plq_pa_mu - Piecewise linear quadratic (plq), nonconvex proximal average via Moreau envelopes
Compute the proximal average (PA) of a variable number of plq functions at specified lambda values. The PA is computed using the following formula, where M(mu,f) represents the Moreau envelope of function f with smoothing parameter mu. This method does not require the input functions to be convex. If only two functions are averaged, then one lambda value can be specified for f2, and the lambda for f1 will be (1-lambda). The proximal average is computed in linear time with respect to the size of the input functions.
P[mu]({f1,...,fN}, {lambda1,...,lambdaN}) = -M(mu, -[ lambda1*M(mu,f1) + lambda2*M(mu,f2) + ... + lambdaN*M(mu,fN) ])
f1 = [2,0,2,-4; %inf,0,0,0]; f2 = [-3,0,30,90; 0,0,0,0; %inf,1,0,0]; result = plq_pa_mu(0.2, 0.3, f1, f2), clf(0,"reset"); plq_plot2(%f, %f, f1, f2, result);
Bryan Gardiner, University of British Columbia, BC, Canada