X) \mid f \text{ primitive de } A \text{ avec } f(a) \ge 0 \}$
- $\forall f \text{ primitive de } A : R_{A,a} \leq f \leq R^*_{A^{-1},a^*} \langle a,a^* \rangle$

Outline

Optimisation

OKANAGAN

31/67

イロン イヨン イヨン イヨン 三日

Primitives convexe d'opérateurs finis

Exemple

 $R_{A,a} \leq f \leq R^*_{A^{-1},a^*} - \langle a, a^* \rangle$

Outline	Optimisation	Moyenne proximale	AC2	Concl
	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000

Primitives convexe d'opérateurs finis

Fonctions de Fitzpatrick d'ordre n

$$F_{A,n} = \sup_{(a,a^*)\in \operatorname{gra} A} C_{A,n,(a,a^*)}$$

Fonction de Fitzpatrick de A d'ordre infini

$$F_{A,\infty} = \sup_{n \in \{2,3,\ldots\}} F_{A,n} = \sup_{(a,a^*) \in \operatorname{gra} A} C_{A,\infty,(a,a^*)}.$$

Propriétés

• convexe semi-continue inférieurement

•
$$F_{A^{-1},n}(x^*,x) = F_{A,n}(x,x^*)$$

- A *n*-cycliquement monotone \Leftrightarrow $F_{A,n} = \langle \cdot, \cdot \rangle$ sur gra A
- A cycliquement monotone \Leftrightarrow $F_{A,\infty} = \langle \cdot, \cdot \rangle$ sur gra A

イロン イロン イヨン イヨン 三日

ision

utline	Optimisation	Moyenne proximale	AC2	Conclusio
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000

Primitives convexe d'opérateurs finis

Relation avec les fonctions de Rockafellar

$$F_{A,\infty}(x,x^*) = \sup_{a \in \text{dom } A} \langle a, x^* \rangle + R_{A,a}(x).$$
$$F_{A,\infty}(\cdot, 0) = \sup_{a \in \text{dom } A} R_{A,a}$$

Primitive

Si A est cycliquement monotone avec un graphe fini

- f := F_{A,∞}(·, x^{*}) est une primitive de A qui est polyhédrale, continue, définie partout et ran ∂f ⊆ conv ran A.
- $F_{A,\infty}(\cdot, 0) = \min \{ f \in \Gamma \mid f \text{ primitive, } f \ge 0 \text{ sur dom } A \}$

Outline	Optimisation	Moyenne proximale	AC2	Conclusio
		000000000000000000000000000000000000000		

Primitives intrinsèques

Soit A cycliquement monotone. $f: X \to]-\infty, +\infty]$ est une primitive intrinsèque, si gra $A \subseteq$ gra ∂f et f dépend seulement de gra A.

Exemples

A cycliquement monotone de graphe fini.

- $R_{A,(a,a^*)}$ est une primitive non intrinsèque
- $f := F_{A,\infty}(\cdot, 0) = \max_{(a,a^*) \in \operatorname{gra} A} R_{A,(a,a^*)}$ est intrinsèque
- $f := \sum_{(a,a^*) \in \text{gra } A} \frac{1}{n} R_{A,(a,a^*)}$ est intrinsèque
- Les deux sont polyhédrales continues et définies partout

Jutline	-			
	-	 ÷		
Jurnine	0	u		e

35 / 67

Primitives convexe d'opérateurs finis

Soit \mathcal{A} l'ensemble des opérateurs cycliquement monotones sur \mathbb{R}^d ayant un graphe fini et non vide.

Méthodes primitives symétriques primales-duales

$$\begin{split} \mathfrak{m} \colon & \mathcal{A} \to & \mathsf{\Gamma} \text{ produit des primitives primales-duales symétriques} \\ & \mathcal{A} \mapsto & \mathfrak{m}_{\mathcal{A}} \end{split}$$

si $\forall A \in \mathcal{A}$, \mathfrak{m}_A est une primitive intrinsèque de A et $\mathfrak{m}_{A^{-1}} = \mathfrak{m}_A^*$.

