UBC Okanagan
 The Irving K. Barber School of Arts and Sciences PRACTICE QUESTIONS FOR FINAL EXAM
 Math 350-Complex Analysis

1.(a) State the Cauchy-Riemann theorem for analytic functions.
(b) Sketch the points, if any, at which the function defined by $f(z)=x^{5}+i y^{3}$ has a derivative. Where is f analytic? Explain.
(c) Show that $x^{3}-3 x y^{2}$ is harmonic and find an harmonic conjugate.
(d) Use the definition of the derivative to show that the function $f(z)=\operatorname{Re}(z)$ is nowhere analytic.
2. (a) Use the formal definition of limits to show that the function $f(z)=\bar{z}$ is continuous on the whole complex plane.
(b) Evaluate $\int_{\gamma}|z|^{2} d z$ where γ is the line segment from 1 to $3-i$.
(c) Is this integral path independent? Explain.
3. (a) Find all values of $1^{3 / 4}$.
(b) Find all values of $1^{\sqrt{2}}$.
(c) Sketch and describe the domain of analycity of $f(z)=\log (2 i+z)$.
4.(a) Fix z_{0}, and let γ be a circle of radius R about z_{0}, with positive orientation. Show that

$$
\oint_{\gamma}\left(z-z_{0}\right)^{n} d z=\left\{\begin{array}{cc}
0 & n \neq-1 \\
2 \pi i & n=-1 .
\end{array}\right.
$$

(b) Let C_{R} denote the circle of radius R centered at the origin, with positive orientation. Let $g(z)$ be analytic inside and on C_{R}. Show that if f is of the form

$$
f(z)=\frac{A_{n}}{z^{n}}+\frac{A_{n-1}}{z_{n-1}}+\cdots+\frac{A}{z}+g(z), \quad n \geq 1,
$$

then

$$
\frac{1}{2 \pi i} \oint_{C_{R}} f(z) d z=A
$$

5. Evaluate the following integrals. In each case, state the theorem you are using, and verify that the hypothesis are satisfied.
(a) Let γ be the curve $|z|=2$ traversed in the clockwise direction.

$$
\oint_{\gamma} \frac{z}{(z+3)(z-1)} d z .
$$

(b) Let \mathcal{C} be the boundary of the unit square with vertices $\pm 1, \pm i$, with positive orientation

$$
\oint_{\mathcal{C}} \frac{\sin z}{(4 z+\pi)^{2}} d z
$$

(c) Let C be the unit circle traversed counterclockwise, and let m and n be intergers.

$$
\int_{C} z^{m} \bar{z}^{n} d z
$$

6. (a) Obtain the McLaurin expansion for $f(z)=\frac{e^{z}}{1-z}$.
(b) Show that the function f defined by

$$
f(z)=\left\{\begin{array}{cc}
\frac{\sin z}{z} & \text { for } z \neq 0, \\
1 & \text { for } z=0 .
\end{array}\right.
$$

is analytic at $z=0$, and find it's derivative $f^{\prime}(0)$.
7. Consider the function $f(z)=\frac{1}{z^{2}(z+2 i)}$.
(a) Expand f in a Laurent series $0<|z|<2$.
(b) Expand f in a Laurent series for $|z|>2$.
8. Find and classify the isolated singularities.
(a) $f(z)=\frac{e^{z}-1}{z^{2}}$
(b) $g(z)=\frac{\sin z}{z^{2}-z}$
9. Compute
(a) $\operatorname{Res}_{z=-1} \frac{z^{2}}{(z+1)^{2}}$
(b) $\operatorname{Res}_{z=i} \frac{\left(z^{3}+2 z\right)}{(z-i)^{3}}$
10. Let $f(z)=\sum_{k=0}^{\infty} \frac{k^{3}}{3^{k}} z^{k}$.
(a) Find the circle of convergence for f.
(b) Compute $\oint_{|z|=1} \frac{f(z) \sin (z)}{z^{6}} d z$.
11. Evaluate the following integrals
(a) $\oint_{|z|=5} z^{2} \sin \left(\frac{1}{z}\right) d z$
(b) $\oint_{|z|=1} \frac{e^{-z^{2}}}{z^{2}} d z$

