Assignment #1

Due: Thursday, September 22, 4:00 pm.

You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

1. Evaluate

(a)
$$\left| \frac{i^9 (2+i)^2}{(3+4i)^3} \right|$$
 (b) $\operatorname{Arg}((-\sqrt{3}-i)^2)$ (c) $\operatorname{arg}\left(\frac{i}{-2-2i}\right)$

2. Use induction to prove that $(\overline{z})^k = \overline{(z^k)}$ for every integer k provided $z \neq 0$ when k is negative.

- **3.** Show that for all z,
- (a) $e^{z+\pi i} = -e^z$ (b) $\overline{e^z} = e^{\overline{z}}$
- 4. Prove that if |z| = 1 $(z \neq 1)$, then

$$\operatorname{Re}\left[\frac{1}{1-z}\right] = \frac{1}{2}.$$

5. Write in the polar form $re^{i\theta}$

(a)
$$\frac{2+2i}{-\sqrt{3}+i}$$
 (b) $\frac{2i}{3e^{4+i}}$

- 6. Solve the equation $(z+1)^3 = z^3$.
- 7. Find all the values for the following expressions

(a)
$$\sqrt{1-i}$$
 (b) $(-1+i)^7$ (c) $\left(\frac{2i}{1+i}\right)^{1/3}$