
DATA 301
Introduction to Data Analytics

Python

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

DATA 301: Data Analytics (2)

Why learn Python?
Python is increasingly the most popular choice of programming
language for data analysts because it is designed to be simple,
efficient, and easy to read and write.

There are many open source software and libraries that use Python
and data analysis tools built on them.

We will use Python to learn programming and explore fundamental
programming concepts of commands, variables, decisions, repetition,
and events.

DATA 301: Data Analytics (3)

What is Python?
Python is a general, high-level programming language designed for
code readability and simplicity.

Python is available for free as open source and has a large community
supporting its development and associated tools.

Python was developed by Guido van Rossum and first released in
1991. Python 2.0 was released in 2000 (latest version 2.7), and a
backwards-incompatible release Python 3 was in 2008.

• Our coding style will be Python 3 but most code will also work for Python 2.

• Name does refer to Monty Python.

DATA 301: Data Analytics (4)

Python Language Characteristics
Python supports:
• dynamic typing – types can change at run-time

• multi-paradigm – supports procedural, object-oriented, functional styles

• auto-memory management and garbage collection

• extendable – small core language that is easily extendable

Python core philosophies (by Tim Peters: https://www.python.org/dev/peps/pep-0020/)

• Beautiful is better than ugly

• Explicit is better than implicit

• Simple is better than complex

• Complex is better than complicated

• Readability counts

https://www.python.org/dev/peps/pep-0020/

DATA 301: Data Analytics (5)

Some Quotes
"If you can't write it down in English, you can't code it."

-- Peter Halpern

"If you lie to the computer, it will get you."
-- Peter Farrar

DATA 301: Data Analytics (6)

Introduction to Programming
An algorithm is a precise sequence of steps to produce a result. A
program is an encoding of an algorithm in a language to solve a
particular problem.

There are numerous languages that programmers can use to specify
instructions. Each language has its different features, benefits, and
usefulness.

The goal is to understand fundamental programming concepts that
apply to all languages.

DATA 301: Data Analytics (7)

Python: Basic Rules
To program in Python you must follow a set of rules for specifying your
commands. This set of rules is called a syntax.
• Just like any other language, there are rules that you must follow if you are to

communicate correctly and precisely.

Important general rules of Python syntax:
• Python is case-sensitive.

• Python is particular on whitespace and indentation.

• The end of command is the end of line. There is no terminator like a semi-colon.

• Use four spaces for indentation whenever in a block.
def spam():

eggs = 12

return eggs

print spam()

DATA 301: Data Analytics (8)

Comments
Comments are used by the programmer to document and explain the
code. Comments are ignored by the computer. Two types:
• 1) One line comment: put “#” before the comment and any characters to the end

of line are ignored by the computer.

• 2) Multiple line comment: put “"""” at the start of the comment and “"""” at
the end of the comment. The computer ignores everything between the start
and end comment indicators.

Example: # Single line comment

print (1) # Comment at end of line

""" This is a

multiple line

comment """

DATA 301: Data Analytics (9)

Python Programming
A Python program, like a book, is read left to right and top to bottom.

Each command is on its own line.

A user types in a Python program in a text editor or development
environment and then runs the program.

Sample Python program

name = "Joe"

print("Hello")

print("Name: "+name)

Flow of Execution
Start at first statement at
top and proceed down
executing each statement

DATA 301: Data Analytics (10)

Python Editor - jupyter
jupyter is a graphical, browser-based editor for Python.

To create a new notebook, select File, New Notebook, Python3.

DATA 301: Data Analytics (11)

Python Editor – jupyter notebook

Python code

Program output

Button to run code (shortcut is Ctrl+Enter)

DATA 301: Data Analytics (12)

Python: Hello World!
Simplest program:

print("Hello World!")

The print function will print to the terminal (standard output)
whatever data (number, string, variable) it is given.

DATA 301: Data Analytics (13)

Try it: Python Printing
Question 1: Write a Python program that prints "I am fantastic!".

Question 2: Write a Python program that prints these three lines:

I know that I can program in Python.

I am programming right now.

