
COSC 123
Computer Creativity

Course Introduction

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Course Objectives
1) To be creative with programming and write fun, interesting
programs

2) To master fundamental programming skills of data variables,
decisions, iteration, and methods

3) To learn to create stories using the Alice programming
language

4) To learn the Java language, the basics of object-oriented
programming, and how to create larger programs

5) To learn about graphics, events, and exceptions in Java

Page 3

COSC 123 - Dr. Ramon Lawrence

How to Pass This Course
The most important things to do to pass this course:
Attend and participate in class
Read notes before class as preparation.

Attend the labs and do all lab assignments
They are for marks, and they are good practice and exam questions.

To get an “A” in this course do all the above plus:
Spend more time practicing programming including questions in

the notes and the free-form labs.

Page 4

COSC 123 - Dr. Ramon Lawrence

My Expectations
My goal is for you to SHOW UP TO CLASS AND LABS and
spend the effort to learn the material.

Although this class may be “easy” for some, you will not pass
this class without effort and attendance.

The course will be very straightforward – If you do the work, you
will do well.

You should practice programming outside of class/labs.

Your mark is 80% perspiration and 20% inspiration.

Page 5

COSC 123 - Dr. Ramon Lawrence

The Lab Assignments
In each lab we will work on computers on a lab assignment.

Lab assignments are worth 20% of your overall grade.

Most assignments are due approximately one week after the lab.
No late assignments will be accepted.

An assignment may be handed in any time before the due date.

Some lab assignments are larger and allow you to create your
own programs.

Lab assignments are done in pairs (pair programming).

The lab assignments are critical to learning the material and
are designed to prepare you for the exams!

Page 6

COSC 123 - Dr. Ramon Lawrence

Pair Programming
All lab assignments and projects will be done using the pair-
programming approach.
Students will select a partner at the start of class that will be

their partner for the duration of the course.
Students may ask the professor for help in finding a suitable

partner.
Accommodation is made for students whose partner leaves the

course before its completion.
Both students in the pair receive the same mark.

Pair programming has been shown to increase learning and
satisfaction while programming.

Page 7

COSC 123 - Dr. Ramon Lawrence

Class Quizzes and Questions
To encourage attendance and effort, 20% of your overall grade
is allocated to answering questions in class.

There are two types of questions:
10% - for electronic questions answered using clickers
There will be at least 90 questions each worth 1 mark. You need at

least 70 to get the full 10%.

You must be present with your clicker to get your answers counted.

The marks are pro-rated. Example: if you get 50 right you would get
50/70 = 7%.

10% - for programming and written questions
There will be at least 40 programming and written questions.

You need at least 40 points. You get 2 points for showing a correct
answer in class on or before the day it is covered, and 1 point for
providing an answer within 3 days of that class.

You should plan and work ahead as not all questions will be given
sufficient time to complete during class time. Page 8

COSC 123 - Dr. Ramon Lawrence

Why are you here?
Reasons Why People Take This Course

A) I want an easy credit.

B) I want an easy Science credit (Arts Majors).

C) I want to learn how to be creative using programming.

D) COSC 122 was okay, and I am interested in more.

E) Alice and 3D worlds look pretty cool.

Page 9

COSC 123 - Dr. Ramon Lawrence

What do you expect?
What Grade are You Expecting to Get?

A) A

B) B

C) C

D) D

E) F

Page 10

COSC 123 - Dr. Ramon Lawrence

Programming Experience
What is Your Programming Experience?

A) None (or I forgot everything I have seen before)

B) I remember some of the programming in COSC 122 or have
programmed on my own before.

C) I have taken COSC 111/121 or equivalent.

D) I have taken Computer Science courses beyond the 1st year.

E) I program all the time. I plan on being the next Bill Gates or
Steve Jobs.

Page 11

COSC 123 - Dr. Ramon Lawrence

Why this Course is Important
This course will make programming fun and relevant.
Our economy, health, and entertainment is dependent on

software written by programmers.
We will learn to be creative programmers, so that we may

create great software to be used by others.