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000		
Primitives con	vexe d'opérateurs finis			

Les méthodes

$$A\mapsto F_{\mathcal{A},\infty}(\cdot,0)=\sup_{(a,a^*)\in\operatorname{gra} A}R_{\mathcal{A},(a,a^*)}$$

et

$$A\mapsto \sum_{(a,a^*)\in \operatorname{gra} A} rac{1}{n_A} R_{A,(a,a^*)},$$

ne produisent pas des primitives primales-duales symétriques.

Outline	Optimisation	Moyenne proximale	AC2	Conclusio
		000000000000000000000000000000000000000		000000000000000

Primitives convexe d'opérateurs finis

Symétrie

$$(\mathcal{P}(f_0,\lambda,f_1))^* = \mathcal{P}(f_0^*,\lambda,f_1^*)$$

Theorem (Symétrisation)

Soit $m: A \to \Gamma: A \mapsto m_A$ une méthode produisant des primitives intrinsèques. Définissons

$$\mathfrak{m}: \quad \mathcal{A} \to \quad \mathsf{\Gamma} \ A \mapsto \quad \mathcal{P}\big(m_{\mathcal{A}}, \frac{1}{2}, m_{\mathcal{A}^{-1}}^*\big).$$

Alors m produit des primitives symétriques primales-duales.

Outline	Optimisatio

Primitives convexe d'opérateurs finis

Outline

Optimisation

Autres Propriétés de la moyenne proximale

Articles

H. H. BAUSCHKE, R. GOEBEL, Y. LUCET, AND X. WANG, The proximal average : Basic theory, SIAM J. Optim., (2008).

0				
		- 1		
U	u			

イロト イポト イヨト イヨト

Autres Propriétés de la moyenne proximale

Extension

$$p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) = \left(\lambda_1(f_1 + \mu^{-1} \mathfrak{q})^* + \dots + \lambda_n(f_n + \mu^{-1} \mathfrak{q})^*\right)^* - \mu^{-1} \mathfrak{q}$$

Propriétés

$$f_i(x) = \frac{1}{2} \langle x, A_i x \rangle$$
 définies positives.

- $p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})$ a pour matrice $(\lambda_1(A_1 + \mu^{-1} \mathrm{Id})^{-1} + \cdots + \lambda_n(A_n + \mu^{-1} \mathrm{Id})^{-1})^{-1} - \mu^{-1} \mathrm{Id}$ un translation par μ^{-1} de la moyenne harmonique
- $\lim_{\mu \to 0^+} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x) = (\lambda_1 f_1 + \dots + \lambda_n f_n)(x)$ moyenne arithmétique $\lambda_1 A_1 + \dots + \lambda_n A_n$
- $\lim_{\mu \to +\infty} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x) = (\lambda_1 \star f_1 \oplus \cdots \oplus \lambda_n \star f_n)(x)$ moyenne harmonique $(\lambda_1 A_1^{-1} + \cdots + \lambda_n A_n^{-1})^{-1}$, i.e., la somme parallèle des matrices $\lambda_1^{-1} A_1, \ldots, \lambda_n^{-1} A_n$

Outline

Optimisation

Autres Propriétés de la moyenne proximale

Bornes

$$(\lambda_1 f_1^* + \dots + \lambda_n f_n^*)^* \le p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) \le \lambda_1 f_1 + \dots + \lambda_n f_n \\ \lambda_1 \inf f_1 + \dots + \lambda_n \inf f_n \le \inf p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) \le \inf (\lambda_1 f_1 + \dots + \lambda_n f_n)$$

Enveloppe de Moreau

•
$$e_{\mu}p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) = \lambda_1 e_{\mu} f_1 + \cdots + \lambda_n e_{\mu} f_n$$

• Argmin
$$p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) = \operatorname{Argmin} \left(\lambda_1 e_{\mu} f_1 + \cdots + \lambda_n e_{\mu} f_n\right)$$

•
$$p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) = -e_{\mu}(-(\lambda_1 e_{\mu} f_1 + \cdots + \lambda_n e_{\mu} f_n))$$

