INSTRUCTOR: REBECCA TYSON

COURSE: MATH 225

IRVING K. BARBER SCHOOL
OF ARTS AND SCIENCES
UBC OKANAGAN

Date: Feb 1st, 2015 Time: 11:30am Duration 35 minutes. This exam has 6 questions for a total of 28 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

	Points	Points
Problem	Earned	Out Of
1		7
2		7
3		5
4		5
5		4
TOTAL:		28

CANDIDATE NAME (print):	Solutions
STUDENT NUMBER:	
Signature:	
Signature:	

1. An auditorium is 100 m in length, 50 m in width, and 30 m in height. It is ventilated by a system that feeds in fresh air and draws out air at the same rate. If the auditorium air is well-mixed, what inflow (and outflow) rate is required to reduce any air pollutants present by a factor of 100 in 30 minutes? Include a diagram in your solution.

$$\frac{dx}{dt} = 0.r - \frac{x}{v}r \Leftrightarrow \frac{dx}{dt} = -\frac{x}{v}r + \frac{1}{v}\int_{x}^{x} \frac{dx}{x} = -\frac{r}{v}dt$$

$$\frac{dx}{dt} = 0.r - \frac{x}{v}r \Leftrightarrow \frac{dx}{dt} = -\frac{x}{v}r + \frac{1}{v}\int_{x}^{x} \frac{dx}{x} = -\frac{r}{v}dt$$

128
$$\ln |x| = -r + C$$

128 $\ln |x| = -r + C$
128 $\ln |x| = -r + C$
128 $\ln |x| = -r + C$
129 $\ln |x| = -r + C$
120 where $\ln |x| = \ln (0)$

Require
$$\frac{x(0)}{x(30)} = 100 \, \text{(4)} \, \frac{x_0 \, \text{e}^{-\frac{1}{2}0}}{x_0 \, \text{e}^{-\frac{1}{2}30}} = 100 \, \text{(4)} \, \frac{x_0 \, \text{e}^{-\frac{1}{2}30}}{x_0 \, \text{e}^{-\frac{1}{2}30}} = 100 \, \text{(4)} \, \text{(4)}$$

2. Use the given direction field to answer the questions below.

- [2] (a) Draw several solution curves, some starting at $y = \lambda$ some starting at y just above zero, and some starting at y just below zero.
- (b) What type of ODE produced this direction field? Write a plausible guess for what this ODE is;

This direction field was produced by an autonomous OBE as the isoclines are horizontal lines.

dy = y (2-y)

[2] (c) What can you say about the solution trajectories as $t \to -\infty$?

as $t - 7 - \infty$, all solutions with $y(0) = 2 \rightarrow 2$ $y(0) / 2 \rightarrow 0$ $y(0) / 2 \rightarrow +\infty$

[5] 3. Find the solution to the initial value problem

$$y' + 2ty = 2te^{-t^2}, y(1) = 2.$$

multiply the ODE by ult).

et dy + 2tety = 2t (251)

(1) 45 d (ety) = 2t (25 ety)

45 y = (t2+c) ety

apply the 1C: y(1) = 2 (=> $2 = (1+c)e^{-1}$ (=> 2e = 1+c)

i. y(t)= (t²+2e-1)e

5 4. Find an integrating factor for the equation

$$(3xy + y^2)dx + (x^2 + xy)dy = 0.$$

Make sure you verify that your new equation is indeed exact! (Hint: The integrating factor is a function of x.)

There

So the ODE is not exact. We look for an integrating

factor that is a function of x:

$$\frac{\partial}{\partial y}(\mu M) = \mu \partial M = \mu (3x + 2y) ... (2a)$$

$$\frac{\partial}{\partial y}(\mu N) = \mu \partial N + N\mu' = \mu (2x + y) + \mu'(x^2 + xy) ... (2b),$$

$$\frac{\partial}{\partial x}(\mu N) = \mu \partial N + N\mu' = \mu (2x + y) + \mu'(x^2 + xy) ... (2b),$$

$$\frac{dy}{dy} = \frac{1}{x^2 + xy} = \frac{1}{x(x+y)} = \frac{1}{x}$$

5. Use the Forward Euler method to approximate the solution to the IVP below using steps of size h = 0.1. Enter your results in the table provided. Show your calculations below.

$$\frac{dv}{dt} = \frac{t}{v}, \qquad v(0) = -1.$$

n	t_n	v_n	$v_{n+1} = v_n + l_1 t_n / v_n$
0	0	-1	-
1	0.1	-1	-1.01
		8	

$$a_{z} = a_{1} + a_{1} = -1 + (0.1)(0.1) = -1 - 0.01$$

$$= -1.01$$

6. BONUS PROBLEM for the Group Test (you can start working on this problem while waiting for the group test to start): Solve (implicitly) the exact differential equation

$$\underbrace{(\sin(x) + x^2 e^y - 1)}_{\text{Min}} dy + \underbrace{(y\cos(x) + 2xe^y)}_{\text{Min}} dx = 0.$$

and = costro + ane y = an = costro + ane y

i. The OBE is exact. We i seek F such that

F = ((ycos(x) + 2xe4) dx = ystin(x) + x2e4 + hly)

and then

2F = N (48 kinh) + x2e 18 + (1/y) = kinh) + x2e 18 - 1 28 h/y = -1 (28 h/y) = -y+K

o. Flag) = yother) + m2e18 - y, and the solutions of the oDE are the level curves of

y xin(x) + x2e8-y= C