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Abstract

Conformal radiotherapy involves many treatments and multiple beams of radiation applied
to the patient. For conformal radiotherapy the successful detection of the radiation field
resulting from a treatment is critical for quality assurance purposes. Errors over multiple
treatments can compound resulting in the death of healthy cells while allowing cancerous
cells to survive. Often the verification is performed manually by a technician which, across
multiple treatments, is very time consuming.

However, automated methods have been developed using gradient thresholds to segment
the dual portal image for field detection. I present an improvement of the accuracy of
the generic gradient threshold technique achieved by incorporating the gradient directional
information. I have implemented other segmentations techniques, such as the Fast Marching
Method, that propagate a curve based on the properties of the image with the final curve
location representing the detected field edge. Though the directional gradient threshold
method is often more accurate than previous methods, it is less easily automated; whereas
the curve propagation methods are easy to automate, are less computationally intense, and
produce more accurate segmentations.
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Chapter 1

Introduction

An estimated 72,700 people will die of cancer in Canada in 2007. On the basis of current
incidence rates in Canada, 38% of women and 44% of men will develop cancer during their
lifetime, while 24% of women and 29% of men will die from cancer [1]. It is estimated that
approximately 30% of cancer treatments require a combination of surgery and radiotherapy.
The goal of these treatments is to increase patient survival rates and minimize damage to
healthy organs during treatment.

1.1 Radiotherapy Treatment

Three-dimensional conformal radiotherapy is a method for the treatment of cancer. A treat-
ment plan is created that will apply the proper amount of radiation to the cancerous cells
while minimizing damage to healthy cells. The plan indicates the shape, intensity, and loca-
tion of multiple beams of radiation that will traverse the patient’s body during the treatment.
If some beams are incorrectly shaped, or the location they are applied to is faulty by even the
smallest amounts, the radiation will be applied to the wrong areas, which can potentially kill
the healthy cells while allowing cancerous cells to live. It is important that these errors are
detected before they can compound and significantly deteriorate the health of the patient.

Currently a technician has to manually compare the radiation applied during treatment
to that called for by the plan. If this process can be automated, the technician can spend
more time treating the patient and potentially allow more patients to benefit from such
treatments.

A linear accelerator, such as that shown in Figure 1.1(a), is used to treat a patient. The
patient lies on the bed and the treatment machine rotates to the correct location. Radiation
is then passed through the patient’s body and measured by the detector shown at the bottom
of Figure 1.1(a). The machine produces a double portal image, using the detected radiation,
as described in Section 1.2.

The shape of radiation produced is controlled by blocking part of the radiation beam.
This is accomplished by using a block where the cut out portion is the desired shape of the
radiation or by using a multi-leaf collimator as shown in Figure 1.1(b). Each leaf of the
multi-leaf collimator can move independently in or out so that the correct shape of radiation
is produced by the machine.
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(a) The radiation detector and patients bed. The
detector can rotate 360 degrees around the patient
so that radiation can be passed through at the ap-
propriate angle.

(b) Multi-leaf collimators are often
used to shape the treatment radia-
tion.

Figure 1.1: Three-dimensional conformal radiotherapy treatment machine.

1.2 Double Portal Images

A portal image is a monochromatic image in which the intensity of each pixel is inversely
proportional to the intensity of radiation detected in that portion of the sensor. A double
portal image involves two exposures of radiation recorded in the same image. The first
exposure is a very light radiation that shows the anatomy of the patient and the orientation
of their body. The second exposure is the radiation used to treat the cancer. The final image
resembles a picture of the anatomy of the patient, with darker patches where the patient’s
body did not block much of the radiation and at the location of the treated area (usually
around the center of the image, see Figure 1.2).