Limites

$$\lim_{\mu \to 0^+} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x) = (\lambda_1 f_1 + \dots + \lambda_n f_n)(x)$$
$$\lim_{\mu \to +\infty} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda})(x) = (\lambda_1 \star f_1 \oplus \dots \oplus \lambda_n \star f_n)(x)$$
$$e - \lim_{\mu \to +\infty} p_{\mu}(\mathbf{f}, \boldsymbol{\lambda}) = cl(\lambda_1 \star f_1 \oplus \dots \oplus \lambda_n \star f_n)$$

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	

Outline

Problèmes d'optimisation

- Ensembles Compactement Epi-Lipschitz
- Analyse de sensibilité sous contraintes d'inégalités variationnelles
- 2 L'opérateur de moyenne proximale
 - Origine et propriétés
 - Primitives convexe d'opérateurs finis
 - Autres Propriétés de la moyenne proximale
- **3** Analyse convexe computationnelle
 - Algorithmes rapides
 - Fonctions Linéaires-quadratiques par morceaux

イロト イポト イヨト イヨト

42 / 67

Applications

4 Conclusion

Outlin		Optimisation 00000000	Moyenne proximale	AC2	Conclusion
Algori	thmes	rapides			
ļ	Art	icles			
		Y. LUCET, <i>Fast M</i> <i>algorithms</i> , Numer.	1oreau envelope compu Algorithms, 43 (2006)	<i>station I : Numer</i> , pp. 235–249.	ical
		JB. HIRIART-UI computation of the Anal., 14 (2007), pp	RRUTY AND Y. LUCE Legendre-Fenchel con 5. 657–666.	т, <i>Parametric</i> <i>jugate</i> , J. Conve>	¢

Références

Y. LUCET, A fast computational algorithm for the Legendre-Fenchel transform, Comput. Optim. Appl., 6 (1996), pp. 27-57.

Faster than the Fast Legendre Transform, the Linear-time Legendre Transform, Numer. Algorithms, 16 (1997), pp. 171–185.

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
			000000000000000000000000000000000000000	

Transformée de l'analyse convexe

$$egin{aligned} &M_\lambda f(x)=f\oplus rac{\|\cdot\|^2}{2\lambda}=\inf_y f(y)+rac{\|x-y\|^2}{2\lambda}\ &f^*(s)=\sup_x \langle s,x
angle-f(x)\ &M_\lambda(s)=rac{\|s\|^2}{2\lambda}-rac{1}{\lambda}\left(rac{\|\cdot\|^2}{2}+\lambda f(\cdot)
ight)^*(s) \end{aligned}$$

Problème

Comment visualiser l'addition, la multiplication par un réel, et la conjuguée i.e. comment évaluer ces transformées sur une grille de points ?

0				
		п	n	
	LI			

Algorithmes rapides

Algorithmes rapides

- Linear-time Legendre Transform LLT
- Parabolic Envelope PE
- NonExpansive Prox NEP

Algorithme paramétrique

• Parametric Legendre Transform PLT

Propriétés

- ✓ Complexité linéaire
- X Demande de connaître le domaine dual
- Approximation numériquement requise même pour des fonctions simples.
- X Difficilement applicable pour la moyenne proximale

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
			000000000000000000000000000000000000000	
Algorithmes rapides				

Parametric Legendre Transform PLT

Supposons f convexe régulière

$$\begin{cases} s = f'(x), \\ f^*(s) = sx - f(x). \end{cases}$$

0				
		÷	n	
-	u	u		C

Algorithmes rapides

п	PE	LLT	NEP	PLT
9,000	3.51	4.84	2.11	0.00
11,000	4.51	6.21	2.80	0.00
13,000	5.57	7.69	3.55	0.01
15,000	6.73	9.28	4.42	0.01
17,000	7.97	10.99	5.35	0.01
19,000	9.30	12.82	6.33	0.02
21,000	10.67	14.72	7.44	0.02
23,000	12.16	16.72	8.58	0.01
25,000	13.82	18.92	9.87	0.02
27,000	15.35	21.33	11.25	0.01
29,000	17.39	23.72	12.77	0.01

 $f(x) = x^2/2$ sur l'intervale [-n/2, n/2].

・ロン ・四 と ・ ヨ と ・ ヨ と

п		n	0

Algorithmes rapides

Parametric Legendre Transform

Avantages

- Complexité linéaire et très facile à implémenter
- Calcul automatique des s_j.
- Utilise l'information au premier ordre (*f* n'a pas besoin d'être différentiable).

