
COSC 416
NoSQL Databases

Hadoop and HDFS

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 416 - Dr. Ramon Lawrence

MapReduce and Hadoop
MapReduce was invented by Google and has an open source
implementation called Apache Hadoop (hadoop.apache.org/).
Implemented in Java, Apache Top Level Project, most

contributors from Yahoo

Hadoop is a software library designed for distributed processing
of large data sets using computer clusters.

Key components:
HDFS – Hadoop Distributed File System

Hadoop MapReduce – Parallel processing of data

Many other related projects and systems (we will talk about Hive
and Pig later).

Page 3

COSC 416 - Dr. Ramon Lawrence

Hadoop/HDFS Architecture
Distributed architecture assumes inexpensive, unreliable
commodity hardware. Replication allows reliability.

Two types of nodes:
NameNode maintains file metadata

DataNodes manage storage

File access API:
Mostly sequential access

Single writers and no locking

"Computation at the data":
Servers are for both storage and computation

Page 4

COSC 416 - Dr. Ramon Lawrence

Hadoop/HDFS Architecture (2)
Data:
Data is organized into files and directories.

Files are divided into fixed sized blocks and replicated across
cluster nodes. Replication factor on a per file basis (default 3).

NameNode stores the block replication information.

Writes are pipelined to replicas. Reads from nearest replica.

Master-Slave architecture:
NameNode is master and manages file information, blocks,

replication/mapping locations.

DataNodes store blocks on underlying OS. Clients can access
blocks directly on DataNodes without going through nameNode.

Page 5

COSC 416 - Dr. Ramon Lawrence

HDFS Architecture

Source: hadoop.apache.org Page 6

COSC 416 - Dr. Ramon Lawrence

MapReduce
MapReduce/Hadoop parallel processing involves mapping and
grouping file records by keys.

Data is stored in files. Users provide functions:
reader(file) – converts file data into records

map(records) – converts records into key-value pairs

combine(key, list of values) – optional aggregation of pairs after
map stage

reduce(key, list of values) – summary on key values to produce
output records

write(file) – writes records to output file

MapReduce (Hadoop) provides infrastructure for tying
everything together and distributing work across machines.

Page 7

COSC 416 - Dr. Ramon Lawrence

MapReduce Example
Web Data Analysis

Data file records: URL, timestamp, browser

Goal: Determine the most popular browser used.

Log
File

Reader

Reader

Reader
File is on
distributed file
system:
GFS, HDFS.

Converts file
data into
records.

Records

Map

Map

Map

Groups by key
(browser).
Distributes keys.

Reduce

Reduce

Reduce

Writer

Writer

Writer

Chrome

IE

Firefox

Records
Out
File

Output
in a fileWrites records

into file.
Aggregates over
all records with
given key. Page 8

COSC 416 - Dr. Ramon Lawrence

MapReduce Example (2)
Web Data Analysis
yahoo.com, Chrome
google.com, Firefox
google.com, Chrome
msdn.com, IE
yahoo.ca, Chrome

Map

Map

Map

Reduce

Reduce

Reduce

Chrome

IE

Firefox

xyz.com, Chrome
linkedin.com, Chrome
google.ca, IE
msdn.ca, Firefox
msdn.com, IE

costco.ca, Firefox
walmart.com, Firefox
amazon.com, Firefox
msdn.ca, IE
ubc.ca, IE

Chrome, {1,1,1}

IE, {1,1}

Firefox, {1,1,1}

IE, {1}

Firefox, {1}

Chrome, {1,1}

Firefox, {1}

IE, {1,1}

Chrome, {5}

IE, {5}

Firefox, {5}

Page 9

COSC 416 - Dr. Ramon Lawrence

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

public class WordCount {
public static class Map extends MapReduceBase implements

Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output, Reporter reporter) throws IOException {

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
output.collect(word, one);

}
}

}

WordCount Hadoop Example

Create Mapper

Import Hadoop APIs

Page 10

COSC 416 - Dr. Ramon Lawrence

public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable>

{
public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException

{
int sum = 0;
while (values.hasNext())

sum += values.next().get();

output.collect(key, new IntWritable(sum));
}

}

WordCount Hadoop Example (2)

Reducer

Page 11

COSC 416 - Dr. Ramon Lawrence

public static void main(String[] args) throws Exception
{

JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);
}

}

WordCount Hadoop Example (3)

Main program

Page 12

COSC 416 - Dr. Ramon Lawrence

Job Configuration Parameters
Job configuration parameters control the execution of Hadoop.

Examples:
core-site.xml
fs.default.name – file system name node name

hdfs-site.xml
dfs.replication - # of block replicas

dfs.data.dir – directory to store data blocks

mapred-site.xml
mapred.job.tracker – URL of job tracker

Page 13

COSC 416 - Dr. Ramon Lawrence

Hadoop Versions
As a relatively new open source project, Hadoop is rapidly
changing. There are many different versions, and
incompatibilities and differences between them (including
configuration files).

We are running 1.0.4 (latest stable release) that is consistent
with 0.23.X releases. When using web sources as references,
watch for the version being used.

Page 14

COSC 416 - Dr. Ramon Lawrence

Conclusion
Hadoop is an open source implementation of a highly scalable
distributed file system and MapReduce job processing
architecture.

It is designed for extremely large data processing on
commodity hardware.

Using MapReduce requires writing code that defines a
mapping and reducer and executing it on the cluster. Efficient
algorithms should be highly parallelizable and minimize the
amount of data transfer.

Page 15

COSC 416 - Dr. Ramon Lawrence

Objectives
Understand the Hadoop/HDFS architecture and file/block
allocation strategy.

Explain how a MapReduce program is designed.

Be able to understand a simple MapReduce program and write
small amounts of code.

