Assignment \#1

Due: Thursday, September 22, 4:00 pm.

You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

1. Evaluate
(a) $\left|\frac{i^{9}(2+i)^{2}}{(3+4 i)^{3}}\right|$
(b) $\operatorname{Arg}\left((-\sqrt{3}-i)^{2}\right)$
(c) $\arg \left(\frac{i}{-2-2 i}\right)$
2. Use induction to prove that $(\bar{z})^{k}=\overline{\left(z^{k}\right)}$ for every integer k provided $z \neq 0$ when k is negative.
3. Show that for all z,
(a) $e^{z+\pi i}=-e^{z}$
(b) $\overline{e^{z}}=e^{\bar{z}}$
4. Prove that if $|z|=1(z \neq 1)$, then

$$
\operatorname{Re}\left[\frac{1}{1-z}\right]=\frac{1}{2}
$$

5. Write in the polar form $r e^{i \theta}$
(a) $\frac{2+2 i}{-\sqrt{3}+i}$
(b) $\frac{2 i}{3 e^{4+i}}$
6. Solve the equation $(z+1)^{3}=z^{3}$.
7. Find all the values for the following expressions
(a) $\sqrt{1-i}$
(b) $(-1+i)^{7}$
(c) $\left(\frac{2 i}{1+i}\right)^{1 / 3}$