Inconvénients

- f est supposée convexe
- Besoin de compléter par des parties affines y compris des "pentes à l'infini"

Outline

Optimisation

Algorithmes rapides

Non-expansive prox Algorithm

Principe

$$\begin{aligned} \mathsf{Prox}(s) &= \mathsf{Argmin}_x[\|\cdot\|^2 + f(x)] \\ 0 &\leq P(i+1) - P(i) \leq 1 \end{aligned}$$

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Algorithmos rapidos				

s

						-
IIITIIDC	0		÷			
Juline	c			u	,	-

Fonctions Linéaires-quadratiques par morceaux

Articles

Y. LUCET, H. H. BAUSCHKE, AND M. TRIENIS, *The piecewise linear-quadratic model for computational convex analysis*, Comput. Optim. Appl., (2006). Online.

イロト イポト イヨト イヨト

Fonctions Linéaires-quadratiques par morceaux

Fonctions Linéaires-quadratiques par morceaux

Définition

- Le domaine est l'intersection de fonctions affines
- Sur chaque morceau, la fonction est quadratique
- Restreint de plus aux fonctions convexes

Propriétés

- Classe fermée sous les opérations convexes classiques : Addition, multiplication scalaire, conjugaison et régularisation
- Modélisation de domaines infinis
- Calcul symbolique à l'intérieur de la classe ⇒ Algorithmes hybrides symboliques-numériques
- Tous les algorithmes ont un temps de calcul linéaire.

52 / 67

Outline

Optimisation

イロト イポト イヨト イヨト

Fonctions Linéaires-quadratiques par morceaux

Fonctions Linéaires-quadratiques par morceaux

DKANAGAN ≥ ∽ Q (~ 53 / 67 Outline

Optimisation

Fonctions Linéaires-quadratiques par morceaux

PLQ vs. Algorithmes rapides

PLQ

$$\mathcal{P}(f_0,\lambda,f_1) = (2\lambda-1)x - 2\lambda(1-\lambda)$$

Algorithmes rapides

$$\begin{cases} \infty \\ (2\lambda - 1)x - 2\lambda(1 - \lambda) \\ \frac{\lambda}{2(1 - \lambda)}x^2 + \frac{\lambda + \lambda b - 1}{1 - \lambda}x - \frac{\lambda b(4\lambda + b - 4)}{2(1 - \lambda)} \\ \frac{1 - \lambda}{2\lambda}x^2 + \frac{\lambda - b + \lambda b}{\lambda}x + \frac{b(4\lambda^2 + b - \lambda b - 4\lambda)}{2\lambda} \end{cases}$$

si
$$|x| > b$$
,
si $2(1 - \lambda) - b \le x \le b - 2\lambda$,
si $-b \le x \le 2(1 - \lambda) - b$,
si $b - 2\lambda \le x \le b$

・ロト ・回ト ・ヨト ・ヨト

3

54 / 67

Outlin	e	Optimisation 000000000	Noyenne proximale	AC2	Conclusion
Applic	ations				
l	Art	icles			
		Y. LUCET, What computational conv	shape is your conjugat ex analysis and its app	e ? A survey of plications, 2007	
		——, A linear Euc on the Linear-time 2005	lidean distance transfo Legendre Transform, F	erm algorithm bas Proceedings de Cl	sed RV
		——, New sequent algorithms based or Computing 2006	tial exact Euclidean dis convex analysis, Imag	stance transform ge and Vision	

Références

- P. MARAGOS, *Differential morphology and image processing*, IEEE Transactions on Image Processing, 5 (1996), pp. 922–927.
- Differential morphology, in Nonlinear Image Processing, Academic Press, 2001, ch. 10, pp. 289–329.