The image set used for testing was generated by two different machines resulting in
images of different sizes and quality. Some of the images are 16-bit monochromatic images
that are 1024 by 1024 pixels in size (such as Figure 1.2) and are generated by the Elekta SL
20 linear accelerator which uses an iView GT portal imager. The remaining images are 8-bit
monochromatic and 768 by 576 pixels in size (such as Figures 1.3(a) and 1.3(b)) which are
generated by a SL-75 linacs video system. Images of varying complexity were available for
testing the edge detection techniques discussed in this paper so a sample that represented a
range of complexities and areas of the body was selected with a bias towards complex images
that would prove challenging to segmentation techniques.

Of the 65 images in the image set, 32 are complex. A complex image is one that standard
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Figure 1.2: A dual portal image showing the targeted area in dark, and the patient internal
organs and bones.

segmentation techniques tend to fail miserably on. Images of this type usually have weak,
gradual, or broken edges that cannot be easily detected as a proper edge. These complex
images could also have strong internal edges that cause over segmentation (most standard
segmentation techniques do not handle large internal edges very well). Internal edges, and
often edges that divide the inside of the true radiation field, are quite common in head and
neck images as the actual radiation field is often located partially inside the patient and
partially outside the patient.

Figure 1.2 is a good example of a relatively simple image where the treatment radiation
is located entirely within the patient and there are only small variations and edges within
the treatment field. Upon close inspection it is apparent that the edges of the treatment
field are not sharp edges but are instead gradual across multiple pixels. While this image is
classified as simple, the gradual edges do make it too complex for the standard segmentation
techniques. Figures 1.3(a) and 1.3(b) are complex images. Both have edges inside the
treatment field that are as strong or stronger than the edges of the treatment field. Due to the
patient’s body blocking portions of the treatment radiation (and in the case of Figure 1.3(a)
the treatment field falling partially outside the patient) there are large variations in the
intensity of the pixels that form the treatment field in the image. Other complicating factors
are the very gradual edges at the top and middle bottom of Figure 1.3(a), and the top right
of Figure 1.3(b), at the edge of the treatment field.
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(a) Complex mandible image due to internal edges and separation of field

(b) Complex lung image due to gradual edges and internal edges

Figure 1.3: Complex images
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1.3 Image Segmentation

Image segmentation is the process of separating an image into multiple distinct, non-overlapping
parts. In many cases, including double portal images, the image is to be separated into two
parts. The area of interest in a double portal image is the radiation treatment field, as
described in Section 1.2, and the goal of segmenting the image is to determine exactly which
pixels in the image are within this field and which are not.

Many edge-detection techniques have been tested by previous investigators to find the
edge of the radiation treatment field. Gilhuijs and van Herk used a gradient for histogram
thresholding of portal images [2, 5]. A wavelet based, multi-scale edge detection technique
was presented by Petrascu et al [15]. Graph-based algorithms [11], watershed methods [7, 12],
and deformable models have been used extensively in other areas of medical imaging. The
Level Set Method, Fast Marching Method, and other deformable model methods have been
used to segment many types of medical images but have not yet been used for double portal
images to the best of our knowledge [3, 4, 8, 9, 10, 14, 16, 17, 18, 19, 21].

Beyond the implementation of standard segmentation techniques, the first advanced edge
detection technique used for double portal images was a gradient threshold algorithm pro-
posed by Wang and Fallone [22, 23]. The method involves first taking the gradient of the
image, and then testing a series of thresholds of that gradient until an optimal one is found.
The basic idea of an optimal threshold hinges on the fact that all final segmentations should
contain a minimum number of large shapes in them (treatment area, image border area,
human body area). The number of large shapes can be counted at each sequential threshold
tested and the lowest threshold with the minimum number of shapes is selected as the opti-
mal threshold. Once the optimal threshold is found, the central shape is selected (as being
the shape that contains the central pixel of the image) and its outline is used as the outline
of the final segmentation. Based on the initial sample of images, there are always three large
shapes of at least a fixed size in each properly segmented portal image from the Elekta SL
20 linear accelerator, and often only two in images from the SL-75 linacs video system.
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Chapter 2

Edge Detection Techniques

2.1 Gradient Calculation

(a) Cross section of the double portal image (b) Cross section of the morphological gradient im-
age. (The intensity has been scaled up and the in-
verse image is shown for better visibility).

