Neo4J: Graph Database

Giuseppe Burtini, Graeme Douglas and Yipin Guo

February 24, 2013

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

o NeodlJ is a data storage and query system designed for
storing graphs.

@ Data as a series of relationships, modelled as a directed graph.
@ Recall, a graph is a pair of sets: G(V, E) — vertices and edges

@ Neo4J defines a query language called “Cypher” which allows
“iterative” or “search” style queries.

@ Every vertex and every edge can store data.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Data Representation

@ Graphs are a pure generalization of the traditional relational
model — anything that can be represented in the relational
model can be represented in a graph.

e Think of “relationships” as “foreign keys".
@ Node data is stored as JSON “documents.”
@ Vertices can store “relationship” types.

@ Queries are “graph traversals” —i.e., walk along the graph
checking some condition, deciding where to go next.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction

Neo4J Cypher Query and Data Manipulation Language

So, what can you do with it?

@ Graph databases are great for storing data that is intrinsically
graphical.
@ For example, human relationships, preference lists, networks.

@ Of course, the graph representation is a generalization of the
relational model, so you can actually represent anything you
would have used an RDBMS for.

@ The “iterative” query model makes recursive queries much
easier in Cypher than SQL.

@ For example, hierarchies or other complex tree relationships.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Introduction

Cypher is a declarative language similar to SQL, comprised of
distinct clauses.

In SQL, consider clauses like “SELECT something,” “FROM
somewhere” and “WHERE some condition” as the clauses.

In Cypher, the important clauses are “START", “MATCH",
“WHERE” and “RETURN".

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

A full query example.

1 START movie=node:node_auto_index(m_id="603")
2 RETURN movie;

This will grab all items with movie ID 603 as the starting point,
and then immediately return them?!.

e START designates which nodes to start from (you can start
from multiple nodes!)

@ RETURN designates what to return — in this case, the node
itself.

!Presumably there’s only 1, as this is an ID.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction

Neo4J Cypher Query and Data Manipulation Language

A more complicated query.

1
2
3

START person=node:node_auto_index (name="Graeme Douglas")
MATCH person--friend

RETURN friend.name;

This query will grab all Graeme's friends (where “friend” is defined
in either direction)

@ START finds the node with name Graeme Douglas

@ MATCH designates what things we want to find (do the
traversal, test matches)
e -- means “has a relationship in either direction” (i.e., at least
one of them considers the other a friend)

@ RETURN says to return all the friends names.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Essential clauses.

@ START defines starting points in the graph to search from.
These are retrieved by referencing element IDs or via index
lookups.

@ MATCH the graph pattern to match. Bound to the elements
defined in START and RETURN

@ WHERE predicate used to restrict results — think a selection
node from relational algebra

o RETURN description of the data to return.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

START clause.

Start clauses determine which nodes to start traversing from. This
is not just a performance consideration: it can change the results,
as graphs are not necessarily connected.

START n = node(*) means start from every node (and call
every node “n” in the other clauses)

Note that you assign variables in the START clause which are
referenced in other clauses.

START n = node(1,2,3) start from nodes 1, 2 and 3.

START a=node(1), b=node(2) start from nodes 1 and 2
simultaneously.

Don't worry too much if start points are confusing to you
(yet!). It'll all make sense soon.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

MATCH clause.

@ A match clause takes one or more patterns (“a path”) which
indicates how to find what you would like to match.

@ Using a name in a match clause makes that name available
elsewhere in the query

For example, in a WHERE or RETURN clause

@ An empty set of brackets () can be used in place of a name if
you only care about the relationship.

@ Relationships can be indicated with:

a--b: a relationship in any direction

a-->b: a relationship from the left (a) to the right (b)
a-[likes]-Db: a relationship of type “likes” in any direction.
a-->()<--b: all node pairs which have an outgoing
relationship to any third common node

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



NeodJ Introduction
Cypher Query and Data Manipulation Language

A note on depth control.

By default, when creating a path in the match clause, you're
talking about one level deep.

@ A path can have variable depth by simply placing an asterisk

*" at the end of the square brackets in a relationship
e a-[7*]->b describes any two nodes where there is some path
from a to b, at any depth

@ A minimum/maximum depth can also be set by following the
asterisk with a range “min..max"

@ a-[*2]->b describes all nodes a and b where the depth of the
path is at least 2 relationships.

@ a-[*2..5]->b describes all nodes a and b where the depth of
the path is at least 2 relationships and no more than 5
relationships.

@ a-[*2..2]->b describes all nodes a and b where the depth of
the path is exactly 2 relationships

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

WHERE clause.

This is just like a SQL where clause, it reduces the result set to
those that match some predicate

e follower.name =~ ‘S.*’ — match all names starting in S
and followed by any number of any character

@ (n.age < 30 and n.name = "Tobias")

@ Supports more/less everything you'd expect: or, and, not, <,
>, =

@ Regular expressions via =~ syntax.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

RETURN clause.

