Assignment \#2

Due: Thursday, October 6, 4:00 pm

You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

1. Describe and sketch the following sets of complex numbers.
(a) The image of $\operatorname{Re}(s) \geq 1$ under the mapping $f(z)=i z-i$.
(b) $\left\{z \in \mathbb{C} \mid \operatorname{Re}\left(z^{2}\right)>0\right\}$
2. Use the formal definition of limits to show that $\lim _{z \rightarrow i} \frac{z^{2}+1}{z-i}=2 i$.
3. Use the definition of the derivative to show that the function $f(z)=\operatorname{Im}(z)$ is nowhere analytic.
4. Let $f(z)=u(x, y)+i v(x, y), z_{0}=x_{0}+i y_{0}$, and $w_{0}=u_{0}+i v_{0}$. Use the properties of limits, and the fact that $f(z) \rightarrow w_{0}$ if and only if $\overline{f(z)} \rightarrow \overline{w_{0}}$ as $z \rightarrow z_{0}$, to prove that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

iff and only iff

$$
\begin{array}{ll}
\lim _{x \rightarrow x_{0}} u(x, y)=u_{0} \quad \text { and } \quad \lim _{y \rightarrow y_{0}} & v(x, y)=v_{0} . \\
& y \rightarrow x_{0}
\end{array}
$$

5. Use the Cauchy-Riemann equations to show that the function $f(z)=x^{2}+i y^{2}$ is nowhere analytic. Where is f differentiable?
