
1

COSC 416
NoSQL Databases

SenseiDB

Alex YellowShoes, Jamie McKee, Luke
Warkotsch, Ryan Trenholm

University of British Columbia Okanagan

Alex YellowShoes, Jamie McKee, Luke
Warkotsch, Ryan Trenholm

University of British Columbia Okanagan

Page 2

COSC 416 – Team Sensei

SenseiDB
Sensei is an open-source, distributed, real-time, semi-structured
data system that acts as both a search engine and a database.

Designed to query and navigate through documents.
Text and unstructured sections

Meta information and well-formed structured sections

Powers the LinkedIn homepage and LinkedIn Signal application.

Is winning
business
strategy!

Page 3

COSC 416 – Team Sensei

What is SenseiDB?
Key-value store database that offers
Full-text search

Fast key-value lookup

Fast real-time updates

Structured and faceted search

Important things to note:
Sensei runs a single node (Java process) that performs

indexing work and handles query requests

That node can query over N partitions of data
Sensei only has a single index and doesn’t support JOINS

Data objects in Sensei are JSON objects

Page 4

COSC 416 – Team Sensei

RDBMS vs. SenseiDB

RDBMS
Scales vertically

Strong ACID guarantee

Relational model support

Performance cost for full-text
integration

High query latency for large
datasets

 Indexes have to be built for
sorting

Sensei
Scales horizontally

Relaxed Consistency but
high Durability guarantee

Atomicity and Isolation
handled by data producer

Deep full-text integration

Low query latency for large
datasets

Dynamic sorting since index
already built in

© SenseiDB.com 2012

Page 5

COSC 416 – Team Sensei

SenseiDB Schemas
Table schema defines how data is stored in Sensei.
String, int, long, short, float, double, char, date

Text is a searchable text segment!

UID : long (mandatory; defines name of primary key field)

Facet schema describes how we can query columns of data.
Simple : row has single discrete value

Range : supports range queries

Multi : row has N discrete values

TimeRange : search based on time column value within range

And many more!

Page 6

COSC 416 – Team Sensei

Create table in Sensei
The table is defined in the schema.xml file

Example:
<table uid="id" delete-field="isDelete">

<column name="gid" type="int" />

<column name="gname" type="string" />

<column name="pubname" type="string" />

<column name="releasedate" type="date" />

<column name="maxplayers" type="int" />

<column name="rating" type="float" />

<column name="genre" type="string" multi="true" delimiter=","/>

<column name="description" type="text" index="ANALYZED" store="NO"
termvector="NO"/>

</table>

2

Page 7

COSC 416 – Team Sensei

Create facet in Sensei
Facets are also defined in the schema.xml file

Example:
<facets>

<facet name="gid" type="int" />

<facet name="gname" type="simple" />

<facet name="pubname" type="simple" />

<facet name="releasedate" type="simple" />

<facet name="maxplayers" type="simple" />

<facet name="rating" type="range">

<params>

<param name="range" value="0-1" />

<param name="range" value="2-3" />

<param name="range" value="4-5" />

</params>

</facet>

<facet name="genre" type="multi" />

<facet name="description" type="simple" />

</facets>

Page 8

COSC 416 – Team Sensei

Browse Query Language (BQL)
Sensei defines a SQL-variant query language called Browse
Query Language (BQL).
NOTE: BQL only supports SELECT statements!

FROM clause (and index name) is actually optional

SELECT statement schema:
SELECT <select_list>

[FROM <index>]

[WHERE <search_expression>]

[GIVEN FACET PARAM <facet_param_list>]

(<order_by_clause>

| <group_by_clause>

| <limit_clause>

| <fetching_stored_clause>

)*

Page 9

COSC 416 – Team Sensei

BQL Predicates
Many familiar predicate options for the WHERE clause
IN, CONTAINS ALL, =, <>, >, <, >=, <=, BETWEEN,
LIKE, ORDER BY, LIMIT, GROUP BY

Full text search on one or more (string) columns
e.g. MATCH (pubname, genre) AGAINST ("*ac*")

Full text search on the contents within a column
e.g. QUERY IS "cool AND (Mario OR Legend)"

Page 10

COSC 416 – Team Sensei

BQL Predicates cont.
BQL has several Time-based predicates for columns that
contain a timestamp
e.g. time IN LAST 2 hours 10 mins

e.g. time SINCE 2 weeks AGO

e.g. time AFTER 2013-01-30 15:30:00

e.g. time BEFORE 2012-12-21 15:30:00

e.g. time NOT BEFORE 2 weeks AGO

Example:
SELECT gname WHERE releasedate IN LAST 2 YEARS;

Page 11

COSC 416 – Team Sensei

BQL Faceted Search
Supports faceted search to retrieve additional information along
with the search results
BROWSE BY <facet_param_list>

Example:
SELECT gname BROWSE BY genre;

