
Winter 2009 Math 317

Quiz #1 - Solutions

1. Find a parametric equation for the path of a particle that moves along the circle x2+(y−1)2 = 4
three times around clockwise, starting at (2, 1).

This is the equation of a circle centered at (0, 1) with radius r = 2. The following parametrization
will do:

x = 2 cos t, y = 1− 2 sin t, 0 ≤ t ≤ 6.

2. Find the exact length of the curve given by x = 1 + 3t2 and y = 4 + 2t3 for 0 ≤ t ≤ 1.
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3. Show that the curve x = cos t, y = sin t cos t, for 0 ≤ t ≤ 2π, has two tangents at (0, 0) and find
their equations. Sketch the curve.

First we compute the rate of change of y with respect to x.
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The equations for the tangent lines at the origin are y = x and y = −x.

To obtain the graph, we use the information above, together with the fact that the curve has
horizontal tangent lines whenever dy
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occurs at t = 0, π, π
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The graph of the curve is a Lissajous figure.


