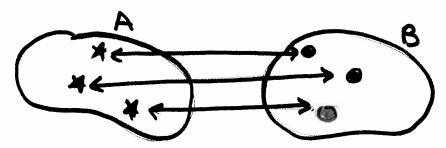
Test #1 - Solutions

- 1. Let A and B be sets. Explain what the following expressions represent. In each case, give an example to illustrate your answer.
- (a) $A \sim B \implies A$ is equivalent to B means that there is a one-to-one correspondence between the elements of the set A and the elements of the set B.

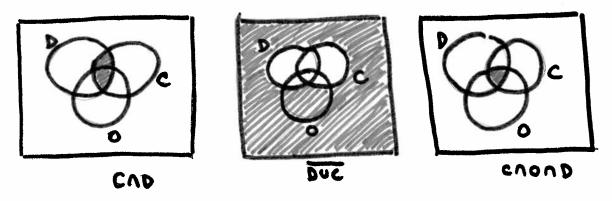


(b) $A \subset B$

A is a proper subset of B. This means that every element of A is contained in B, and B has some elements that are not in A.

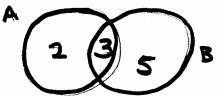
eg. Let
$$A = \{1, 2\}$$
 and $B = \{1, 2, 3\}$, then $A \subset B$.

- 2. An elementary teacher asks her class the following question: "Which pets live in your home?" Let D = the set of students who have at least one dog, C = the set of students who have at least one cat, and O = the set of students who have a pet that is not a dog or a cat. Draw the Venn diagram for each of the following sets, and describe in everyday english the elements in each of the sets.
- (a) $C \cap D$ is the set of students who have at least one dog and one cat.
- (b) $\overline{D \cup C}$ is the set of students who have no dogs and no cats.
- (c) $C \cap O \cap D$ is the set of students who have at least one dog, one cat, and one other pet that is neither a cat nor a dog.



3. Let n(A) = 5, n(B) = 8, and $n(A \cup B) = 10$. What can you say about $n(A \cap B)$? Explain how you obtain your solution.

Since n(A)+n(B)=5+8=13>10, the set A and B have some elements in common. The difference, 13-10=3, is the number of elements in their intersection. It follows that $n(A \cap B)=3$.



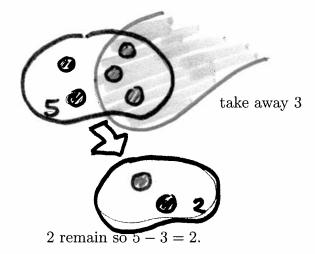
4. Explain why 3 < 4 using the definition of whole-number inequality given in terms of addition.

By definition, if a and b are whole numbers, we say that a < b if and only if there exists $k \in \mathbb{N}$ such that a + k = b. Here, a = 3, b = 4, and since 3 + 1 = 4, k = 1. It follows that 3 < 4.

5.(a) State the definition of whole-number subtraction.

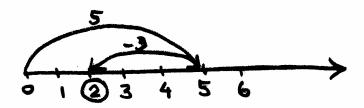
Given $a, b \in \mathbb{W}$, such that a > b, a - b is the element $c \in \mathbb{W}$ such that a + b = c.

- (b) Illustrate 5-3=2, using two different models.
 - 1. take-away model start with 5 elements



2. measurement model

We start with 5, which means move 5 units to the right, then 3 units to the right. We find ourselves at 2, so 5-3=2.



3. comparison model

When I compare a set of 5 objects to a set of 3 objects, the difference is 2. Therefore 5-3=2.

3 BBB 2 missing

6. In the following pattern, one hexagon takes 6 toothpicks to build, two hexagons take 11 toothpicks to build, and so on. How many toothpicks would it take to build n hexagons? Use the four-step process to find a solution.

Step1: Understand the question.

At each step, I add an hexagon to the existing chain of hexagons. I need to find an expression for the number of toothpicks required to build a chain with n hexagons.

Step 2: Devise a plan

I will record the information in a table and look for a pattern.

Step 3: Carry out the plan

\overline{n}	# of	
	toothpicks	
1	6	
0	+5	
2	11 +5	
3	16	
Ğ	\ +5	
4	21	

The sequence forms an arithmetic progression with initial number a = 6, and a difference between consecutive terms of d = 5. The formula for the nth term is 6 + (n-1)5.

Step 4: Lookback

Looking back at the process, at each step, I needed 5 toothpicks to construct the additional hexagon.

n	# of	
	toothpicks	
1	6	$= 6 + 0 \cdot 5$
2	6+5	$= 6 + 1 \cdot 5$
3	6+5+5	$= 6 + 2 \cdot 5$
4	6+5+5+5	$= 6 + 3 \cdot 5$

So the formula is 6 + (n-1)5 as before.

7. Maria and Karl work at different jobs. Maria earns \$50 per hour and Karl earns \$40 per hour. They each earn the same amount per week but Karl works 2 more hours. How many hours a week does Karl work? Use algebraic reasoning to find a solution.

We know that Karl works 2 hours more than Maria.

Let H = # of hours worked by Maria.

then K = H + 2 is the # of hours Karl works during the week.

Maria and Karls earn the same amount per week

weekly amount for Maria
$$\rightarrow$$
 50 H weekly amount for Karl \rightarrow 40 $K = 40(H + 2)$

Since these are the same, we set them equal and solve the equation for H:

$$50H = 40(H + 2)$$

$$50H = 40H + 80$$

$$50H - 40H = 40H + 80 - 40H$$

$$10H = 80$$

$$\frac{10}{10} = \frac{80}{10}$$

$$H = 8$$

The number of hours of work for Karl is K = H + 2 = 8 + 2 = 10 hours.

check back:

Maria: $50H = 50 \cdot 8 = 400 . Karl: $40K = 40 \cdot 10 = 400 .

Our answer is correct. Karl works 10 hours a week.