COSC 304 - Introduction to Database Management Systems Winter 2015 Term 1

Instructor:	Dr. Ramon Lawrence
Class Schedule:	2:00 p.m. – 3:30 p.m. Monday/Thursday
Location:	FIP 121 (Monday), EME 2111 (Thursday)
Lab time/location:	L01 - 12:30 p.m. to 2:30 p.m. Friday in SCI 234
	L02 - 5:00 p.m. to 7:00 p.m. Friday in SCI 234
Office Hours:	11 a.m. to noon Mondays, 1 to 2 p.m. Fridays, or by appointment
Office Location:	ASC 349
Phone:	807-9390
E-mail:	ramon.lawrence@ubc.ca (preferred contact method)
Course URL:	https://people.ok.ubc.ca/rlawrenc/teaching/304/

Course Description

Official Calendar: Databases from a user's perspective: querying with SQL, designing with UML, and using programs to analyze data. Construction of database-driven applications and websites and experience with current database technologies. [3-2-0]

Prerequisite: Either (a) COSC 111 or (b) APSC 177 and third-year standing.

Specific description: This course provides an introduction to database systems including database querying, design, and programming. The course consists of three major components. The first component explains databases from a user perspective including how to query using SQL and relational algebra. The second component involves designing relational databases using Entity-Relationship (ER) diagrams and UML. The last part involves database and web programming with Java, JDBC, and JSP. Students completing the course have experience with current database technologies, and the ability to use and develop databases and associated applications.

Course Objectives

Course Format: Interactive classes consisting of topic introduction, understanding evaluation using clickers, and concept mastery with in-class exercises. Practical skills and applications of topics are covered in computer labs as well as practice using industrial database systems and software.

Learning Outcomes:

• Ability to query and develop programs to interact with existing databases.

• Understanding of database design techniques and experience creating database applications. *Course Objectives:*

- Ability to query relational databases using relational algebra and SQL.
- Application of ER/UML design for building database applications.

Marking and Evaluation

Clickers	5 %
Assignments	20 %
Project	15 %
Two Midterm Exams	30 % (in class, 15% each)
Final Exam	30 % (cumulative, three hours)

Textbook and Reference Material:

- *A clicker is required.* All notes are distributed as a course pack available at the book store.
- A text book is *not required*. Students can get supplemental material from any database textbook.

Expectations

- Attend **all** classes and prepare before attending class.
- Read the notes **before** the lecture.
- Learn the material in the course by completing all assignments.
- Enjoy attending class and feel free to participate according to your own personalities. Feel free to ask questions by raising your hand or speaking out at appropriate times.
- Please actively participate in class discussions, questions, and problem solving exercises.
- I want all students to pass the course, receive a good grade, and feel the course was beneficial.

Homework Expectation

For this course, it is expected that you will spend at least six hours per week in out-of-class preparation.

Grievances and Complaints Procedures

A student who has a complaint related to this course should follow the procedures summarized below.

• The student should attempt to resolve the matter with the instructor first. Students may talk first to someone other than the instructor if they do not feel, for whatever reason, that they can directly approach the instructor.

• If the complaint is not resolved to the student's satisfaction, the student should go to the departmental chair John Braun at SCI 388, 807-8032.

Your Responsibilities

Your responsibilities to this class and to your education as a whole include attendance and participation. You have a responsibility to help create a classroom environment where all may learn. At the most basic level, this means you will respect the other members of the class and the instructor and treat them with the courtesy you hope to receive in return. Inappropriate classroom behavior may include: disruption of the classroom atmosphere, engaging in non-class activities, talking on a cell-phone, inappropriate use of profanity in classroom discussion, use of abusive or disrespectful language toward the instructor, a student in the class, or about other individuals or groups.

Academic Integrity

The academic enterprise is founded on honesty, civility, and integrity. As members of this enterprise, all students are expected to know, understand, and follow the codes of conduct regarding academic integrity. At the most basic level, this means submitting only original work done by you and acknowledging all sources of information or ideas and attributing them to others as required. This also means you should not cheat, copy, or mislead others about what is your work. Violations of academic integrity (i.e., misconduct) lead to the breakdown of the academic enterprise, and therefore serious consequences arise and harsh sanctions are imposed. For example, incidences of plagiarism or cheating usually result in a failing grade or mark of zero on the assignment or in the course. Careful records are kept to monitor and prevent recidivism. A more detailed description of academic integrity, including the policies and procedures, may be found at http://www.calendar.ubc.ca/okanagan/index.cfm?tree=3,54,111,959. If you have any questions about how academic integrity applies to this course, consult with the instructor.