Important results:
Storyboarding – We will use Alice to tell stories with programs.
Algorithmic Thinking – We will learn how to solve problems

by specifying precise sequences of actions.
Collaboration – We will program in teams of two to build

interpersonal skills and increase our knowledge.
Java Language – We will learn the Java programming

language that can be used in many areas including future
computer science courses.

Page 12

COSC 123 - Dr. Ramon Lawrence

The Essence of the Course
If you walk out of this course with nothing else you should:

Become a creative programmer with the ability to problem
solve, perform critical thinking, and communicate precisely.

This course is not about learning a particular language or even
programming itself.

Page 13

COSC 123 - Dr. Ramon Lawrence

Introduction to Alice
Alice is a computer environment in which you create virtual
worlds containing three-dimensional characters and objects
that move and interact.

Alice is an integrated development environment (IDE) – a
program used to create and run another program.

Versions for Windows and Mac OS are available from the
Alice website: http://www.alice.org.

Let's try a couple of demos!

COSC 123
Computer Creativity

Introduction to Alice

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Learn the basic idea of programming and its key concepts

2) Experiment with the Alice environment and create worlds.

3) Learn about objects, classes, and methods.

4) Set and modify the properties of an object.

5) Create new objects including composite objects.

6) Learn how to animate many objects simultaneously.

Page 3

COSC 123 - Dr. Ramon Lawrence

Programming
What is programming?
Programming is the process of constructing programs in order

to instruct a computer on how to solve problems. It is the act of
writing out the steps of an algorithm.

A program is a sequence of simple computer instructions in
some language which tell the computer the necessary steps to
solve a problem or complete a task.

A language is the structure and syntax used to communicate to
the computer the tasks it is required to perform.

Page 4

COSC 123 - Dr. Ramon Lawrence

Why do we program?
Electronic devices require instructions to perform their function.
Programming is our way of communicating those instructions.

Programs are written to do many things:
Allow computes to communicate on the Internet

Control airplanes, factories, cars, and electronics

Send email, make a YouTube video, send a Twitter message

Run businesses, handle inventory, trade stocks

Any millions of others… Your ideas?

The ability to program in a digital society makes you a content
producer rather than just a consumer.
Producers have the ability to impact others by creating and

distributing their creations.

Page 5

COSC 123 - Dr. Ramon Lawrence

Programming and Creativity
Programming creates digital content. Creativity is at two levels:
1) Programming allows us to express our visions electronically

for others to use.

2) The act of programming to realize the vision requires creativity
and problem solving.

All programs that you use (Internet, email, Microsoft Office,
YouTube, Google) are the result of programmer creativity.
They had the vision to determine what they wanted to build and

how that product can impact society.

They had the ability to realize that vision by creating the
necessary programs.

Page 6

COSC 123 - Dr. Ramon Lawrence

Programming Languages
Often the fun and creativity that programming allows gets lost in
the details of the programming language.

The programming language is the format that we express our
vision and approach to the computer. Each language has its
own features, benefits, issues, and syntax.

The challenge is that to communicate with the computer we
need to learn the language and associated tools and rules.
Learning the language and tools takes practice and patience.

Analogy:
Writers need to be fluent in the language they write.

Artists need to know the basic techniques for painting/drawing.

Page 7

COSC 123 - Dr. Ramon Lawrence

Programming Languages
Alice and Java

The two programming languages that we use are very different.

Alice is a graphical language designed to teach programming.
All Alice programming is done graphically (very little typing).
Alice programs are 3D stories and animations.

Java is a general purpose language used in industry and other
programming courses. Java allows you to create anything and
runs on most computes and cell phones.

Artistic comparison: Alice is like paint by numbers whereas Java
is an open canvas for oil painting.
Issue: “With great power comes great responsibility.”

Page 8

COSC 123 - Dr. Ramon Lawrence

Programming Concepts
There are some basic techniques common to all languages.
Learning the concepts is more important than the language.