Figure 2.1: Comparison of a double portal image and its morphological gradient

A gradient image represents the change in an image. The change is measured for each
pixel by calculating the difference between a pixel and its neighboring pixels. The intensity
of the gradient is directly proportional to the change in intensity of the original image. This
calculation can be seen as the absolute first derivative of a three dimensional function with
respect to intensity where the location of the pixel in x and y and the intensity are the three
dimensions. Figure 2.1(a) is a cross section of the dual portal image. Note that the transition
between dark and light is represented by a slope (and change in height) in the cross section.
Also note that the edges, especially the edges of the treatment field, are gradual and spread
among multiple pixels. Figure 2.1(b) is the gradient image. In this image the darker the
pixel (and higher the cross section) the larger the gradient for that pixel. It can be seen that
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(a) The treatment field edge is a
transition from dark to light in the
direction away from the field

(b) Regular morphological gradi-
ent. The edge inside the treat-
ment field is part of gradient.
(The inverse image is shown for
better visibility).

(c) Directional morphological gra-
dient. Edges inside the treat-
ment field are discarded along
with some of the external edges
that would cause problems with
the automatic thresholding. (The
inverse image is shown for better
visibility).

Figure 2.2: Directional gradient computed using the center of the picture as the center point

the height of the cross section in Figure 2.1(b) is directly proportional to the steepness of the
slope in Figure 2.1(a). The cross sections display quite clearly that there is a large amount
of minor noise in the double portal images even though it is difficult to see without the cross
section. It is also clear that the treatment field can contain a large range of intensities; it is
not consistent across the entire field even in areas that look consistent.

There are many ways to perform a gradient calculation. Two classic ones are the Sobel
gradient and the Prewitt gradient [6]. Essentially, any calculation that results in the absolute
change across a pixel can be used, such as subtracting the intensity of the previous pixel from
the intensity of the next pixel in both the x and y directions and using the magnitude of this
two dimensional vector as the pixel intensity in the gradient. The morphological gradient
is calculated by subtracting the minimum of the image (the erosion) from the maximum of
the image (the dilation) [6]. This method produces an accurate gradient very quickly, hence
the reason it is recommended by Wang and Fallone [22] for use in their gradient threshold
algorithm.

2.2 Directional Gradient

The classic computation of a gradient for image segmentation only takes into account the
gradient magnitude at each pixel; the direction of the gradient is either not calculated or
discarded. An important tool for image segmentation is to integrate any information that
is common among all images being segmented into the algorithm to enhance the accuracy
of the segmentation. For dual portal images from the two treatment machines the area that
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(a) Cross section of a standard morphological gradi-
ent image. (The inverse image is shown for better
visibility).

(b) Cross section of the directional morphological
gradient image. (The inverse image is shown for bet-
ter visibility).

Figure 2.3: Comparison of gradient method cross sections. Notice that the directional gra-
dient has far less noise than the standard gradient.
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(a) Complex image due to hip replacement

(b) Directional gradient from center of image where hip replace-
ment edge is not thrown out as needed. (The inverse image is
shown for better visibility).

Figure 2.4: Directional gradient of a complex image computed using the center of the picture
as the center point
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(a) Center points for the directional gradient are manually cho-
sen

(b) Hip replacement edge is throw out due to better center
points. (The inverse image is shown for better visibility).

Figure 2.5: Directional gradient of complex image using user selected center points
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(a) Final segmentation using the center of the image
as the center point

(b) Final segmentation with user selected center
points

Figure 2.6: Resulting segmentations of a complex image by the Wang-Fallone method using
the directional gradient

must be segmented from the rest of the image is always darker than the surrounding parts
of the image which means that the edge to be detected is always a transition from dark to
light in the direction away from the shape to be segmented (see Figure 2.2(a)).

