
Winter 2009 Math 317

Sample Test - Solutions

1. Sketch the curve given by the parametric equation

x = ln t, y =
√
t, t ≥ 1.

Your sketch should include the initial point, and the direction in which the curve is traced.

We can eliminate the parameter t by applying the exponential function to both sides of the equation:

ex = eln t = t ⇒ y = ex/2.

The initial point corresponds to t = 1 ⇒ x = ln 1 = 0, y =
√

1 = 1. As t increases, x = ln t
increases and so does y = ex/2.

2. Consider the curve C given by the equations x = 2− t3, y = 2t− 1, z = ln t.
(a) Find a parametric equation for the tangent line to C at the point (1, 1, 0).

The vector equation for the tangent line through the point (1, 1, 0) is given by (x, y, z) = (1, 1, 0) + t~v,
where ~v is the tangent vector to the curve at the point (1, 1, 0). We have

~r(t) = (2− t3, 2t− 1, ln t) and ~r′(t) = (−3t2, 2, 1
t ).

At (1, 1, 0), t = 1, so ~v = ~r′(1) = (−3, 2, 1).
The equation for the tangent line at (1, 1, 0) in parametric form is

x(t) =1− 3t,
y(t) =1 + 2t, t ∈ R.
z(t) =t,

(b) Find an equation for the normal plane to C at the point (1, 1, 0).

The normal plane at the point (1, 1, 0) is the plane through (1, 1, 0) with normal vector ~n parallel to
the unit tangent vector ~T = ~r′(t)

||~r′(t)|| . We pick ~n = (−3, 2, 1).

The equation for the plane is
~n · (x− 1, y − 1, z − 0) =0

(−3, 2, 1) · (x− 1, y − 1, z) =0
−3x+ 2y + z + 3− 2 =0

3x− 2y − z =1.

3. Let C be a smooth plane curve.
(a) What is the osculating circle of C at the point p? What does it tell you about the curve?

The osculating circle at p is the circle containing the point p that best fits the curve at p. It lies in
the osculating plane of the curve spanned by the unit tangent vector ~T and the principal unit normal
vector ~N .



The radius of the osculating circle ρ is related to the curvature κ of the curve by the equation ρ = 1/κ.
Therefore, the osculating circle measures how ‘curly’ the curve is: the tighter the curve, the smaller
the radius, the larger the curvature.

(b) Find an equation for the osculating circle of the curve y = x4 − x2 at the origin.

To find the radius of the osculating circle, we compute the curvature κ.
We use the fact that y = x4 − x2, y′ = 4x3 − 2x, and y′′ = 12x2 − 2 in the formula for κ:

κ =
|y′′|

[1 + (y′)2]3/2
=

|12x2 − 2|
[1 + (4x3 − 2x)2]3/2

At (0, 0), κ = | − 2| = 2.
The osculating circle has radius ρ = 1

2 . At (0, 0), y′ = 0 and y′′ = −2. Therefore the curve is concave
down. This means that the osculating circle will be below the curve. The center of the osculating
circle is therefore located at (0, 0)− (0, 1

2 ) = (0,− 1
2 ).

The equation for the osculating circle is given by

x2 + (y + 1
2 )2 = 1

4 .

4. (a) State the Fundamental Theorem of Calculus for line integrals.

Let C be a smooth curve parametrized by ~r(t) for a ≤ t ≤ b. Let f be a differentiable function and
let ∇f be continuous on C. Then ∫

C
∇f · d~r = f(~r(b))− f(~r(a)).

(b) Prove the following statement:

“If
∫
C
~F · d~r = 0 for every closed path C in D then

∫
C
~F · d~r is path independent.”

Proof: Assume
∫
C
~F · d~r = 0 for any closed curve C in D. Let A, B be two points in D, and let C1

and C2 be any two paths in D joining A to B.
Consider the closed curve C obtained by traversing C1 followed by −C2. By assumption∫

C1

~F · d~r +
∫
−C2

~F · d~r =
∫
C
~f · d~r = 0.

It follows that ∫
C1

~F · d~r =
∫
C2

~F · d~r

Since C1 and C2 were arbitrary, we conclude that
∫
C
~F · d~r is path independent.

5. (a) Find
∫
C
~F · d~r where ~F = (x + z)~i + z~j + y~k and C is the line from the point (2, 4, 4) to the

point (1, 5, 2).

First, we parametrize the curve C:

~r(t) =(1− t)(2, 4, 4) + t(1, 5, 2)
=(2− t, 4 + t, 4− 2t), 0 ≤ t ≤ 1,

~r′(t) =(−1, 1,−2).



The integral is ∫
C
~F · d~r =

∫ 1

0

~F (~r(t)) · ~r ′(t) dt

=
∫ 1

0

(2− t+ 4− 2t, 4− 2t, 4 + t) · (−1, 1,−2) dt

=
∫ 1

0

(−10− t) dt =
(
− 10t− t3

2

)∣∣∣1
0

= − 21
2

(b) Evaluate
∫
C(3x− y) ds, where C is the portion of the circle x2 + y2 = 18 traversed from (3, 3) to

(3,−3) clockwise.

First we parametrize the curve C:

x(t) =
√

18 cos t, y(t) = −
√

18 sin t, −π4 ≤ t ≤
π
4 .

x′(t) =−
√

18 sin t, y′(t) = −
√

18 cos t.

This gives

ds =

√(
dx
dt

)2

+
(
dy
dt

)2

=
√

18 sin2 t+ 18 cos2 t =
√

18.

We integrate ∫
C
(3x− y) ds =

∫ π/4

−π/4
(3
√

18 cos t+
√

18 sin t)
√

18 dt

=18
∫ π/4

−π/4
(3 cos t+ sin t) dt

=18(3 sin t− cos t)
∣∣∣π/4
−π/4

=18
(

3 1√
2
− 1√

2
+ 3 1√

2
+ 1√

2

)
= 54

√
2.

6. Let ~F (x, y) = (2xy + 3)~i+ (x2 + cos y)~j

(a) Show that ~F is a conservative vector field.

We have P (x, y) = (2xy + 3), Q(x, y) = (x2 + cos y), and

∂P

∂y
= 2x =

∂Q

∂x
.

Also, ~F is defined for all (x, y) ∈ R2. So the domain is open and simply connected. It follows from
the theorem that ~F is a conservative vector field.
(b) Find a potential function for ~F .

We want f(x, y) with ∇f(x, y) = (2xy + 3, x2 + cos y).

1. fx = 2xy + 3 ⇒ f(x, y) =
∫

(2xy + 3) dx = x2y + 3x+ g(y).

2. fy = x2 + cos y = x2 + g′(y) ⇒ g′(y) = cos y ⇒ g(y) = sin y +K.



It follows that f(x, y) = x2y + 3x+ sin y +K is a potential function for ~F .

(c) Use part (b) to compute
∫
C
~F · d~r where C is the curve beginning at the point (1, 0) and ending

at the point (2, π).∫
C
~F · d~r = f(2, π)− f(1, 0) = (4π + 6 + sinπ)− (0 + 3 + sin 0) = 4π + 3.