Key programming concepts:
data variables – storing and using data in named locations

expressions – computations on data to produce new results

execution order – instructions are given in the correct order

decisions – perform different actions based on a condition

iteration – repeat a sequence of steps multiple times

methods – groups of instructions with a particular purpose

data structures – organizations to hold many data items

code organization – larger programs need to structure the code
so it can be easily created and modified (object-oriented)

Page 9

COSC 123 - Dr. Ramon Lawrence

Programming - Art or Science?
Is programming an art or a science?
It is a science because algorithms and data structures can be

analyzed for performance and chosen with respect to their
relevance to a particular problem.

It is an art or craft because skills of programmers vary widely,
even with similar training, and the "best" solution to the problem
is often open to debate.

In computer science, we teach you the "science" component.
We want you to understand the choices you make and the

reasons for them.

However, students will all have different natural abilities and
talents with respect to programming.

If it is easy or natural for you, great! If not, then fall back on the
science and the techniques we teach to help you!

Page 10

COSC 123 - Dr. Ramon Lawrence

Programming: Art or Science?
Question: What do you think programming is most like?

A) Art (creativity)

B) Science (experimentation)

C) Engineering (construction)

D) All of the above

E) Other or none of the above

Page 11

COSC 123 - Dr. Ramon Lawrence

Programming Practice
Like arts/sports, programming is a skill that requires practice.
A musician practices scales to learn the basics and does the

same song many times to master the techniques. Each song
has its own skills and techniques used.

A programmer practices by creating programs to perform tasks.
The programs require understanding of the language and tools,
and the solutions require composing techniques.

Key point: Like an artist, you must commit to practicing the
craft. Programming skill comes from practice not memorization.

The labs are designed to give you some practice, but mastery
will require more. Practicing is your studying for this course!

Page 12

COSC 123 - Dr. Ramon Lawrence

The 5 Basic Steps of
Software Development

A programmer does NOT begin creating without a plan.

Developing a program should follow five basic steps:
1) Specification - Determine the scope of your problem and

what you want your program to do.

2) Design - Determine the structures and algorithms necessary
(how) to solve your problem at a high-level of abstraction.

3) Implementation - Start writing the code on the computer.

4) Testing, Execution, and Debugging - Test your program
for various cases and fix any problems.

5) Maintenance - Over time, modify your program as
necessary to handle new data or more complicated problems.

Page 13

COSC 123 - Dr. Ramon Lawrence

Programming with Alice
Alice is a 3D programming language designed to teach
programming.

Alice allows you to compose stories which contain objects and
scenery that interact.

Programming a story involves creating objects and scenery
(the data), moving and interacting the objects (the instructions
and methods), and everything in the story occurs according to
a script (set of instructions). The script may involve decisions,
loops, and events.

Page 14

COSC 123 - Dr. Ramon Lawrence

Alice Environment

Start Program

Object Tree

Details Pane

Code editor

World View Events Editor

Page 15

COSC 123 - Dr. Ramon Lawrence

Objects
All objects in the Alice world are listed in the object tree.

Objects are elements in the world that have a name.

Two standard objects are the camera and the light source.
Most worlds have a ground surface which is also an object.

The camera controls set the point of view.

Object TreeWorld View Camera Controls

This world has five objects: camera,
light, ground, cube, and cube2.

Page 16

COSC 123 - Dr. Ramon Lawrence

Methods
A method is a set of statements that can be called.
Methods perform actions and are associated with objects. The

methods define an object’s behavior (what it can do).

The world object has a method called my first method. This
method is called when the animation starts.

Page 17

COSC 123 - Dr. Ramon Lawrence

Methods (2)
Calling a method is the act of running a method of an object.

Methods can accept parameters which provide input data for
the method to use.

A method consists of a sequence of statements. Statements
may be calls to other methods or statements to perform
decisions, loops, or calculations. Statements in Alice:

Method

Object

Parameters

Page 18

COSC 123 - Dr. Ramon Lawrence

Built-in Methods
Built-in methods exist for almost all objects in Alice.

Other methods can be developed and added.

Some useful methods are:
 say

 think

 sound

Add a method call to your code by clicking on
the object, selecting the methods tab, then
dragging method into the code area.