This is just a list of the things you actually want to return — this is
important, because in the match clause, you've defined variables,
some of which may be important, others not.

o RETURN mystart, other.something — returns the whole
mystart node, and the “something” key from the other node.

@ Can return multiple things. Can return all things (nodes,
relationship and path) matched in a query with RETURN *

@ Return values can be nodes or keys within nodes.

@ Can even return relationships via a special syntax in the
match section: a-[r:1ikes]-b, RETURN r

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

The declarative model |.

Both SQL and Cypher are declarative languages. More/less, this
means that you “declare” WHAT you want instead of HOW you
want to get it.

@ The “how" is left to the backend by translating your query in
to an execution plan.
@ In the Cypher case, the declarative style is more Prolog than
SQL.
o Specifically, you define variable names (arbitrary) and Cypher
finds the “solutions” that makes the constraints hold.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



NeodJ Introduction
Cypher Query and Data Manipulation Language

The declarative model 1.

Consider again our “friends” query:

1 START person=node:node_auto_index(name="Graeme Douglas")
2 MATCH person--friend
3 RETURN friend.name;

Line by line, we have:

@ 1. Find the node(s) with name “Graeme Douglas” in our
index and assign it to person. person will then be available
to the rest of the query.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction

Neo4J Cypher Query and Data Manipulation Language

The declarative model 1.

Consider again our “friends” query:

1 START person=node:node_auto_index(name="Graeme Douglas")
2 MATCH person--friend
3 RETURN friend.name;

Line by line, we have:

@ 1. Find the node(s) with name “Graeme Douglas” in our
index and assign it to person. person will then be available
to the rest of the query.

@ 2. Create the identifier friend and traverse the graph

structure looking for anything that is connected to person,
assign that to friend

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction

Neo4J Cypher Query and Data Manipulation Language

The declarative model 1.

Consider again our “friends” query:

1 START person=node:node_auto_index(name="Graeme Douglas")
2 MATCH person--friend
3 RETURN friend.name;

Line by line, we have:

@ 1. Find the node(s) with name “Graeme Douglas” in our
index and assign it to person. person will then be available
to the rest of the query.

@ 2. Create the identifier friend and traverse the graph
structure looking for anything that is connected to person,
assign that to friend

@ 3. Return a set of tuples, each containing the name of people
who met the criteria.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Other useful clauses.

o CREATE defines data, relationships and properties to create

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Other useful clauses.

o CREATE defines data, relationships and properties to create

e DELETE removes records from the graph (nodes,
relationships, etc)

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Other useful clauses.

o CREATE defines data, relationships and properties to create

e DELETE removes records from the graph (nodes,
relationships, etc)

o ORDER BY determines the order of the result set.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Other useful clauses.

o CREATE defines data, relationships and properties to create

e DELETE removes records from the graph (nodes,
relationships, etc)

o ORDER BY determines the order of the result set.
@ LIMIT limits the size of the result set.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

useful clauses.

o CREATE defines data, relationships and properties to create

e DELETE removes records from the graph (nodes,
relationships, etc)

o ORDER BY determines the order of the result set.
@ LIMIT limits the size of the result set.

o FOREACH applies an updating action to be performed once
per element in some list (SET).

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

useful clauses.

o CREATE defines data, relationships and properties to create

e DELETE removes records from the graph (nodes,
relationships, etc)

o ORDER BY determines the order of the result set.
@ LIMIT limits the size of the result set.

o FOREACH applies an updating action to be performed once
per element in some list (SET).

SET allows values to be set to properties.

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database



Introduction
Cypher Query and Data Manipulation Language

Resources

@ The Cypher documentation is awesome:
http://docs.neo4j.org/chunked/milestone/
cypher—query-lang.html

@ Cypher quick reference:
http://neo4j.org/resources/cypher

@ An argument for graph databases:
http://highscalability.com/
neo4j-graph-database-kicks-buttox

@ What is a graph DB? http://docs.neo4j.org/chunked/
milestone/what-is-a-graphdb.html

@ Top 10 ways to get to know Neo4J: http://blog.neo4dj.
org/2010/02/top-10-ways-to-get-to-know-neo4j.html

Giuseppe Burtini, Graeme Douglas and Yipin Guo Neo4J: Graph Database


http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://neo4j.org/resources/cypher
http://highscalability.com/neo4j-graph-database-kicks-buttox
http://highscalability.com/neo4j-graph-database-kicks-buttox
http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html
http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html
http://blog.neo4j.org/2010/02/top-10-ways-to-get-to-know-neo4j.html
http://blog.neo4j.org/2010/02/top-10-ways-to-get-to-know-neo4j.html

	Neo4J
	Introduction
	Cypher Query and Data Manipulation Language


