Sample Test

You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Show your work. Your solutions should include explanations and references to theorems where appropriate.

1. Sketch the curve given by the parametric equation

$$x = \ln t, \quad y = \sqrt{t}, \quad t \ge 1.$$

Your sketch should include the initial point, and the direction in which the curve is traced.

- **2.** Consider the curve C given by the equations $x = 2 t^3$, y = 2t 1, $z = \ln t$.
- (a) Find a parametric equation for the tangent line to C at the point (1, 1, 0).
- (b) Find an equation for the normal plane to C at the point (1, 1, 0).

3. Let \mathcal{C} be a smooth plane curve.

- (a) What is the osculating circle of C at the point p? What does it tell you about the curve?
- (b) Find an equation for the osculating circle of the curve $y = x^4 x^2$ at the origin.

4. (a) State the Fundamental Theorem of Calculus for line integrals.

(b) Prove the following statement:

"If $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r} = 0$ for every closed path \mathcal{C} in D then $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ is path independent."

5. (a) Find $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x+z)\vec{i} + z\vec{j} + y\vec{k}$ and \mathcal{C} is the line from the point (2,4,4) to the point (1,5,2).

(b) Evaluate $\int_{\mathcal{C}} (3x - y) \, ds$, where \mathcal{C} is the portion of the circle $x^2 + y^2 = 18$ traversed from (3,3) to (3,-3) clockwise.

6. Let $\vec{F}(x,y) = (2xy+3)\vec{i} + (x^2 + \cos y)\vec{j}$

- (a) Show that \vec{F} is a conservative vector field.
- (b) Find a potential function for \vec{F} .
- (c) Use part (b) to compute $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ where \mathcal{C} is the curve beginning at the point (1,0) and ending at the point $(2,\pi)$.