Page 19

COSC 123 - Dr. Ramon Lawrence

Properties
Properties describe an object’s
state at any point in time.

e.g. color, texture

The value of the property can
be changed directly or during
animation using a method call.

Page 20

COSC 123 - Dr. Ramon Lawrence

Classes
A class is a template for an object.

A class determines an object's methods and properties.

In Alice, classes are organized into galleries.

There are built-in (local) galleries and galleries on the Web.

Exploring the Local Gallery of Classes

Page 21

COSC 123 - Dr. Ramon Lawrence

Terminology Summary
An object is an instance of a class that has its own properties
and methods. Properties and methods define what the object
is and what it can do.

A class is a generic template (blueprint) for creating an object.
All objects of a class have the same methods and properties
(although the property values can be different).

A property is an attribute or feature of an object.

A method is a set of statements that performs an action.

A parameter is data passed into a method for it to use.
Page 22

COSC 123 - Dr. Ramon Lawrence

Objects
Question: Which of the following is not an object?

A) camera

B) world

C) wait

D) cube

Page 23

COSC 123 - Dr. Ramon Lawrence

Objects and Methods
Question: True or false: It is possible to have a method with no
parameters.

A) true

B) false

Page 24

COSC 123 - Dr. Ramon Lawrence

Classes
Question: True or false: The two cube objects have the same
class.

A) true

B) false

Page 25

COSC 123 - Dr. Ramon Lawrence

Classes and Objects
Question: True or false: Two objects that have the same class
have the same methods.

A) true

B) false

Page 26

COSC 123 - Dr. Ramon Lawrence

Classes and Objects (2)
Question: True or false: Two objects that have the same class
may have different values for their properties.

A) true

B) false

Page 27

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Classes, Objects, Methods, Properties

Start Alice and open up SpinningCubes.a2w.

Save a version of the file in your own directory on F:.

Items to try:
Play the animation. Then close the animation.

Try moving the camera using the camera controls.

Change the program to have these steps in order:
1) Make cube turn left once and cube2 turn right 5 times.

2) Make cube go up 5 meters after it spins.

3) Change the color of cube2 to yellow. (properties tab)

4) Call resize method on cube to make its ½ its size.

5) Add any object from the gallery to the world and make it move
up 5 meters.

Page 28

COSC 123 - Dr. Ramon Lawrence

Do Together Statement
The Do Together statement allows several things to be done
simultaneously.

Page 29

COSC 123 - Dr. Ramon Lawrence

Do In Order Statement
The Do In Order statement forces the statements it contains to
be executed in order.

Page 30

COSC 123 - Dr. Ramon Lawrence

Composite Objects
A composite object is an object that contains other objects.

It is possible to control the whole object or any of its parts.

Page 31

COSC 123 - Dr. Ramon Lawrence

Do Together and Do In Order
Question: What will this code do?

A) Move blimp then blimp2.

B) Move blimp2 then blimp.

C) Move blimp and blimp2 at the same time.

Page 32

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Do Together and Do In Order

Start Alice and open up SpinningCubes.a2w.

Change the program to have these steps in order:
1) Make cube turn left once and cube2 turn right once at the

same time.
2) Make cube turn move up 5 meters and cube2 move left 5

meters.

Page 33

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Composite Object

Start Alice and open up SurferWave.a2w.

New ideas:
The surfer is a composite object.

To capture a pose, move the object into a certain position then
under properties click capture pose button. Then to
make the person go into that pose again use set pose method.

Change the program to have these steps in order:
1) Make the surfer say "Hello" while waving.

2) Make the surfer's arm go back to normal after he is done
waving.

3) Using capture pose and set pose, make a pose with the arms
spread out from the body parallel to the ground (looks like a T).
Then put character in that pose and put him back again.
Make sure to capture original standing pose. Page 34

COSC 123 - Dr. Ramon Lawrence

Conclusion
Object-oriented programming uses:
Objects – are instances of a class that have their own properties

and methods.

Classes – are generic templates (blueprints) for creating objects.

Methods – contains statements that perform an action.