Outline

Optimisation

Applications

Morphologie Différentielle

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
			000000000000000000000000000000000000000	0000000

Applications

Series-Parallel Linear Cost Network Flow

Problème

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}) ext{ with } -\infty < \mathit{I}_{i,j} \leq \mathit{x}_{i,j} \leq \mathit{u}_{i,j} < +\infty$$

$$\begin{array}{ll} \min & \sum_{(i,j)\in\mathcal{E}} c_{i,j} x_{i,j} \\ \text{avec} & \forall i \in \mathcal{V} \ \sum_{\{j \mid (i,j)\in\mathcal{E}\}} x_{j,i} = \sum_{\{j \mid (i,j)\in\mathcal{E}\}} x_{i,j}, \\ \forall (i,j) \in \mathcal{E} \ l_{i,j} \leq x_{i,j} \leq u_{i,j}, \\ \end{array}$$
 (Conservation)

Algorithmes

- Sommes et convolutions infimales imbriquées de fonctions affines par morceaux : Tri des noeuds / pentes
- Référence : P. TSENG AND Z.-Q. LUO, On computing the nested sums and infimal convolutions of convex piecewise-linear functions, J. Alg. 21 (1996), pp. 240–266.

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000
Applications				

Transition de Phase

Quand deux fluides sont mélangés, l'entropie du mélange est la convolution supérieure de l'entropie des deux phases :

$$S(W) = \max_{W_1} S_1(W_1) + S_2(W - W_1)$$

- S (resp. S_1 , S_2) est l'entropie du mélange (resp. du premier fluide, du second fluide),
- W = (M, V, E) est de le vecteur de masse, volume et énergie du mélange (W₁, W₂ correspond au premier et au second fluide respectivement).
- P. HELLUY AND N. SEGUIN, *Relaxation models of phase transition flows*, Math. Model. Numer. Anal., 40 (2006), pp. 331–352.

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
			000000000000000000000000000000000000000	000000000000000000000000000000000000000
Applications				

Navigation de robot par transformée de Legendre

 Algorithme LLT étendue aux fonctions discrètes convexes, concaves et non convexes puis aux polygones : Le contact entre deux objets est détecté grâce aux pentes

• Use
$$f \oplus g = (f^* + g^*)^*$$

イロト イポト イヨト イヨト

59/67

Dutline)			
	- 1	 ÷		
	-	U.		c

Applications

Transformée de distance

1	1	1	1	1		~	~	~	~	~		∞	∞	×	0	∞	∞
1	0	1	0	1		~	0	∞	0	~		~	4	×	0	10	∞
1	1	1	1	1	┝	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	∞	∞	∞	┢	~	~	0	0	∞	∞
1	1	0	1	1		~	~	0	~	~		8	8	12	2.5	8	∞
1	1	1	1	1		~	∞	∞	∞	∞		~	~	×	0	8	∞
					_						_				V		
2	1	2	1	2	1	0	2	4	8	12]	×) c	0 0	▼ ∞	∞	∞
2	1	2	1	2	-	0	24	4	8 10	12 14		∝ 2) c	∞ D	▼ ∞ -2	∞ -6	∞ -10
2 1 2	1 0 1	2 1 1	1 0 1	2 1 2]	0 2 4	2 4 6	4 6 8.5	8 10 12	12 14 16	-	∝ 2 ∝) c (ο) ο	▼ ∞ -2 ∞	∞ -6 ∞	∞ -10 ∞
2 1 2 4	1 0 1 1	2 1 1 0	1 0 1	2 1 2 4	-	0 2 4 6.5	2 4 6 9.5	4 6 8.5 12.5	8 10 12 15.5	12 14 16 18.5	-	∝ 2 ∝ 9.) () 5 6	∝ ⊃ ∘ .5	▼ -2 ∞ 3.5	∞ -6 ∞ 0.5	∞ -10 ∞ -2.5
2 1 2	1 0 1	2 1 1	1 0 1	2 1 2		0 2 4	2 4 6	4 6 8.5	8 10 12	12 14 16	•	~ 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) c	ο Ο Ο	▼ ∞ -2 ∞	∞ -6 ∞	

$$M(s) = \|s\|^{2} - 2\sup_{x} \left[\langle s, x \rangle - \frac{\|x\|^{2} + f(x)}{2} \right]$$

0	A 12		
υu	τιιη	e	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Applications

Distance Transform

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
			000000000000000000000000000000000000000	000000000000000000000000000000000000000