My awesome program has three lines!

DATA 301: Data Analytics (14)

Python Question
Question: How many of the following statements are TRUE?

1) Python is case-sensitive.

2) A command in Python is terminated by a semi-colon.

3) Indentation does not matter in Python.

4) A single line comment starts with """.

5) The print command prints to standard input.

A) 0 B) 1 C) 2 D) 3 E) 4

DATA 301: Data Analytics (15)

Variables
A variable is a name that refers to a location that stores a data value.

IMPORTANT: The value at a location can change using initialization or
assignment.

Age

18

Location Variable

Location
(box)

Value

Value (cute cat)

Variable
(label)petbox

DATA 301: Data Analytics (16)

Variable Assignment
Assignment using an = sets the value of a variable.

Example:

num = 10

message = "Hello world!"

num

10

message

Hello world!

DATA 301: Data Analytics (17)

Python Variables
To create a variable in Python, you must only provide a name.
• A variable type is dynamic. It can store numbers, strings, or Boolean at any time.

Example:

val = 5

val = "Hello"

Boolean values can be either True or False. Note case matters.

isAwesome = True

isAwesome = False

DATA 301: Data Analytics (18)

Variable Rules
Variables are a name that must begin with a letter and cannot contain
spaces.

Variables are created when they are first used. There is no special
syntax to declare (create) a variable.

Variable names ARE case-sensitive. Numbers are allowed (but not at
the start). Only other symbol allowed is underscore ('_');

A programmer picks the names for variables, but try to make the
names meaningful and explain their purpose.

Avoid naming variables as reserved words. A reserved word has
special meaning in the language.
• e.g. if, for, else

DATA 301: Data Analytics (19)

Python Variables Question
Question: How many of the following variable names are valid?

1) name

2) string2

3) 2cool

4) under_score

5) spaces name

6) else

A) 0 B) 1 C) 2 D) 3 E) 4

DATA 301: Data Analytics (20)

Python Math Expressions
Math expressions in Python:

Operation Syntax Example

Add + 5 + 3

Subtract - 10 – 2

Multiply * 5 * 3

Divide / 9 / 4

Modulus % 9 % 4
(answer is 1)

Exponent ** 5 ** 2
(answer is 25)

DATA 301: Data Analytics (21)

Expressions - Operator Precedence
Each operator has its own priority similar to their priority in regular
math expressions:
• 1) Any expression in parentheses is evaluated first starting with the inner most

nesting of parentheses.

• 2) Exponents

• 3) Multiplication and division (*, /, %)

• 4) Addition and subtraction (+,-)

DATA 301: Data Analytics (22)

Python Expressions Question
Question: What is the value of this expression:

8 ** 2 + 12 / 4 * (3 – 1) % 5

A) 69 B) 65 C) 36 D) 16 E) 0

DATA 301: Data Analytics (23)

Try it: Python Variables and Expressions
Question 1: Write a program that prints the result of 35 + 5 * 10.

Question 2: Write a program that uses at least 3 operators to end up
with the value 99.

Question 3: Write a program that has a variable called name with the
value of your name and a variable called age storing your age. Print
out your name and age using these variables.

DATA 301: Data Analytics (24)

Strings
Strings are sequences of characters that are surrounded by either
single or double quotes.
• Use \ to escape ' E.g. There\'s

• Can use triple double quotes """ for a string that spans multiple lines.

Example:

name = "Joe Jones"

storeName = 'Joe\'s Store'

print("""String that is really long

with multiple lines

and spaces is perfectly fine""")

DATA 301: Data Analytics (25)

Python String Indexing
Individual characters of a string can be accessed using square brackets
([]) with the first character at index 0.

Example:

str = "Hello"

print(str[1]) # e

print("ABCD"[0]) # A

print(str[-1]) # o

Negative values start at end and go backward

DATA 301: Data Analytics (26)

Rules for Strings in Python
Must be surrounded by single or double quotes.

Can contain most characters except enter, backspace, tab, and backslash.
• These special characters must be escaped by using an initial "\".