Parameters – are data passed into a method.

Properties – are attributes/features of objects.

Object-oriented programming involves defining objects and
manipulating their properties and methods to perform useful
actions.

Page 35

COSC 123 - Dr. Ramon Lawrence

Summary of Alice
In Alice:
Galleries contain classes of objects.

An object is created from a class when it is put into the world.

Calling methods on objects make the objects do things.

A property is a feature of an object such as its color.

Composite objects contain other objects.

Do Together makes actions occur simultaneously.

Do In Order makes actions happen sequentially.

COSC 123
Computer Creativity

Methods

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Create our own methods for objects.

2) Declare and manipulate variables.

3) Generate and use random numbers.

4) Create methods with parameters and understand how
parameters work.

Page 3

COSC 123 - Dr. Ramon Lawrence

Methods
A method is a sequence of statements that performs an action
for an object.

Creating a method avoids repeating statements and allows for
better code organization.

Methods allow you to add new actions for an object.

Calling
Methods

Page 4

COSC 123 - Dr. Ramon Lawrence

Cheerleader Method Example
The right jump method is a sequence of statements that
makes the cheerleader jump. Many of these statements are
calls to other (built-in) methods such as set pose and move.

Page 5

COSC 123 - Dr. Ramon Lawrence

Creating Methods
To create a method:
1) Click on the object in the object tree to select it.
2) Click on the create new method button.

3) Give the method a name.

4) Add statements to the method to make it perform the actions
desired.

Note: Usually methods are associated with a class but in Alice
methods are associated with objects.

Page 6

COSC 123 - Dr. Ramon Lawrence

Why do we Create Methods?
Two main reasons to create methods:
1) To organize code into blocks that have specific purpose

2) To avoid duplication by reusing code

A method is a block of statements that does something useful.
The block of code is separated from other statements which

makes it easier to read and modify.

The block of code can be called many times if the method
needs to be done multiple times.

What is the alternative? Copy and paste and duplicate code.
You will realize over time that this is actually the harder way to
do things.

Page 7

COSC 123 - Dr. Ramon Lawrence

Variables
A variable is a name that represents a spot in memory that can
store a value. The variable must be declared, which defines
the variable’s name and the type of data it will hold.

An object’s properties are managed using variables (called
instance variables).

Object properties can be used by every method of the object.

Variables in methods:
Variables declared (created) in a method are local – available

only in that method.

Parameters are variables that are passed into a method. The
method can use the variables while it is executing.

Page 8

COSC 123 - Dr. Ramon Lawrence

Data Types in Alice
A variable can hold one of the following data types:
a number (integer or floating point)

a Boolean (true or false)

a character string

a reference to any other type of object

The data type of a variable defines how much memory is
needed to store that variable value.

A variable has only one data type (can only store one type of
data at any time).

Page 9

COSC 123 - Dr. Ramon Lawrence

Expressions
An expression consists of operands (variables, numbers)
manipulated with operators (such as +,-,/,*).

Create variable
height with

value = 3.

Use height in
methods and
calculations.

Page 10

COSC 123 - Dr. Ramon Lawrence

Methods
Question: True or false: It is possible to create a method with
no statements.

A) True

B) False

Page 11

COSC 123 - Dr. Ramon Lawrence

Methods in Alice
Question: True or false: In Alice, two objects of the same class
always have the same methods.

A) True

B) False

Page 12

COSC 123 - Dr. Ramon Lawrence

Variables
Question: True or false: A variable declared inside one method
can be accessed in another method.

A) True

B) False

Page 13

COSC 123 - Dr. Ramon Lawrence

Instance Variables
Question: True or false: An instance variable (object property)
can be accessed by any method of that object.

A) True

B) False

Page 14

COSC 123 - Dr. Ramon Lawrence

Variables and Data Types
Question: True or false: In Alice, a single variable can store
numbers and strings.

A) True

B) False

Page 15

COSC 123 - Dr. Ramon Lawrence

Parameters
A parameter is data passed into a method for it to use.

Methods may have zero parameters or as many as they want.

