
Winter 2008 Math 317

Midterm - solutions

1. Consider the curve with parametric equation

x(t) = t− sin t, y(t) = 1− cos t, 0 ≤ t ≤ 4π.

(a) Compute dy
dx and d2y

dx2 .

dy

dx
=

dy
dt
dx
dt

=
sin t

1− cos t
,

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

=
(1−cos t)(cos t)−sin t(sin t)

(1−cos t)2

1− cos t
=

cos t− 1
(1− cos t)3

=
−1

(1− cos t)2
.

(b) At what points does the curve have an horizontal tangent?

We have an horizontal tangent whenever dy
dt = 0 and dx

dt 6= 0.

dy

dt
= sin t = 0 at ± nπ, so 0, π, 2π, 3pi, 4π

dx

dt
= 1− cos t = 0 at 0, 2π, 4π.

we have horizontal tangents at t = π and t = 3π. AT t = 0, 2π, and 4π, the rate of change dy
dx is

undefined so we expect to see kinks in the curve.
(c) Use part (a) and (b) to sketch the curve. Your sketch should include the initial point and the

direction in which the curve is being traversed.

Since −1 ≤ cos t ≤ 0, we have 0 ≤ 1− cos t ≤ 2, so y(t) ≥ 0 for all t. The minimum value, y(t) = 0, is
obtained at t = 0, 2π, 4π, and the maximum value, y(t) = 2, is obtained at t = π, 3π. Since dx

dt ≥ 0,
x(t) is increasing throughout the interval, and since d2y

dx2 < 0, the curve is concave down. We can use
this information to plot the graph of the curve (see class notes).

2. Consider the curve
~r(t) = (et cos t, et sin t, et), t ≥ 0.

(a) Compute the curvature κ at the point (1, 0, 1).

We use the fact that at ~r(0) = (1, 0, 1) and the formulas

κ(t) =
||~T ′(t)||
||~r ′(t)||

, ~T =
~r ′(t)
||~r ′(t)||

.

We have
~r ′(t) = (et(cos t− sin t), et(sin t+ cos t), et),

||~r ′(t)|| = et
√

(cos t− sin t)2 + (sin t+ cos t)2 + 1

= et
√

cos2 t− 2 sin t cos t+ sin2 t+ sin2 t+ 2 sin t cos t+ cos2 t+ 1

= et
√

3.



~T =
e−t√

3

(
et(cos t− sin t), et(sin t+ cos t), et

)
=

1√
3

(cos t− sin t, sin t+ cos t, 1).

~T ′(t) =
√

3 (− sin t− cos t, cos t− sin t, 0)

||~T ′(t)|| = 1√
3

√
(sin t+ cos t)2 + (cos t− sin t)2

=
1√
3

√
sin2 t+ 2 cos t sin t+ cos2 t+ cos2 t− 2 sin t cos t+ sin2 t =

√
2√
3
.

It follows that

κ(t) =
||~T ′(t)||
||~r ′(t)||

=
√

2√
3
· e
−t
√

3
=
√

2
3
e−t, at t = 0, κ(0) =

√
2

3
.

(b) Write the equation for the normal plane at the point (1, 0, 1).

The normal plane is the plane spanned by the vectors ~B(t) and ~n(t)., so the normal to the plane is
parallel to the tangent vector ~T (t). At t = 0, ~T (0) = 1√

3
(1, 1, 1) so we take ~n = (1, 1, 1). The

equationfor the plane is given by

~n · (~x− ~p) = 0
(1, 1, 1) · (x− 1, y, z − 1) = 0
x+ y + z − 2 = 0

(c) Reparametrize ~r(t) with respect to arclength measured from the point (1, 0, 1) in the direction of
increasing t.

First, we compute an expression for s(t).

s(t) =
∫ τ

0

||~r ′(t)|| dτ =
∫ τ

0

√
3eτ dτ =

√
3eτ

∣∣∣t
0

=
√

3(et − 1).

Solving for t yields

s =
√

3(et − 1) ⇒ s√
3

+ 1 = et ⇒ ln
(
s√
3

+ 1
)

= t.