• e.g. \n – new line, \' – single quote, \\ - backslash, \" – double quote

• A string in raw mode (r before quote) will ignore backslash escape. May be
useful if data contains escapes. Example: st = r"slash\there\"

Double quoted strings can contain single quoted strings and vice versa.

Any number of characters is allowed.

The minimum number of characters is zero "", which is called the empty
string.

String literals (values) have the quotation marks removed when displayed.

DATA 301: Data Analytics (27)

Python Strings Question
Question: How many of the following are valid Python strings?

1) ""

2) ''

3) "a"

4) " "

5) """

6) "Joe\' Smith\""

A) 1 B) 2 C) 3 D) 4 E) 5

DATA 301: Data Analytics (28)

Python String Functions

Operation Syntax Example Output

Length len() len(st) 5

Upper case upper() st.upper() HELLO

Lower case lower() st.lower() hello

Convert to a string str() str(9) "9"

Concatenation + st1 + st2 HelloGoodbye

Substring [] st[0:3]

st[1:]

Hel

ello

String to int int() int("99") 99

st = "Hello"

st2 = "Goodbye"

DATA 301: Data Analytics (29)

String Operators: Concatenation
The concatenation operator is used to combine two strings into a
single string. The notation is a plus sign '+'.

Example:

st1 = "Hello"

st2 = "World!"

st3 = st1 + st2 # HelloWorld!

print(st1+st1)

num = 5

print(st1+str(num)) # Hello5

Must convert number to string before

concatenation

DATA 301: Data Analytics (30)

String Concatenation Question
Question: What is the output of this code?

A) Error

B) Hello5World!

C) Hello5 World!

D) Hello 5 World!

st1 = "Hello"

st2 = "World!"

num = 5

print(st1 + str(num) + " " + st2)

DATA 301: Data Analytics (31)

Substring
The substring function will return a range of characters from a string.

Syntax:

Examples:

st = "Fantastic"

print(st[1]) # a

print(st[0:6]) # Fantas

print(st[4:]) # astic

print(st[:5]) # Fanta

print(st[-6:-2]) # tast

st[start:end] # start is included, end is not

first character is index 0

DATA 301: Data Analytics (32)

Substring Question
Question: What is the output of this code?

A) ABCDCDEFGABCD

B) ABCDEFGABC

C) ACDDEFGABCD

D) BCDDEFGABCD

E) BCDECDEFGABC

st = "ABCDEFG"

print(st[1] + st[2:4] + st[3:] + st[:4])

DATA 301: Data Analytics (33)

Split
The split function will divide a string based on a separator.

Examples:
st = "Awesome coding! Very good!"

print(st.split())

['Awesome', 'coding!', 'Very', 'good!']

print(st.split("!"))

['Awesome coding', ' Very good', '']

st = 'data,csv,100,50,,25,"use split",99'

print(st.split(","))

['data', 'csv', '100', '50', '', '25',

'"use split"', '99']

DATA 301: Data Analytics (34)

Try it: Python String Variables and Functions
Question 1: Write a Python program that prints out your name and
age stored in variables like this:

Question 2: Write a Python program that prints out the first name and
last name of Steve Smith like below. You must use substring.
• Bonus challenge: Use find() function so that it would work with any name.

Name: Joe

Age: 25

First Name: Steve

Last Name: Smith

DATA 301: Data Analytics (35)

Print Formatting
The print method can accept parameters for formatting.

This is one of the most obvious changes between Python 2:

and Python 3:

print "Hello"

print("Hello")

print("Hi", "Amy", ", your age is", 21)

print("Hi {}, your age is {}".format("Amy",21))

DATA 301: Data Analytics (36)

Python Date and Time
Python supports date and time data types and functions.