Each parameter has a data type.

To call a method with parameters you must pass in the
necessary values (called arguments) for the method to use.

Using parameters makes a method more powerful and useful.

Page 16

COSC 123 - Dr. Ramon Lawrence

Example Method with Parameters

Calling the jump2
method with different inputs.

height parameter

Page 17

COSC 123 - Dr. Ramon Lawrence

Random Numbers
A random number is a number generated in a particular range.

Function random number is a world function. You provide the
minimum and maximum number, and the function returns a
number in that range.
Note: Make sure to specify if you want an integer or float.

Using random numbers allows your story and object behavior to
change each time.

Page 18

COSC 123 - Dr. Ramon Lawrence

Applying Random Numbers

random number
function is under
world functions.

Calling the random number
function asking for a number

between 1 and 5 that must be an integer.

Page 19

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Methods

Use Cheerleader.a2w. Tasks:
Add a left jump method to the cheerleader that causes her to

jump with her left arm and leg raised (use left cheer pose).

Modify both left jump and right jump methods to use a
new variable called height that controls the jump distance. Set
height to a random number between 1 and 3 meters.

Create a second cheerleader object by copying the first one.

Story:
At the same time both cheerleaders should:
readyOk

rightJump

leftJump

Note that the cheerleaders will jump different heights, but they
should be synchronized in their movements. Page 20

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Parameters and Expressions

Use Jet.a2w. Tasks:
Modify the circle method to accept a time parameter that is

used to determine the duration (time to complete a circle).
Create new circle2 method that calculates time (not a

parameter) to make sure that the jet travels the same distance
regardless of speed.

Create a second jet by copying the first one.

Story:
Have jet1 call circle three times. Each time the speed

should be random between 10 and 100. The time parameter
should be: first call 1 second, next 2 seconds, last 3 seconds.

Have jet1 call circle2 twice. Once with speed 50 then 200.

Make jet1 and jet2 circle at the same time with speed 50
and time 1 second.

Page 21

COSC 123 - Dr. Ramon Lawrence

Conclusion
Methods can be added to objects to define additional behaviors.
Creating methods organizes code and allows us to use the same

code multiple times.

Variables defined in a method are local variables (only used in
that method). Parameters are always local variables.

Object properties are instance variables that can be used by
any method of the object.

Expressions use variables to calculate new values.

Page 22

COSC 123 - Dr. Ramon Lawrence

Objectives
Key terms: method, parameter, expressions, variable, value

Alice skills:
Call a method.

Create a method.

Create and use variables.

Generate random numbers.

Create method parameters.

Rename objects.

Copying objects.

COSC 123
Computer Creativity

Decisions and Loops

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) The If/Else statement is used to make decisions.

2) A decision requires a condition that consists of relational
operators and Boolean functions.

3) A set of statements can be executed multiple times using
While and Loop statements.

Page 3

COSC 123 - Dr. Ramon Lawrence

The If/Else Statement
Decisions are used to allow the program to perform different
actions in certain conditions.

To make a decision we must do two things:
1) Determine the condition in which to make the decision.

2) Tell the computer what to do if the condition is true or false.

Example:

Condition to check: True or False?

Do this if condition is true.

Do this if condition is false.

Do statement after if in either case.
Page 4

COSC 123 - Dr. Ramon Lawrence

Example If/Else Statement
Left or Right?

Condition

Go right
statements

Go left
statements

Page 5

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Decisions

Use intersection.a2w.

Tasks:
Play the animation.

Modify so that the biker turns left 90% of the time.

Modify so that the bike turn is smoother by moving forward and
turning right at the same time.

Modify so that the biker plays says "Hello" regardless of which
direction turned.

Page 6

COSC 123 - Dr. Ramon Lawrence

Nested If/Else Statements
More Than Two Possibilities

An If/Else statement could contain
another nested If/Else statement.

Nested if
statement

Page 7

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Nested Decisions

Use intersection2.a2w.

Tasks:
Play the animation.

Modify so that if the bike goes left he says "whoo hoo" while at
the same time spinning around once.