Integrating the direction of the gradient resulted in a new gradient computation that
allows all edges that do not transition from dark to light in the direction away from the
treatment field to be discarded. The first version of the directional gradient method (illus-
trated in Figure 2.7) would take the vector from the center of the image (indicated by the
solid arrow) to the point under inspection and compare it to the gradient vector (indicated
by the dotted arrows). If they were in the same direction (within 90 degrees) the gradient
would be kept, if not then the gradient would be discarded. In Figure 2.7 it can be seen that
all parts of the proper field edge are in the same direction as the vector from the center of
the image while all parts of the internal edge are in the wrong direction. The result of this
method is illustrated by comparing the regular morphological gradient (Figure 2.2(b)) and
the directional morphological gradient (Figure 2.2(c)) of a dual portal image (Figure 2.2(a)).

Figure 2.3(a) and Figure 2.3(b) show cross sections of the gradients in Figure 2.2(b) and
Figure 2.2(c) respectively. As can be seen by comparing the two images, the strong edge
inside the treatment field, two of the stronger edges outside the treatment field, and much
of the noise are thrown away properly because they are a transition in the wrong direction.
On the contrary, the edges we want to keep are kept in their entirety with no weakening of
their gradient.

In many images, using the vector from the center point works well. However, due to
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Figure 2.7: The vectors involved in a directional gradient. The center of the image is
indicated by a black dot. The gradient direction is indicated for some edges by a dashed line
and the vector from the center of the image is indicated by a solid line.

the complexity and variety of shapes, the vector from the center point may not always be
pointing in the same direction as the edge of the treatment field in some parts of the image.
If there is a large concavity in the treatment field edge it is possible for part of the edge to be
a transition from dark to light in the opposite direction of the vector from the center point.
It is also possible for an internal edge of the image to be a transition from dark to light in the
direction away from the center point, which will remain strong in the resulting directional
gradient. This is the case with Figure 2.4(a), where the right edge of the hip replacement
is a transition from dark to light in the direction away from the center of the image. In
its directional gradient (shown in Figure 2.4(b)) the left edge of the hip replacement is
discarded but the right edge remains, and separates the treatment field into two parts thus
defeating the automatic thresholding method and resulting in the final segmentation shown
in Figure 2.6(a). Figure 2.4(a) demonstrates that for the directional gradient to be successful
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on the range of images under consideration the center of the image cannot always be used
to determine the direction of gradients to keep. The solution is to allow the user to choose
one or more center points. This requires user input and can become both quite complex and
time consuming. In the case of the image in Figure 2.4(a) a good working set of points are
shown as crosses in Figure 2.5(a) resulting in the directional gradient shown in Figure 2.5(b)
and the final segmentation shown in Figure 2.6(b). Finding this appropriate set of points
took more time than to draw the entire proper outline by hand.

2.3 Curve Propagation

A modern image segmentation technique involves modeling the segmentation as the propa-
gation of a curve that, upon completion of the algorithm, separates the area to be segmented
from the rest of the image. This technique, often referred to as active contours, snakes, or
parametric contours was first presented by Kass et al. [9] and many variations have been
developed by other authors [4, 10]. Some of the more recent curve propagation methods are
the Level Set Method [14, 18, 19, 21], the Fast Marching Method [17], and the Fast Sweeping
Method [20].

2.3.1 Level Set Method

The level set method, when used for image segmentation, works on the principle that a
curve can propagate within an image by iteratively applying forces to the curve. The forces
applied are an expansion force that pushes the curve outward, an attraction force that pulls
the curve towards areas of interest, and a curvature force that causes the curve to have a
smooth curvature with no sharp points. The level set method (like its variations) can be
used for many applications such as physics modeling and computer animation. For image
segmentation it can generate a smooth segmentation outline that successfully attracts itself
to strong gradient edges in the image. In image segmentation, the attraction force is usually
based on the inverse of the image gradient so that a strong gradient has an almost zero
attraction force, causing no movement of the curve.