First, import the datetime module:

from datetime import datetime

Functions:
now = datetime.now()

print(now)

current_year = now.year

current_month = now.month

current_day = now.day

print("{}-{}-{} {}:{}:{}".format(now.year, now.month,

now.day, now.hour, now.minute, now.second))

DATA 301: Data Analytics (37)

Python Clock
Python time() function returns the current time in seconds:

import time

startTime = time.time()

print("Start time:", startTime)

print("How long will this take?")

endTime = time.time()

print("End time:", endTime)

print("Time elapsed:", endTime-startTime)

DATA 301: Data Analytics (38)

Python Input
To read from the keyboard (standard input), use the method input:

• Note in Python 2 the method is called raw_input().

name = input("What's your name?")

print(name)

age = input("What's your age?")

print(age)

Prompt for value
from user

print out value received

DATA 301: Data Analytics (39)

Try it: Python Input, Output, and Dates
Question 1: Write a program that reads a name and prints out the
name, the length of the name, the first five characters of the name.

Question 2: Print out the current date in YYYY/MM/DD format.

DATA 301: Data Analytics (40)

Comparisons
A comparison operator compares two values. Examples:
• 5 < 10

• N > 5 # N is a variable. Answer depends on what is N.

Comparison operators in Python:
• > - Greater than
• >= - Greater than or equal
• < - Less than
• <= - Less than or equal
• == - Equal (Note: Not "=" which is used for assignment!)
• != - Not equal

The result of a comparison is a Boolean value which is either True or
False.

DATA 301: Data Analytics (41)

Conditions with and, or, not
A condition is an expression that is either True or False and may
contain one or more comparisons. Conditions may be combined
using: and, or, not.
• order of evaluation: not, and, or May change order with parentheses.

Operation Syntax Examples Output

AND
(True if both are True)

and True and True

False and True

False and False

True

False

False

OR
(True if either or both are True)

or True or True

False or True

False or False

True

True

False

NOT
(Reverses: e.g. True becomes False)

not not True

not False

False

True

DATA 301: Data Analytics (42)

Condition Examples
n = 5

v = 8

print(n > 5) # False

print(n == v) # False

print(n != v) # True

print(n == v and n+4>v) # False

print(n == v or n+4>v) # True

print(n+1 == v-2 or not v>4) # True

DATA 301: Data Analytics (43)

Python Condition Question
Question: How many of the following conditions are TRUE?

1) True and False

2) not True or not False

3) 3 > 5 or 5 > 3 and 4 != 4

4) (1 < 2 or 3 > 5) and (2 == 2 and 4 != 5)

5) not (True or False) or True and (not False)

A) 0 B) 1 C) 2 D) 3 E) 4

DATA 301: Data Analytics (44)

Decisions
Decisions allow the program to perform different actions based on
conditions. Python decision syntax:

• The statement after the if condition is only performed if the condition is True.

• If there is an else, the statement after the else is done if condition is False.

• Indentation is important! Remember the colon!

if condition:

statement

if condition:

statement

else:

statement

Done if condition
is True

Done if condition
is False

DATA 301: Data Analytics (45)

Decisions if/elif Syntax
If there are more than two choices, use the if/elif/else syntax:

if condition:

statement

elif condition:

statement

elif condition:

statement

else:

statement

if n == 1:

print("one")

elif n == 2:

print("two")

elif n == 3:

print("three")

else:

print("Too big!")

print("Done!")

DATA 301: Data Analytics (46)

Decisions: Block Syntax
Statements executed after a decision in an if statement are indented
for readability. This indentation is also how Python knows which
statements are part of the block of statements to be executed.
• If you have more than one statement, make sure to indent them. Be consistent

with either using tabs or spaces. Do not mix them!

if age > 19 and name > "N":

print("Not a teenager")

print("Name larger than N")

else:

print("This is statement #1")

print(" and here is statement #2!")

DATA 301: Data Analytics (47)

Question: Decisions
Question: What is the output of the following code?

A) nothing B) one C) two D) three

n = 3

if n < 1:

print("one")

elif n > 2:

print("two")

elif n == 3:

print("three")

DATA 301: Data Analytics (48)

Question: Decisions (2)
Question: What is the output of the following code?

A) nothing

B) one

C) two

D) three

E) error

n = 3

if n < 1:

print("one")

elif n > 2

print("two")

else:

print("three")

DATA 301: Data Analytics (49)

Question: Decisions (3)
Question: What is the output of the following code?

