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Lake Mina
Lake Mina, Minnesota is located just south of the
coniferous/deciduous forest ecotone
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Lake Mina Diatoms
Diatoms are (generally) unicellular microscopic algae with cell walls
made of silica.
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Varved Core

An example of a Varved Lake Core.
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Lake Mina Core

The core taken from Lake Mina
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What are we looking for?

• We are looking for periodic components in the historical
Diatom and Pollen grain record that can be explained by
outside forcing.

• Specifically we are looking for evidence of solar and lunar
forcing

• For example
• 11-year solar cycle
• 18.6-year lunar cycle
• 35-year Brückner solar cycle [3]
• Evidence of the 52-month ENSO cycle.
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Multitaper

• We will use the multitaper spectrum estimates[2]

• Multitaper spectral estimates, in there crude form, are
averaged direct spectral estimators using Discrete Prolate
Spheroidal Sequences (dpss’s) of different orders as windowing
functions.

• For each taper one computes the eigencoefficients,

yk(f ) =

N−1∑

t=0

x(t)v
(k)
t (N, W ) exp(−i2πft). (1)

The tapers are normalized such that

N−1∑

t=0

[v
(k)
t (N, W )]2 = 1 (2)
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Multitaper
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Figure 1: DPSS
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Multitaper

• In practice the crude multitaper estimate is not used, instead
weights are used to replace averaging the eigencoefficients (1).

• The weights are calculated iteratively from

dk(f ) ≈
√

λkS(f )

λkS(f ) + Bk(f )
, (3)

where Bk(f ) is an estimate of the power in the broad-band
bias terms.

• The initial estimate and bound for the bias term is given by

Bk(f ) ≤ σ2(1 − λk). (4)

• We also take the multitaper over sectioned overlapped blocks
of data and combind these blocks using the arithmetic mean
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F-test

The multitaper method allows for F-tests test for periodic
components in coloured noise. The harmonic F-test is defined,

F (f ) =
(K − 1)|µ̂|2 ∑K−1

k=0 Uk(N, W ; 0)2
∑K−1

k=0 |yk(f ) − µ̂(f )Uk(N, W ; 0)|2
, (5)

with 2, and 2K − 2 degrees of freedom, where our mean, µ̂(f ) is
estimated by

µ̂(f ) =

∑K−1
k=0 Uk(N, W ; 0)yk(f )
∑K−1

k=0 U2
k (N, W ; 0)

. (6)
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Singular Values

• We take the singular value decomposition of a matrices
formed by the eigencoefficients, (1), at each frequency, of
most prevalent diatoms by the pollen or diatom samples.
Y(f ) is k × p

Y(f ) = U(f )Σ(f )V†(f ), (7)

• In the general the right singular vectors of 1/
√

n − 1X are the
eigenvectors of the covariance matrix XTX, where X is a
n × p data matrix

• The multitaper eigencoefficients were obtained using a
time-bandwidth parameter of 3.5, and 9 data tapers
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Singular Values
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Figure 2: SVD of eigencoefficients and Data
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Left Singular Vectors

• We look at the left singular vectors from the decomposition.
We conduct a harmonic F-test, (5) of these singular vectors

• The left singular vectors are eigenvectors of the outer product
matrix M(f ) = Y(f )Y(f )†

• Each column of M, contains

m1(f ) =

p∑

i=1

yi(f ) y
(0)
i (f ), (8)

• The left singular vectors with the largest singular values
correspond to dimensions in the data with the most variation
at a particular frequency
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Left Singular Vector
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Figure 3: Ftest of Left Eigenvector 1
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Left Singular Vector
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Figure 4: Ftest of Left Eigenvector 2
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Significant Peaks 99.5%

SV Data Significant Periods Accountable

1 Pollen 40.76 15.21 13.52 11.55 1
1 Diatom 25.05 11.51 8.56 2
2 Pollen 153.12 94.16 0
2 Diatom 184.09 30.28 19.39 9.65 1
3 Pollen 455.11 26.47 19.14 14.71 12.22 1
3 Diatom 66.06 48.05 37.15 0

12.59 12.21 11.77
10.14 8.21

4 Pollen 78.39 64.25 38.73 3
29.10 27.26 17.52

15.88 10.42

4 Diatom 58.94 29.26 21.42 14.98 0

Table 1: Location of Significant Peaks
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Canonical Coherence

• Canonical coherence, which is similar to canonical correlation,
using multitaper techniques are relative new

• They show the linear relationship between two multivariate
sets of time series

• We form the canonical coherence, by taking the SVD of the
cross product of left eigenvectors from the original SVD
described above
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Canonical Coherence
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Figure 5: Canonical Coherence
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Individual Taxa

• Quercus comprises over one quarter of the pollen sample

• It is a fire-sensitive deciduous tree taxa that is found both
dryer mid-Holocene pollen assemblage and colder and moister
assemblages [4]

• Fragilaria Crotonensis comprises 35% of the diatom Sample

• This Diatom taxa generally peaks twice a year, once in the
late spring and a second time in the Autumn

• The time-bandwidth parameter was set to 3.5, and 7 tapers
were used in the Bock Multitaper

• There are 11 blocks and about 84% overlap
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Quercus
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Figure 6: Figure 6(a) shows initial the Quercus time series, and figure
6(b) plots the block multitaper spectrum.
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Fragilaria Crotonensis
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Figure 7: Figure 7(a) shows initial the Fragilaria Crotonensis time series,
and figure 7(b) plots the block multitaper spectrum.
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Quercus Spectrogram

0
0.02

0.04
0.06

0.08
0.1

0.121276

1388

1500

1612

1724

1836

−4

0

5

9

14

18

(cycles/year)
year

dB

0

5

10

15

Figure 8: Multitaper Spectrogram of Quercus
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Fragilaria Crotonensis Spectrogram
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Figure 9: Multitaper Spectrogram of Fragilaria Crotonensis
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Block Values for F-test
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Figure 10: Quercus F-tests for each time block
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Moving Values for F-test
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Figure 11: Quercus F-test for fixed frequency
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Moving Values for F-test
0

20
40

60
80

Centred At Year

D
eg

re
es

1276 1500 1724

11.6 Years

−6
0

−5
0

−4
0

−3
0

−2
0

−1
0

0

Centred At Year

D
eg

re
es

1276 1500 1724

11.1 Years

−8
0

−6
0

−4
0

−2
0

0
20

Centred At Year

D
eg

re
es

1276 1500 1724

10.9 Years

Figure 12: Quercus F-test phase for fixed frequency
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Comparing with a Reference Series

• We can compare coherence with a reference set as a way to
help rule out aliases

• A reference series of annual tree ring growth from Campito
Mountain was obtained [1].

• We needed four-year resolution so we filtered the reference
series by projecting the data onto the spaced spanned by the
orthonormal dpss’s

• We form the projection filter

x̃ = VVTx. (9)
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Filter Using Expansion in dpss’s
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Figure 13: Filtered Campito
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Coherence with Reference Series
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Figure 14: Coherence with Campito Reference Series
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Concluding Remarks

• We have found several period line components in the data

• We see evidence of the 11-year and 35-year solar cycle in the
two most prevalent of the diatoms and the pollen grains

• In Quercus we see evidence of an 11=year and 35-year period

• We also see evidence of a 16-year period which is not as easily
explained

• There are several highly significant period components in the
data
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Future Work

• Check for evidence of counting errors

• Fit a distribution to the possibility of counting errors and test

• Check for coherence with other reference sets.

• Methods to present, pictorially, information/results of analysis
from multiple species.
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Thanks

Thank you
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