For each iteration of the level set method the new position of the curve is calculated.
To minimize the complexity, calculations are only done on a subset of pixels around the
current curve. The subset consists of all pixels within a set distance from the current curve
which is referred to as the narrow band. The curve can move in any direction and any
distance within the narrow band at each iteration depending on the features of the image
and the forces being applied (it can break into multiple shapes, expand, and contract). Over
the course of multiple iterations the method can adjust itself to quite accurately match the
desired shape if the correct parameters are used.
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2.3.2 Fast Marching Method

The Fast Marching Method is a special case of the Level Set Method that can only move
in one direction (expanding or contracting). Like the level set method the Fast Marching
Method is subject to three forces but the attraction force and curvature force cannot force
the Fast Marching Method to move backwards. For the Fast Marching Method to be used
for image segmentation it must start from an initial point, or set of points, and it must have
a direction. The propagation of the method is modeled by taking the current location of the
curve and calculating the distance from the curve to all adjacent points in the direction that
the curve is moving. Each iteration, the curve moves to expand over the next closest pixel
of the image and the distance to all adjacent pixels is calculated.

This form of propagation to adjacent pixels is much like the way the narrow band is used
in the Level Set Method except that it is only ever on one side of the curve and it is always
one pixel in width. The direction is modeled by applying a constant speed. The attraction
force is calculated from the gradient at the pixel in question. The combination of constant
speed and gradient makes the distance between two directly adjacent pixels equivalent to
the constant speed when the gradient is zero. The distance is much higher than the constant
speed when the gradient is high. Remember that the Fast Marching Method expands over
closer pixels first so if the gradient is high (making the distance large) then the method will
take a long time to expand over that pixel. This makes the fast marching method move very
quickly across parts of an image that are of consistent pixel intensity (zero gradient) but
more slowly, or not at all, at parts of an image that have a large gradient, such as the edges
the method is meant to find. For more information on implementing the Fast Marching
Method, see the work by Lin [13] and Sethian [18].

2.3.3 Fast Sweeping Method

Much like the Fast Marching Method, the Fast Sweeping Method [20] is a restricted case
of the Level Set Method that can only move in one direction. While the Fast Marching
Method starts from a point, or set of points, and then expands one pixel at a time until
reaching the final segmentation, the Fast Sweeping Method passes over the entire image
multiple times, from corner to corner, updating the distance values for all pixels on each
pass. After a set number of passes all pixels within a given distance from the initial shape
are treated as inside the shape and all others outside, thus giving the outline of the shape
as the border between these two sets of pixels. The Fast Marching Method’s computational
time is largely dominated by sorting the set of adjacent pixels so that the next closest one
may be chosen and added to the shape. The Fast Sweeping Method was developed to get
around the sorting and instead just pass over all pixels iteratively as described above. This
reduces the complexity of the algorithm from the O(NlogN) of the Fast Marching Method
to O(N) for the Fast Sweeping Method where N is the number of pixels in the image. Based
on solely the complexities, the Fast Sweeping Method is much faster than the Fast Marching
Method for large images.
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2.3.4 Segmentation Using Curve Propagation

Ideally a segmentation using a curve propagation method should start from an initial point
and expand to the border of the shape to be segmented. For segmenting the image in
Figure 2.8(a) the center of the image could be used as the starting point as this would require
no input from the user to select initial points. However, as can be seen in Figure 2.8(b) the
expanding curve will break out of the edges of the treatment field before it will expand over
the strong internal edge in this image. A solution may be to try using multiple starting
points like in Figure 2.8(c) or even more points such as in Figure 2.8(d) but this adds lots of
user input to select each point and a good set of points is difficult to choose as any relatively
strong internal edge, such as that separating the top of the treatment field or the left side of
the treatment field in Figure 2.8(a), would require many points to be manually and carefully
placed along each internal edge.