Efficient Belief Propagation for Early Vision

1 Initialisation $m_{p \to q}^0 = 0.$

Applications

3 À chaque itération t (t = 1 à T) calculer

$$m_{p
ightarrow q}^t(f_q) = \min_{f_p} \left(V(f_p - f_q) + D_p(f_p) + \sum_{s \in \mathcal{N}(p) \setminus q} m_{s
ightarrow p}^{t-1}(f_p)
ight).$$

O Après T itérations, calculer le belief vector

$$b_q(f_q) = D_q(f_q) + \sum_{p \in \mathcal{N}(q)} m_{p \rightarrow q}^{\mathcal{T}}(f_q).$$

• Finalement calculer $f_q^* = \operatorname{Argmin}_{f_q} b_q(f_q)$

(2) est accéléré de $O(nk^2T)$ à O(nk) [*n* : nombre de pixels, *k* nombre d'étiquettes, *T* nombre d'itérations].

	 •	
Ju		

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

63 / 67

Applications

Réseaux de communications

Réseaux de communications simple

- x(k) fonction d'entrée unique
- y(k) fonction de sortie unique
- y = h ⊕ x où h est la réponse caractéristique (dépend du réseau et du protocole)
- Calculer h par $h = y \ominus x$.
- Étendre la transformée de Legendre par la transformée de pente pour calculer sur des données non convexes

Applications

Algèbres tropicales, idempotentes et extrémales

Algèbres non standard

- Calcul de réseau
 - Théorie de file d'attentes déterministes pour le calcul de réseau
 - Équivalent à la théorie des systèmes où (ℝ, +.·) est remplacé par (ℝ ∪ {+∞}, min, +).
- Similaire à l'algèbre max-plus pour les systèmes à événements discrets
- Réseaux de neurones morphologiques : Remplacer somme (valeur * poids) par max (valeur + poids)

Algorithmes rapides

- Lié aux opérateurs convexes : inf-convolution, déconvolution,
- Transformée de Legendre-Fenchel joue le rôle de la transformée de Fourier

Outline	Optimisation	Moyenne proximale	AC2	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	

Outline

Problèmes d'optimisation

- Ensembles Compactement Epi-Lipschitz
- Analyse de sensibilité sous contraintes d'inégalités variationnelles
- 2 L'opérateur de moyenne proximale
 - Origine et propriétés
 - Primitives convexe d'opérateurs finis
 - Autres Propriétés de la moyenne proximale
- 3 Analyse convexe computationnelle
 - Algorithmes rapides
 - Fonctions Linéaires-quadratiques par morceaux
 - Applications

Poursuite des travaux

Outline

- Moyenne proximale : Manuscrit en cours sur d'autres propriétés (analyse de sensibilité, extension à des noyaux non quadratiques (distances de Bregman)
- AC² : Extension à des fonctions PLQ non convexes (M. Trienis MSc thesis), fonctions PLQ de deux variables et boite à outils en deux dimensions. Applications plus spécifiques.
- Optimisation du traitement par rayon à intensité modulée (optimisation à grande échelle)

Jutline	0				
	U	п	tI	n	е

Articles

- Bauschke, Goebel, L., and Wang. The proximal average : Basic theory. *SIAM J. Optim.*, 2008.
- Bauschke, L., and Trienis. How to transform one convex function continuously into another. SIAM Review, 2008.
- Bauschke, L., and Wang. Primal-dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators. SIAM J. Control Optim., 2007.
- Borwein, L., and Mordukhovich. Compactly epi-lipschitzian convex sets and functions in normed spaces. J. Convex Anal., 2000.
- S Hiriart-Urruty and L. Parametric computation of the Legendre–Fenchel conjugate. J. Convex Anal., 2007.
- 6 L. Fast Moreau envelope computation I : Numerical algorithms. Numer. Algorithms, 2006.
- L.. New sequential exact Euclidean distance transform algorithms based on convex analysis. *Image and Vision Computing*, 2006.
- **3** L. What shape is your conjugate? A survey of computational convex analysis and its applications. Soumis 2007.
- L., Bauschke, and Trienis. The piecewise linear-quadratic model for computational convex analysis. Comput. Optim. Appl., 2006.
- L. and Ye. Sensitivity analysis for the value function for optimization problems with variational inequalities constraints. SIAM J. Control Optim., 2002.