+-------------------------------------+

| gname |

+-------------------------------------+

| 007: The World is not Enough |

| 50 Cent: Bulletproof |

| AMF Bowling Pinbusters! |

| Ace Combat 04: Shattered Skies |

| Army Men 3D |

| Assassin's Creed |

+-------------------------------------+

+-----------------------+
| genre |
+-----------------------+
| Dance (85) |
| RTS (85) |
| Puzzle (80) |
| Action (77) |
| FPS (77) |
| Sports (76) |
| Fantasy (75) |
| RPG (75) |
| Turn-based (74) |
| Action Adventure (70) |
+-----------------------+

Page 12

COSC 416 – Team Sensei

BQL Relevance Models
Can define a relevance model to determine which results are
more relevant to your query
USING RELEVANCE MODEL <model_definition>

Example:
SELECT year, genre, rating, _score

WHERE genre in ('puzzle', 'sports')

USING RELEVANCE MODEL my_model (favorite_genre:'puzzle', favorite_years:[1999, 2000])

DEFINED AS (String favorite_genre, IntOpenHashSet favorite_years)

BEGIN

float boost = 0.0;

if (favorite_years.contains(year)) boost += 100;

if (favorite_genre.equals(genre)) boost += 50;

return rating + boost;

END

ORDER BY RELEVANCE;

3

Page 13

COSC 416 – Team Sensei

Other useful BQL information
Can create a parameter at search time for your query
GIVEN FACET PARAM (facet-name, param-
name, param-type, param-value)

e.g. SELECT gname, Network WHERE Network in (0,
1) GIVEN FACET PARAM (Network, "gid", int, 19);

Can retrieve the stored data file (JSON file)
e.g. SELECT gname,_srcdata WHERE gid = 19
FETCHING STORED;

Can view meta-information using DESCRIBE
Index name is optional

Page 14

COSC 416 – Team Sensei

Data population
Data is added (or removed) from Sensei with data events, which
are units of indexing activity.
Each data event is a tuple of (type, data, version).

Data events are streamed (consumed) through Gateways
File

JMS

JDBC

Kafka

Page 15

COSC 416 – Team Sensei

Data event examples
Add data event example:
{"type":"add","data":

{

"id" : "1",

"gname" : "Super Smash Bros. Brawl",

"pubname" : "Nintendo",

"releasedate" : "2008-03-09",

"maxplayers" : "4",

"rating" : "4.65",

"genre" : "fighting,action,platformer",

"description" : "Players choose from a large selection of characters and attempt
to knock there opponents off-screen as they fight"

}

}

Delete data event example:
{"type":"delete","id":1}

Page 16

COSC 416 – Team Sensei

Interface with data in a program
Several client libraries to interface with data
Rest/JSON API over HTTP POST

Java client API wrapping Rest API

Python client API wrapping Rest API

Each API constructs a request object (represented as JSON)
and sends the request to the Sensei node end-point
Example end-point: http://gpu1.ddl.ok.ubc.ca:50020/sensei

Page 17

COSC 416 – Team Sensei

Hadoop/MapReduce Integration
Hadoop integration is supported
Build an index using Hadoop first

Retrieve the data using Sensei

MapReduce integration is technically possible, but…
“It's not that easy to extend the Sensei query functionality. At minimum you would
need to implement your own FacetHandler, which would require at least a week of
ramping up with Bobo Architecture. One will need to understand how collectors,
comparators, facets, scoring functions, explanations work. All these stuff is not
easy to grasp, especially because that code is performance critical and our team
needed to consider trade-offs between readability and writing an extremely efficient
code(reusing arrays, avoiding autoboxing, polymorphism, object creation, etc).
Moreover you can not control how the results produced by the facet handler on the
segment level, will be merged together on partition and cluster node level. That's
why we didn't include group by by multiple columns and aggregation functions in
the first release.”

Page 18

COSC 416 – Team Sensei

Challenges (B****h’n)
Documentation is “okay” at its best…
Lacks useful examples

Do not have any real examples for some features
i.e. TIME predicates

Poor English, poor grammar... just poorly written
Korean site was more helpful?

Errors in examples are atrocious!
Spelling errors, inconsistent naming

Sensei is weird
Does NOT support negative numbers!

4

Page 19

COSC 416 – Team Sensei

In Our (Not So) Humble Opinion

DON’T USE SENSEI
UNLESS YOU ARE

WORKING FOR
LinkedIn!

Page 20

COSC 416 – Team Sensei

References & Resources
http://senseidb.com/

https://linkedin.jira.com/wiki/display/SENSEI/Home

https://groups.google.com/forum/?fromgroups#!forum/sensei-
search

http://koikebox.tistory.com/category/%5B%EA%B2%80%EC%83
%89%EC%97%94%EC%A7%84%5D/senseiDB

(South) Korea

Ramon