Disability Assistance

If you require disability-related accommodations to meet the course objectives, please contact the Diversity Advisor of Disability Resources located in the University Centre, Room 227. For more information about Disability Resources or academic accommodations, please visit the website at: <u>http://students.ok.ubc.ca/drc/welcome.html</u>

Equity, Human Rights, Discrimination and Harassment

UBC Okanagan is a place where every student, staff and faculty member should be able to study and work in an environment that is free from human rights based discrimination and harassment. If you require assistance related to an issue of equity, discrimination or harassment, please contact the Equity Office, your administrative head of unit, and/or your unit's equity representative. **UBC Okanagan Equity Advisor: ph. 250-807-9291; email** <u>equity.ubco@ubc.ca</u> **Web:** <u>www.ubc.ca/okanagan/equity</u>

Missing an Exam

Only students who miss the final exam for a reason that corresponds to the University of British Columbia Okanagan's policy on excused absences from examinations will be permitted to take the final exam at a later time. A make-up exam may have a question format different from the regular exam. **There will be no make-up midterm exams.** If the reason for absence is satisfactory, the student's final exam will be worth more of the final grade. Further information on Academic Concession can be found under Policies and Regulation in the Okanagan Academic Calendar http://www.calendar.ubc.ca/okanagan/index.cfm?tree=3,48,0,0.

Course Outline

The course has a substantial amount of material to be covered in a short time. This requires the student make a strong effort to prepare before class so that the material can be practiced in class. Below is an outline of the topics. The professor is not bound to these topics and timelines as they only serve as a general reference.

Date	Topics Covered and Description
September 10 (Th)	First day of classes. Introduction to course/databases
September 14 (M)	Relational Model - Schemas, Keys, Constraints, Integrity
September 17 (Th)	Relational Algebra - Select, Project, Set Operations, Cartesian Product
September 21 (M)	Relational Algebra – Outer Joins, Division, Practice Questions
September 24 (Th)	SQL DDL – Create table, constraints, create indexes, Insert/Delete/Update
September 28 (M)	SQL - Simple Queries, LIKE operator, Set Operations, Order By
October 1 (Th)	SQL - Group By, Aggregate Functions
October 5 (M)	SQL - Subqueries, Outer joins
October 8 (Th)	Database Design – General Approach ; ER and UML Modeling
October 12 (M)	Thanksgiving Day. No class.
October 15 (Th)	ER and UML Modeling examples and questions
October 19 (M)	Midterm Exam #1 In-Class
October 22 (Th)	EER Design - Specialization, Generalization, Aggregation
	ER/EER Mapping to Relational model
October 26 (M)	Database and Web Programming using Java/JDBC
October 29 (Th)	Database and Web Programming – Web servers/databases, JSP/servlets
November 2 (M)	Relational Design - Functional Dependencies and Normalization
November 5 (Th)	Relational Design (cont.) – 1NF, 2NF, 3NF, BCNF
November 9 (M)	Midterm Exam #2 In-Class
November 12 (Th)	Winter Session Term 1 mid-term break. No class.
November 16 (M)	JSON, NoSQL Databases
November 19 (Th)	Advanced SQL DDL – Triggers, Views, and Security
November 23 (M)	Advanced SQL – recursion, object-relational databases, transactions
November 26 (Th)	Introduction to XML, XPath, and XQuery
November 30 (M)	Data warehousing and Data Mining
	Database System Implementation – Storage, Transactions, Concurrency, Recovery
	Final Exam Review.
December 3 (Th)	Final Project Demonstrations.

Laboratory times: The laboratory time will be primarily spent performing lab assignments and practice questions. The majority of labs involve hands-on use of a database system, programming language, or query tool.

Week	Dates	Topics Covered and Description
1	September 11	No Lab during First Week of Class
2	September 18	Lab 1: Querying using relational algebra
3	September 25	Lab 2: Creating tables using SQL and MySQL
4	October 2	Lab 3: Writing SQL queries on a MySQL database
5	October 9	Lab 4: Database Design using UML Modeling
6	October 16	Lab 4: Database Design using UML Modeling (cont.)
7	October 23	Lab 5: Converting UML Diagrams into the Relational Model
8	October 30	Lab 6: Using Java/JDBC with MySQL and Microsoft SQL Server
9	November 6	Lab 7: Building a Database-enabled Web Site using JSP
10	November 13	Lab 8: Database Normalization
11	November 20	Lab 9: Using SQL Transactions and Triggers
12	November 27	Lab 10: XML, XPath, and XQuery
13	December 4	Final Project Demonstrations