A) nothing

B) one

four

C) three

D) three

four

E) error

n = 1

if n < 1:

print("one")

elif n > 2:

print("two")

else:

print("three")

print("four")

DATA 301: Data Analytics (50)

Question: Decisions (4)
Question: What is the output of the following code?

A) nothing D) one

B) one five

four zero

C) one four

five

four E) error

n = 0

if n < 1:

print("one")

print("five")

elif n == 0:

print("zero")

else:

print("three")

print("four")

DATA 301: Data Analytics (51)

Try it: Decisions
Question 1: Write a Python program that asks the user for a number
then prints out if it is even or odd.

Question 2: Write a Python program that asks the user for a number
between 1 and 5 and prints out the word for that number (e.g. 1 is
one). If the number is not in that range, print out error.

DATA 301: Data Analytics (52)

Loops and Iteration
A loop repeats a set of statements multiple times until some condition
is satisfied.
• Each time a loop is executed is called an iteration.

A for loop repeats statements a number of times.

A while loop repeats statements while a condition is True.

DATA 301: Data Analytics (53)

The while Loop
The most basic looping structure is the while loop.

A while loop continually executes a set of statements while a condition
is true.

Syntax:

Example:

Question: What does this print?

while condition:

statements

n = 1

while n <= 5:

print(n)

n = n + 1 # Shorthand: n += 1

DATA 301: Data Analytics (54)

Question: while Loop
Question: What is the output of the following code?

A) numbers 3 to -1 B) numbers 3 to 0 C) numbers 4 to 0

D) numbers 4 to -1 E) numbers 4 to infinity

n = 4

while n >= 0:

n = n - 1

print(n)

DATA 301: Data Analytics (55)

Question: while Loop (2)
Question: What is the output of the following code?

A) nothing B) numbers 1 to 5 C) numbers 1 to 6 D) lots of 1s

n = 1

while n <= 5:

print(n)

n = n + 1

DATA 301: Data Analytics (56)

The for Loop
A for loop repeats statements a given number of times.

Python for loop syntax:

for i in range(1,6):

print(i)
Starting number

Up to but not including
ending number

DATA 301: Data Analytics (57)

Using range
The basic form of range is:

• start is inclusive, end is not inclusive

• default increment is 1

May also specify an increment:

or just the end:

range(start,end)

range(start, end, increment)

range(end)

DATA 301: Data Analytics (58)

For Loop and While Loop
The for loop is like a short-hand for the while loop:

i=0
while i < 10:

print(i)

i += 1

for i in range(0, 10, 1):

print(i)

DATA 301: Data Analytics (59)

Common Problems – Infinite Loops
Infinite loops are caused by an incorrect loop condition or not
updating values within the loop so that the loop condition will
eventually be false.

Example:

n = 1

while n <= 5:

print(n)

Forgot to increase n -> infinite loop

DATA 301: Data Analytics (60)

Common Problems – Off-by-one Error
The most common error is to be "off-by-one". This occurs when you
stop the loop one iteration too early or too late.

Example:
• This loop was supposed to print 0 to 10, but it does not.

Question: How can we fix this code to print 0 to 10?

for i in range(0,10):

print(i)

DATA 301: Data Analytics (61)

Question: for Loop
Question: How many numbers are printed with this loop?

A) 0 B) 9 C) 10 D) 11 E) error

for i in range(1,10):

print(i)

DATA 301: Data Analytics (62)

Question: for Loop
Question: How many numbers are printed with this loop?

A) 0 B) 9 C) 10 D) 11 E) error

for i in range(11,0):

print(i)

DATA 301: Data Analytics (63)

Try it: for Loops
Question 1: Write a program that prints the numbers from 1 to 10
then 10 to 1.

Question 2: Write a program that prints the numbers from 1 to 100
that are divisible by 3 and 5.

Question 3: Write a program that asks the user for 5 numbers and
prints the maximum, sum, and average of the numbers.

