Quiz #5- Solutions

1. Find a parametric representation for the lower half of the ellipsoid $2x^2 + 4y^2 + z^2 = 1$. Your answer should include the parameter domain.

There are many possibilities:

A - $x = x, \ y = y, \ z = -\sqrt{1 - 2x^2 - 4y^2}, \ D = \{(x, y) \mid -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}, \ -\frac{1}{2} \le y \le \frac{1}{2} \}$ B - $x = \frac{1}{\sqrt{2}}u\cos(v), \ y = \frac{1}{2}u\sin(v), \ z = -\sqrt{1 - u^2}, \ D = \{(u, v) \mid 0 \le u \le 1, \ 0 \le v \le 2\pi \}$ C - $x = \frac{1}{\sqrt{2}}\sin(\phi)\cos(\theta), \ y = \frac{1}{2}\sin(\phi)\sin(\theta), \ z = \cos(\phi), \ D = \{(\phi, \theta) \mid \frac{\pi}{2} \le \phi \le \pi, \ 0 \le \theta \le 2\pi \}$ 2. Find the area of the surface for the part of the surface z = xy that lies within the cylinder

2. Find the area of the surface for the part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 9$.

The surface corresponds to the graph z = g(x, y) = xy, with domain determined by $x^2 + y^2 \le 9$. We use the formula for area:

$$A = \int \int_D \sqrt{1 + (g_x)^2 + (g_y)^2} \, dA.$$

We need to parametrize the area. We use circular symmetry and set $x = r \cos \theta$ and $y = r \sin \theta$. Then

 $D = \{ (r, \theta) \mid 0 \le r \le 3, \ 0 \le \theta \le 2\pi \ \} \quad \text{and} \quad f_x^2 + f_y^2 = y^2 + x^2 = r^2$

It follows that

$$A = \int_0^{2\pi} \sqrt{1 + r^2} r \, dr \, d\theta$$

= $\frac{1}{2} \int_0^{2\pi} \int_1^{10} u^{1/2} \, du \, d\theta$
= $\frac{1}{2} \int_0^{2\pi} \frac{2}{3} u^{3/2} \Big|_1^{10} \, d\theta$
= $\frac{2\pi}{3} \left(10^{3/2} - 1 \right).$

Where we have use the substitution: $u = 1 + r^2$, du = 2r dr, $r = 0 \rightarrow u = 1$, $r = 3 \rightarrow u = 10$.