We substitute this expression into ~r(t) to get the reparametrization by arclength.

~r(s(t)) = ~r(s) =
(( s√

3
+ 1
)

cos
(

ln
( s√

3
+ 1
))
,
( s√

3
+ 1
)

sin
(

ln
( s√

3
+ 1
))
,
s√
3

+ 1
)
.

3. Compute the following line integral where C is the ellipse 4x2 + 9y2 = 36 with counterclockwise
orientation. ∫

C
−y dx+ (x+ y2) dy



First we need to parametrize C. We take

x(t) = 3 cos t, y(t) = 2 sin t, for 0 ≤ t ≤ 2π,

then
dx = −3 sin t dt, and dy = 2 cos t dt.

We evaluate the line integral∫
C
−y dx+ (x+ y2) dy =

∫ 2π

0

(−2 sin t)(−3 sin t) dt+
∫ 2π

0

(3 cos t+ 4 sin2 t)(2 cos t) dt

=
∫ 2π

0

(6 sin2 t+ 6 cos2 t+ 8 cos t sin2 t) dt

=
∫ 2π

0

6 dt = 6t
∣∣∣2π
0

= 12π.

4. (a) State the Fundamental Theorem of Calculus for line integrals.

Let C be a smooth curve given by ~r(t) for a ≤ t ≤ b. Let f be a differentiable function of 2 or 3
variables such that ∇f is continuous on C. Then∫

C
∇f · d~r = f(~r(b))− f(~r(a)).

(b) Let ~F (x, y) = (ex + y2exy) ~i + (1 + xy)exy ~j. Show that ~F is conservative.

We use theorem 6, 17.3:
1. ~F is defined for any (x, y) ∈R2, so the region D =R2 is open and simply connected.
2. We set P (x, y) = ex + y2exy and Q(x, y) = (1 + xy)exy, then

∂P

∂x
= ex + y3e6xy,

∂P

∂y
= 2yexy + y2xexy,

∂Q

∂x
= ye6xy + (1 + xy)yexy,

∂Q

∂y
= xexy + (1 + xy)xrxy.

so P and Q have continuous first order partial derivatives.
3. ∂P

∂y = 2yexy + y2xexy = ∂Q
∂x .

It follows from theorem 6, 17.3, that ~F is conservative.
(c) Use part (a) to evaluate

∫
C
~F · d~r where C is the line segment from (1, 2) to (4, 0).

We need to find the potential function f(x, y) such that ~F = ∇f . This means that we need
(a) fx = P (x, y) = ex + y2exy.
(b) fy = Q(x, y) = (1 + xy)exy.

By (a),

f(x, y) =
∫
P (x, y) dx =

∫
(ex + y2exy) dx = ex + yexy + g(y).



It follows that,
fy = exy + yxexy + g′(y) = (1 + xy)exy + g′(y).

By (b) fy = Q(x, y) so g′(y) = 0, or g(y) = k for some constant k. It follows that the potential
function for ~F is f(x, y) = ex + yexy + k.

We use part (a) to evaluate the integral∫
C
~f · d~r = f(~r(1))− f(~r(0)) = f(4, 0)− f(1, 2) = e4 − e− 2e2.

5. Find the work done by the force field ~F (x, y, z) = z ~i + x ~j + y ~k in moving a particle from the
point (3, 0, 0) to the point (0, π2 , 3) along a straight line.

First we parametrize the line from (3, 0, 0) to (0, π2 , 3).

~r(t) = (1− t)(3, 0, 0) + t(0,
π

2
, 3) = (3− 3t,

π

2
t, 3t), 0 ≤ t ≤ 1,

~r ′(t) = (−3,
π

2
, 3).

We evaluate the integral

W =
∫
C
~F · d~r

=
∫ 1

0

(3t, 3− 3t,
π

2
t) · (−3,

π

2
, 3) dt

=
∫ 1

0

(−9t+
π

2
) dt

=
(
−9t2

2
+

3π
2
t

) ∣∣∣1
0

= −9
2

+
3π
2
.