Some additional information available for each image to be segmented is the plan image
that represents the shape and location of radiation that was intended to hit the patient (See
Figure 2.9(a)). If an outline is generated from this plan image, it can be used so that all
points within the outline are treated as initial points for the curve propagation method. Since
the intent of this method is to detect what radiation actually hit the patient and considering
the Fast Marching Method and Fast Sweeping Method can only expand or contract, the
generated outline cannot simply be used as is. Instead, the method must guarantee that the
outline is strictly within the treatment field by a margin greater than the possible error in the
treatment field. This task is done by taking the outline generated from the plan image and
eroding it a few times so that the initial outline used is smaller than the generated outline.
The user then clicks on the treatment image to place the initial outline inside the treatment
field such as in Figure 2.9(b) and the curve propagation method runs until the stopping
condition is reached resulting in a final segmentation such as that shown in Figure 2.9(c).

There are many possible stop conditions for a curve propagation method but it was
discovered through experimentation that an effective stop condition for this application is to
allow the curve propagation method to expand a set distance from the initial points. Since
the distance between two points is largely based on the gradient along the path between
those two points and the gradient magnitude can be much larger for higher bit rate images
it makes sense that there is a different good distance for the stop condition for 8-bit images
than for 16-bit images.
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(a) The original image (b) Segmented using the image center point as the
starting point

(c) Segmented using multiple points as starting
points

(d) Segmented using many points as starting points

Figure 2.8: Curve propagation segmentation method using initial points
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(a) The plan image used to generate the initial out-
line

(b) The initial outline generated from the plan image
and placed inside the treatment field to be segmented

(c) The final segmentation

Figure 2.9: Curve propagation segmentation method using initial outline
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Chapter 3

Results and Conclusions

3.1 Choice of Curve Propagation Method

Despite calculation only being performed on the narrow band, the Level Set Method is
very computationally intense. On top of being slower than the Fast Marching Method
and Fast Sweeping Method, it is harder to find the correct parameters for the method to
be successful in a particular application. The main parameters to be determined are the
number of iterations and the strength constants for the three forces that move the curve.
For segmenting double portal images a successful set of values for the force constants has
not been found so the Level Set Method has not been used successfully so far.

Since the resulting distance values for the image are very close using both the Fast
Marching Method and the Fast Sweeping Method, it would seem that the best choice for
the curve propagation segmentation would be the Fast Sweeping Method due to its speed.
What has been discovered, however, is that the Fast Marching Method only has to pass
over the pixels in the image that are to be segmented out; in the double portal images that
number of pixels is always less than half the number of pixels in the image. So, effectively,
the Fast Marching Method is always faster for the double portal images. The recommended
minimum number of passes over the image for the Fast Sweeping Method (and the number
that has produced relatively good results) is four times; once from each corner. With big O
notation, constant multiples in the runtime are discarded but in real world examples when
the size of N is not infinitely large those constant multiples can come into effect.

The Fast Marching Method’s complexity is O(NlogN) because in the worst case, for every
N pixels, the algorithm must sort a set of pixels that could include all N pixels to find the
next one to expand over. In practice, the first N pixels are the number of pixels the method
expands over and since it does not have to expand over all pixels in the image for double
portal images that number is always less than N. The logN portion assumes the worst case,
where the method must sort all pixels for every pixel, but this is not the case. In practice
the method must sort the narrow band (all pixels adjacent to the current curve) for every
pixel to be expanded over and while the narrow band constantly increases in size it is never
anywhere near as large as N.

In contrast the Fast Sweeping Method is O(N) and must sweep over all N pixels multiple
times for it to be effective. In practice the Fast Sweeping Method makes four passes over
the image. Images in the image set have a maximum size of 1024 by 1024 pixels.

Because the Fast Marching Method only has to visit the pixels that are to be segmented
out the difference in complexity of the two algorithms does not decide which is faster for this
application. For our application, the Fast Marching Method performed significantly faster

18



Table 3.1: Comparative results

Segmentation Method Image Set Results Acceptable
Easy Medium Complex

Wang-Fallone 16-bit images 18 of 18 2 of 4 0 of 3
Fast Marching Method all images 19 of 19 14 of 14 31 of 32

than the fast Sweeping Method. Obviously, for significantly larger images the two algorithms
would have to be re-evaluated.

