
COSC 416  
NoSQL Databases 

  
Hadoop and HDFS 

Dr. Ramon Lawrence 
University of British Columbia Okanagan 

ramon.lawrence@ubc.ca 

 



Page 2 

COSC 416 - Dr. Ramon Lawrence 

MapReduce and Hadoop 

 MapReduce was invented by Google and has an open source 
implementation called Apache Hadoop (hadoop.apache.org/). 

Implemented in Java, Apache Top Level Project, most 
contributors from Yahoo 

  

 Hadoop is a software library designed for distributed processing 
of large data sets using computer clusters.  

  

 Key components: 

HDFS – Hadoop Distributed File System 

Hadoop MapReduce – Parallel processing of data 

Many other related projects and systems (we will talk about Hive 
and Pig later). 

  

http://hadoop.apache.org/


Page 3 

COSC 416 - Dr. Ramon Lawrence 

Hadoop/HDFS Architecture 

 Distributed architecture assumes inexpensive, unreliable 
commodity hardware. Replication allows reliability. 

 Two types of nodes: 

NameNode maintains file metadata 

DataNodes manage storage 

  

 File access API: 

Mostly sequential access 

Single writers and no locking  

  

 "Computation at the data": 

Servers are for both storage and computation 



Page 4 

COSC 416 - Dr. Ramon Lawrence 

Hadoop/HDFS Architecture (2) 

 Data: 

Data is organized into files and directories.   

Files are divided into fixed sized blocks and replicated across 
cluster nodes.  Replication factor on a per file basis (default 3). 

NameNode stores the block replication information.  

Writes are pipelined to replicas.  Reads from nearest replica. 

  

 Master-Slave architecture: 

NameNode is master and manages file information, blocks, 
replication/mapping locations.  

DataNodes store blocks on underlying OS.  Clients can access 
blocks directly on DataNodes without going through nameNode. 



Page 5 

COSC 416 - Dr. Ramon Lawrence 

HDFS Architecture 

Source: hadoop.apache.org 



Page 6 

COSC 416 - Dr. Ramon Lawrence 

MapReduce 

 MapReduce/Hadoop parallel processing involves mapping and 
grouping file records by keys. 

  

 Data is stored in files. Users provide functions: 

reader(file) – converts file data into records 

map(records) – converts records into key-value pairs 

combine(key, list of values) – optional aggregation of pairs after 
map stage 

reduce(key, list of values) – summary on key values to produce 
output records 

write(file) – writes records to output file 

 MapReduce (Hadoop) provides infrastructure for tying 
everything together and distributing work across machines.  

 



Page 7 

COSC 416 - Dr. Ramon Lawrence 

MapReduce Example 
Web Data Analysis 

 Data file records: URL, timestamp, browser 

  

 Goal: Determine the most popular browser used. 

  

  

Log 
File 

Reader 

Reader 

Reader 
File is on 
distributed file 
system:  
GFS, HDFS. 

Converts file 
data into 
records. 

Records 

Map 

Map 

Map 

Groups by key 
(browser). 
Distributes keys. 

Reduce 

Reduce 

Reduce 

Writer 

Writer 

Writer 

Chrome 

IE 

Firefox 

Records 
Out 
File 

Output 
in a file 

Writes records 
into file. 

Aggregates over 
all records with 
given key. 



Page 8 

COSC 416 - Dr. Ramon Lawrence 

MapReduce Example (2) 
Web Data Analysis 

yahoo.com, Chrome 
google.com, Firefox 
google.com, Chrome 
msdn.com, IE 
yahoo.ca, Chrome 

Map 

Map 

Map 

Reduce 

Reduce 

Reduce 

Chrome 

IE 

Firefox 

xyz.com, Chrome 
linkedin.com, Chrome 
google.ca, IE 
msdn.ca, Firefox 
msdn.com, IE 

costco.ca, Firefox 
walmart.com, Firefox 
amazon.com, Firefox 
msdn.ca, IE 
ubc.ca, IE 