DATA 301: Data Analytics (64)

Lists Overview
A list is a collection of data items that are referenced by index.
• Lists in Python are similar to arrays in other programming languages

A list allows multiple data items to be referenced by one name and
retrieved by index.

Python list:

0

Indexes
list variable

name

data = [100, 200, 300, 'one', 'two', 600]

1 2 3 4 5

DATA 301: Data Analytics (65)

Retrieving Items from a List
Items are retrieved by index (starting from 0) using square brackets:

data = [100, 200, 300, 'one', 'two', 600]

print(data[0]) # 100

print(data[4]) # 'two'

print(data[6]) # error – out of range

print(data[len(data)-1]) # 600

print(data[-1]) # 600

print(data[2:4]) # [300, 'one']

Create an empty list:

emptyList = []

DATA 301: Data Analytics (66)

List Operations

Operation Syntax Examples Output

Add item list.append(val) data.append(1) [1, 2, 3, 5, 1]

Insert item list.insert(idx,val) data.insert(3,4) [1, 2, 3, 4, 5]

Remove item list.remove(val) data.remove(5) [1, 2, 3]

Update item list[idx]=val lst[0]=10 [10]

Length of list len(list) len(data) 4

Slice of list list[x:y] data[0:3] [1, 2, 3]

Find index list.index(val) data.index(5) 3

Sort list list.sort() data.sort() [1, 2, 3, 5]

data = [1, 2, 3, 5]

lst = []

DATA 301: Data Analytics (67)

List Details
If you provide an index outside of the valid range, Python will return
an index error.

To sort in reverse order, do this:

For loops are used to iterate though items in a list:

data.sort(reverse=True)

for v in data:

print(v)

DATA 301: Data Analytics (68)

Advanced: Python Lists Comprehensions
List comprehensions build a list using values that satisfy a criteria.

Equivalent to:

evenNums100 = [n for n in range(101) if n%2==0]

evenNums100 = []

for n in range(101):

if n%2==0:

evenNums100.append(n)

DATA 301: Data Analytics (69)

Advanced: Python Lists Slicing
List slicing allows for using range notation to retrieve only certain
elements in the list by index. Syntax:

Example:

list[start:end:stride]

data = list(range(1,11))

print(data) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print(data[1:8:2]) # [2, 4, 6, 8]

print(data[1::3]) # [2, 5, 8]

DATA 301: Data Analytics (70)

Question: List
Question: At what index is item with value 3?

A) 0 B) 1 C) 2 D) 3 E) not there

data = [1, 2, 3, 4, 5]

data.remove(3)

data.insert(1, 3)

data.append(2)

data.sort()

data = data[1:4]

DATA 301: Data Analytics (71)

Try it: Lists
Question 1: Write a program that puts the numbers from 1 to 10 in a
list then prints them by traversing the list.

Question 2: Write a program that will multiply all elements in a list by
2.

Question 3: Write a program that reads in a sentence from the user
and splits the sentence into words using split(). Print only the words
that are more than 3 characters long. At the end print the total
number of words.

DATA 301: Data Analytics (72)

Python Dictionary
A dictionary is a collection of key-value pairs that are manipulated
using the key.

dict = {1:'one', 2:'two', 3:'three'}

print(dict[1]) # one

print(dict['one']) # error - key not found

if 2 in dict: # Use in to test for key

print(dict[2]) # two

dict[4] = 'four' # Add 4:'four'

del dict[1] # Remove key 1

dict.keys() # Returns keys

dict.values() # Returns values

DATA 301: Data Analytics (73)

Question: Dictionary
Question: What is the value printed?

A) 7 B) 0 C) 10 D) 6 E) error

data = {'one':1, 'two':2, 'three':3}

data['four'] = 4

sum = 0

for k in data.keys():

if len(k) > 3:

sum = sum + data[k]

print(sum)

DATA 301: Data Analytics (74)

Try it: Dictionary
Question: Write a program that will use a dictionary to record the
frequency of each letter in a sentence. Read a sentence from the user
then print out the number of each letter.

