Assignment #2

Due: Thursday, October 6, 4:00 pm

You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

1. Describe and sketch the following sets of complex numbers.

- (a) The image of $\operatorname{Re}(s) \ge 1$ under the mapping f(z) = iz i.
- (b) $\{z \in \mathbb{C} | \operatorname{Re}(\mathbf{z}^2) > 0\}$

2. Use the formal definition of limits to show that $\lim_{z \to i} \frac{z^2 + 1}{z - i} = 2i$.

3. Use the definition of the derivative to show that the function f(z) = Im(z) is nowhere analytic.

4. Let f(z) = u(x, y) + iv(x, y), $z_0 = x_0 + iy_0$, and $w_0 = u_0 + iv_0$. Use the properties of limits, and the fact that $f(z) \to w_0$ if and only if $\overline{f(z)} \to \overline{w_0}$ as $z \to z_0$, to prove that

$$\lim_{z \to z_0} f(z) = w_0$$

iff and only iff

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0 \quad \text{and} \quad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0$$

5. Use the Cauchy-Riemann equations to show that the function $f(z) = x^2 + iy^2$ is nowhere analytic. Where is f differentiable?