3.2 Comparative Results

The Wang-Fallone method has been successful on some of the simpler images in the image
set but it fails miserably on any of the more complex images that contain strong internal
edges or gradual edges. This can be seen in Figure 3.1(b), which shows the Wang-Fallone
method using a standard morphological gradient applied to the image in Figure 3.1(a).
With great care in choosing center points the Wang-Fallone method using the directional
morphological gradient is able to do a very good job segmenting out the proper treatment
field. Unfortunately this is not the case for complex images. The method requires a large
amount of time for the user to find a good set of center points. A good set of center points for
most of the complex images, resulting in segmentations such as Figure 3.1(c), have not been
found. In any case, the resulting segmentation is incomplete and of unacceptable quality.

Part of the ease in automating the Wang-Fallone method is that there is no variation in
parameters such as the number of large shapes in an optimal threshold. After expanding
the image set it is clear that not all of the 8-bit images can be split by an optimal threshold
into the same three shapes as the 16-bit images can. It was also discovered that a small
percentage of images in the expanded image set have a treatment field that does not fall
on top of the center of the image and that, in fact, the treatment field may be composed
of multiple disconnected shapes. These two facts prevent the method from being easily
automated as the user would need to provide specific information to the method for each
image. Of the images in the image set that the Wang-Fallone method can be automated on,
eighty percent are properly segmented; but this is less than thirty-one percent of the total
number of images in the set (see Table 3.1).

In contrast with the Wang-Fallone method, the curve propagation method properly seg-
ments more than ninety-eight percent of the images in the image set (see Table 3.1). The
curve propagation method also produces much better segmentations than the Wang-Fallone
method as can be seen by comparing the edges in Figure 3.1(c) to the same edges segmented
by the curve propagation method in Figure 3.1(d). The curve propagation method produces
smoother, more accurate edges.

On top of the accuracy difference the curve propagation method is also faster computa-
tionally. Table 3.2 compares the average computation time for the Wang-Fallone and curve
propagation method (using the Fast Marching Method and Fast Sweeping Method). As
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(a) The original double portal image (b) Segmentation using the Wang-Fallone method
with standard gradient

(c) Segmentation using the Wang-Fallone method
with directional gradient and user selected center
points

(d) Segmentation using the curve propagation
method from initial outline

Figure 3.1: Comparison of segmentation results using each method
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Table 3.2: Comparative computation time

Segmentation Method Image Set Runtime (in seconds)
Easy Medium Complex

Wang-Fallone 16-bit images 10.8 10.9 13.3
Fast Marching Method 8-bit images 1.0
Fast Marching Method 16-bit images 2.3
Fast Sweeping Method 8-bit images 1.7
Fast Sweeping Method 16-bit images 4.0

described above, the Wang-Fallone method could only be reliably run on the 16-bit images.
The speed of the Wang-Fallone method has proven to be affected by the complexity of the
image so averages for each complexity category are shown. The speed of the curve propaga-
tion method is consistent across complexities, but not for the different bit-rates so separate
averages are shown.

3.3 Future Work

The current stopping condition for the curve propagation method is to run for a given
number of iterations and then stop. Different stopping conditions could be developed such
as calculating an overall energy from the curve and stopping when that energy reaches a
given level. Another option is to stop when the curve slows down and its movement is very
small in the current iteration.

The weaknesses of the level set method are the complexity of the algorithm, which makes
it quite slow in comparison to other methods, and the difficulty in finding the right set of
parameters for a particular task. As mentioned above a good set of values for the param-
eters has not been found for double portal image segmentation. To remedy this problem
optimization techniques could be used to find such a set of values. The method will still be
much slower than the Fast Marching Method and Fast Sweeping Method but with optimal
force values it could be used as a final step to enhance the segmentation found by the curve
propagation method.

Finally, the curve propagation method should be tested on a much larger set of images
to make sure the method is robust enough to be used during a real cancer treatment. If this
proves to be the case the method can then be put into use.
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