Code to create the dictionary of letters:

import string

counts = {}

for letter in string.ascii_uppercase:

counts[letter] = 0

print(counts)

DATA 301: Data Analytics (75)

Functions and Procedures
A procedure (or method) is a sequence of program statements that
have a specific task that they perform.
• The statements in the procedure are mostly independent of other statements in

the program.

A function is a procedure that returns a value after it is executed.

We use functions so that we do not have to type the same code over
and over. We can also use functions that are built-in to the language
or written by others.

DATA 301: Data Analytics (76)Defining and Calling
Functions and Procedures
Creating a function involves writing the statements and providing a
function declaration with:
• a name (follows the same rules as identifiers)

• list of the inputs (called parameters)

• the output (return value) if any

Calling (or executing) a function involves:
• providing the name of the function

• providing the values for all arguments (inputs) if any

• providing space (variable name) to store the output (if any)

DATA 301: Data Analytics (77)

Defining and Calling a Function
Consider a function that returns a number doubled:

def doubleNum(num):

num = num * 2

print("Num: "+num)

return num
Call function by

name

def

Keyword Parameter Name

n = doubleNum(5) # 10

print(str(doubleNum(n))) # ??

Argument

Function Name

DATA 301: Data Analytics (78)

Python Built-in Math Functions

Math

import math

print(math.sqrt(25))

Import only a function

from math import sqrt

print(sqrt(25))

Print all math functions

print(dir(math))

DATA 301: Data Analytics (79)

Other Python Built-in Functions
max, min, abs:

type() returns the argument data type:

print(max(3, 5, 2)) # 5

print(min(3, 5, 2)) # 2

print(abs(-4)) # 4

print(type(42)) # <class 'int'>

print(type(4.2)) # <class 'float'>

print(type('spam')) # <class 'str'>

DATA 301: Data Analytics (80)

Python Random Numbers
Use random numbers to make the program have different behavior
when it runs.

from random import randint

coin = randint(0, 1) # 0 or 1

die = randint(1, 6) # 1 to 6

print(coin)

print(die)

DATA 301: Data Analytics (81)

Advanced: Python Functions
Python supports functional programming allowing functions to be
passed like variables to other functions.
• Lambda functions are functions that do not have a name.

Example:

def doFunc(func, val):

return func(val)

print(doFunc(doubleNum, 10)) # 20

print(doFunc(lambda x: x * 3, 5)) # 15

DATA 301: Data Analytics (82)

Question: Functions
Question: What is the value printed?

A) 0 B) 6 C) 15 D) 21 E) error

def triple(num):

return num * 3

n = 5

print(triple(n)+triple(2))

DATA 301: Data Analytics (83)

Practice Questions: Functions
1) Write a function that returns the largest of two numbers.

2) Write a function that prints the numbers from 1 to N where N is its
input parameter.

Call your functions several times to test that they work.

DATA 301: Data Analytics (84)

Conclusion
Python is a general, high-level programming language designed for
code readability and simplicity.

Programming concepts covered:

• variables, assignment, expressions, strings, string functions

• making decisions with conditions and if/elif/else

• repeating statements (loops) using for and while loops

• reading input with input() and printing with print()

• data structures including lists and dictionaries

• creating and calling functions, using built-in functions (math, random)

Python is a powerful tool for data analysis and automation.

DATA 301: Data Analytics (85)

Objectives
• Explain what is Python and note the difference between Python 2 and 3

• Define: algorithm, program, language, programming

• Follow Python basic syntax rules including indentation

• Define and use variables and assignment

• Apply Python variable naming rules

• Perform math expressions and understand operator precedence

• Use strings, character indexing, string functions

• String functions: split, substr, concatenation

• Use Python datetime and clock functions

• Read input from standard input (keyboard)

DATA 301: Data Analytics (86)

Objectives (2)
• Create comparisons and use them for decisions with if

• Combine conditions with and, or, not

• Use if/elif/else syntax

• Looping with for and while

• Create and use lists and list functions

• Advanced: list comprehensions, list slicing

• Create and use dictionaries

• Create and use Python functions

• Use built-in functions in math library

• Create random numbers

• Advanced: passing functions, lambda functions