Chrome, {1,1,1} 

IE, {1,1} 

Firefox, {1,1,1} 

IE, {1} 

Firefox, {1} 

Chrome, {1,1} 

Firefox, {1} 

IE, {1,1} 

Chrome, {5} 

IE, {5} 

Firefox, {5} 



Page 9 

COSC 416 - Dr. Ramon Lawrence 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.conf.*; 

import org.apache.hadoop.io.*; 

import org.apache.hadoop.mapred.*; 

import org.apache.hadoop.util.*; 

 

public class WordCount { 

     public static class Map extends MapReduceBase implements   

                     Mapper<LongWritable, Text, Text, IntWritable> { 

     private final static IntWritable one = new IntWritable(1); 

     private Text word = new Text(); 

 

     public void map(LongWritable key, Text value, OutputCollector<Text, 

IntWritable> output, Reporter reporter) throws IOException { 

       String line = value.toString(); 

       StringTokenizer tokenizer = new StringTokenizer(line); 

       while (tokenizer.hasMoreTokens()) { 

         word.set(tokenizer.nextToken()); 

         output.collect(word, one); 

       } 

     } 

   } 

WordCount Hadoop Example 

Create Mapper 
 

Import Hadoop APIs 



Page 10 

COSC 416 - Dr. Ramon Lawrence 

   public static class Reduce extends MapReduceBase implements  

      Reducer<Text, IntWritable, Text, IntWritable>  

   { 

     public void reduce(Text key, Iterator<IntWritable> values,  

       OutputCollector<Text, IntWritable> output,  

       Reporter reporter) throws IOException  

     { 

       int sum = 0; 

       while (values.hasNext())  

         sum += values.next().get(); 

        

       output.collect(key, new IntWritable(sum)); 

     } 

   } 

WordCount Hadoop Example (2) 

Reducer 
 



Page 11 

COSC 416 - Dr. Ramon Lawrence 

   public static void main(String[] args) throws Exception  

   { 

     JobConf conf = new JobConf(WordCount.class); 

     conf.setJobName("wordcount"); 

 

     conf.setOutputKeyClass(Text.class); 

     conf.setOutputValueClass(IntWritable.class); 

 

     conf.setMapperClass(Map.class); 

     conf.setCombinerClass(Reduce.class); 

     conf.setReducerClass(Reduce.class); 

 

     conf.setInputFormat(TextInputFormat.class); 

     conf.setOutputFormat(TextOutputFormat.class); 

 

     FileInputFormat.setInputPaths(conf, new Path(args[0])); 

     FileOutputFormat.setOutputPath(conf, new Path(args[1])); 

 

     JobClient.runJob(conf); 

   } 

} 

WordCount Hadoop Example (3) 

Main program 



Page 12 

COSC 416 - Dr. Ramon Lawrence 

Job Configuration Parameters 

 Job configuration parameters control the execution of Hadoop. 

  

 Examples: 

core-site.xml 

fs.default.name – file system name node name 

hdfs-site.xml 

dfs.replication - # of block replicas 

dfs.data.dir – directory to store data blocks 

mapred-site.xml 

mapred.job.tracker – URL of job tracker 

  



Page 13 

COSC 416 - Dr. Ramon Lawrence 

Hadoop Versions 

 As a relatively new open source project, Hadoop is rapidly 
changing.  There are many different versions, and 
incompatibilities and differences between them (including 
configuration files). 

  

 We are running 1.0.4 (latest stable release) that is consistent 
with 0.23.X releases.  When using web sources as references, 
watch for the version being used. 



Page 14 

COSC 416 - Dr. Ramon Lawrence 

Conclusion 

 Hadoop is an open source implementation of a highly scalable 
distributed file system and MapReduce job processing 
architecture. 

  

 It is designed for extremely large data processing on 
commodity hardware. 

  

 Using MapReduce requires writing code that defines a 
mapping and reducer and executing it on the cluster.  Efficient 
algorithms should be highly parallelizable and minimize the 
amount of data transfer. 



Page 15 

COSC 416 - Dr. Ramon Lawrence 

Objectives 

 Understand the Hadoop/HDFS architecture and file/block 
allocation strategy. 

  

 Explain how a MapReduce program is designed. 

  

 Be able to understand a simple MapReduce program and write 
small amounts of code. 


