UBC ID #:	NAME (print):			
Signature:	Solutions			

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

IRVING K. BARBER SCHOOL
OF ARTS AND SCIENCES
UBC OKANAGAN

Instructor: Rebecca Tyson Course: MATH 225

Date: Feb 9th, 2022 Time: 4:00pm Duration: 35 minutes.

This exam has 4 questions for a total of 28 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. **Answers** without accompanying work are worth zero. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

1. Consider the ODE

$$\frac{dy}{dt} = f(y) = y\cos(y) + a,\tag{1}$$

where a is a constant. The function f(y) for the case a = 0 is plotted in Figure 1.

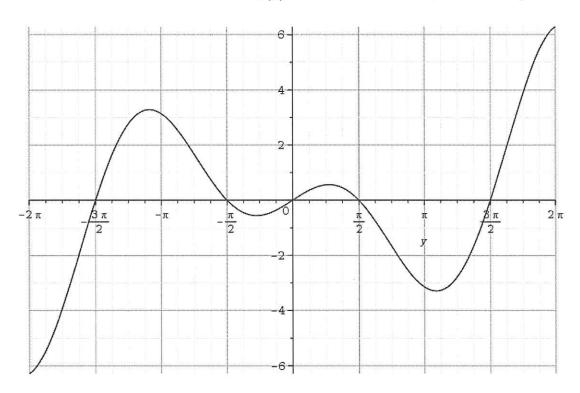
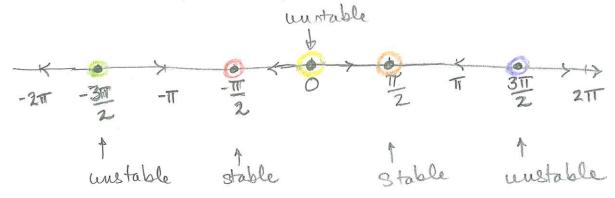
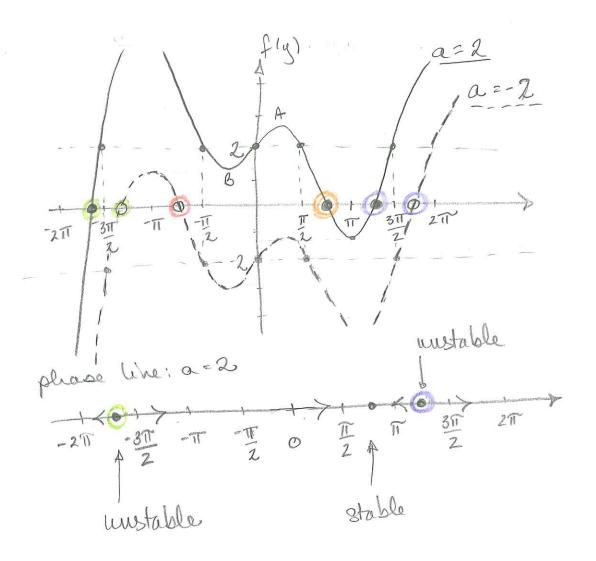
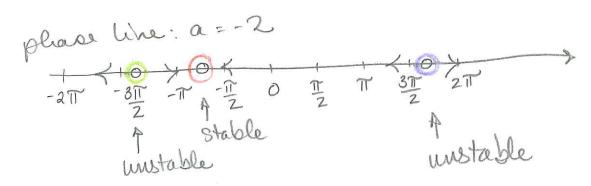



Figure 1: Plot of the function f(y) defined in (1).


(a) The ODE (1) is autonomous. Why?


The RHS, f(y), does not depend out.

(b) In the space below, sketch the phase line between $\pm 2\pi$ for the case a=0, and indicate the stability of each steady state.

(c) How would the stability of the steady states change if a=2 or a=-2? Explain. 3

I have colour-coded the steady states for Campanism. The green & purple steady states are only shifted Lork as fly) there's up (ard) or down (ald), The other steady states shift or disappear.

Page 3 of 7

2. Solve the ODE

$$\underbrace{\left(\sin(x) + \ln(y)\right)}_{\mathcal{M}(\mathcal{M}_1 \mathcal{Y})} dx + \left(\frac{x}{y} + e^y\right) dy = 0.$$

Compare with N:

we thus have

3. Consider the initial value problem

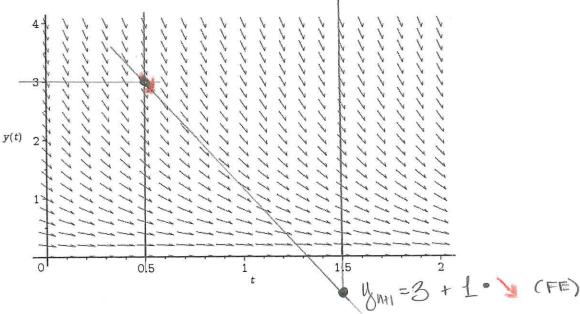
$$\frac{dy}{dt} = te^{-2t} - 2y, \quad y(0) = y_0.$$

[5] (a) The ODE is linear. Solve it.

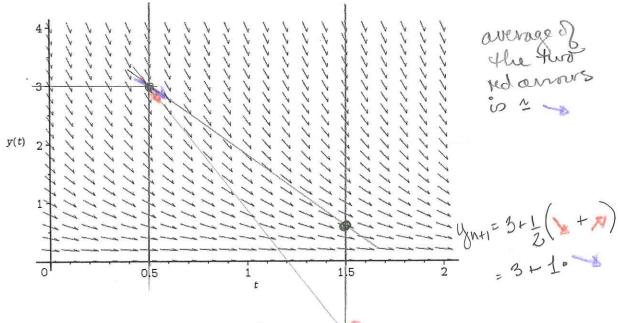
$$48 e^{2t}y = \frac{t^2}{2} + C$$

$$48 y = \frac{t^2}{2}e^{2t} + Ce^{2t}$$

apply the 1Cs:


[2] (b) How does the value of y_0 affect $\lim_{t\to\infty} y(x)$? Explain.

The value of yo has no effect on the final solution, because line yet = lim (\$\frac{1}{2} + 150) e^{2t} = 0 \text{ tyo}


4. Numerical methods.

2

(a) On the direction field below, starting at the point (t,y) = (0.5,3) and using h = 1, carefully plot one step of the Forward Euler method, including the relevant slope arrows. Add explanatory text if necessary.

(b) On the direction field below, starting at the point (t,y) = (0.5,3) and using h = 1, 4 carefully plot one step of the Heun method, including the relevant slope arrows. Add explanatory text if necessary.

1 (c) Why is the Heun method more accurate?

The Heun method is more accurate because it uses direction field information from two points intead

Page 6 of 7

Question:	1	2	3	4	Total
Points:	7	7	7	7	28
Score:					