Modify so that there is a 50% of turning back around if the
decision was to go straight.

Add comments to say what each block of code in your if/else
statements does.

Page 8

COSC 123 - Dr. Ramon Lawrence

Relational Operators
Relational operators are used to compare numeric data:

> - Greater than
>= - Greater than or equal
< - Less than
<= - Less than or equal
== - Equal
!= - Not equal

Page 9

COSC 123 - Dr. Ramon Lawrence

The Logical Operators
Operators:

both X and Y - true if X and Y are true, false otherwise
not X - true if X is false
either X or Y - true if either X or Y or both are true

Examples:
- not (This is COSC 123)
- both (This is COSC 123) AND (My name is Joe Smith)
- either (This is COSC 123) OR (My name is Joe Smith)

Page 10

COSC 123 - Dr. Ramon Lawrence

Decisions
Question: What is the result of this code if:
 turnLeft = true ; goUp = false ; numTurns = 5 ; distanceUp = 7

A) The dragon goes up 7 meters then down 7 meters.

B) The dragon turns around 5 times.

C) The dragon turns around 5 times and then down 7 meters.

Page 11

COSC 123 - Dr. Ramon Lawrence

Relational Operators
Question: True or false: a is true and b is false.
What is both a and b?

A) true

B) false

Page 12

COSC 123 - Dr. Ramon Lawrence

Relational Operators (2)
Question: True or false: a is true and b is false.
What is either a or b?

A) true

B) false

Page 13

COSC 123 - Dr. Ramon Lawrence

Decision Exercises
Exercise #1: Turning Boat - Create a water world with a boat.
Make the boat turn one half turn to the right if a random number

between 1 and 100 is even otherwise one half turn to the left if
the random number is odd.

All your code can be in the my first method.

Exercise #2: Turning Zamboni - Create a world with a zamboni.
Create a method called turn for the zamboni that has a

parameter called num.
In the turn method, decide if num is between 50 and 100

inclusive. If it is, turn the zamboni around.

Test your code with four method calls in my first method with the
values 75, 50, 25, 150. Go forward 10 meters before each call.

Page 14

COSC 123 - Dr. Ramon Lawrence

Repetition using Loops
A loop allows the programmer to repeat statements.

There are two loops in Alice:
the While statement

the Loop statement

Page 15

COSC 123 - Dr. Ramon Lawrence

The While Statement
A While statement executes the statements it contains as long
as its condition remains true.
The condition is checked at the start of the loop and at the start

of every loop iteration.

An infinite loop is a loop whose condition never becomes false,
and the loop never ends.

Example:

Page 16

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
While Loop

Use Collision.a2w.

Tasks:
Play the animation.

Modify so that the vehicles and camera move twice as fast.

Modify so that when trucks collide the cement truck says ouch!.

Modify so that the cement truck's wheel breaks loose and
continues to roll down the street.

Page 17

COSC 123 - Dr. Ramon Lawrence

The Loop Statement
The Loop statement allows you to control the exact number of
repetitions.

The Loop statement uses a condition that tests the value of an
integer counter variable and stops when its value reaches a
specified end value.

Page 18

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Decisions

Use SpeedingCar.a2w.

Tasks:
Play the animation.

Modify so that the it calculates the total distance the car travels
during its trip. Print out the result when the car comes to a
stop.

Modify so that the distance is updated while the car is moving.
Display the result as a 3D text object in the window.

Modify so that the speed is also continuously updated.

Page 19

COSC 123 - Dr. Ramon Lawrence

While Statement
Question: How many times does this While statement
execute?

A) 0

B) 3

C) 4

D) 5

E) 6
Page 20

COSC 123 - Dr. Ramon Lawrence

While Statement (2)
Question: How many times does this While statement
execute?

A) 0

B) 3

C) 4

D) 5

E) infinite

Page 21

COSC 123 - Dr. Ramon Lawrence

While Statement and Decisions
Question: How far off the ground is the dragon?

A) -2 B) 0 C) 2 D) 4 E) 8

Page 22

COSC 123 - Dr. Ramon Lawrence

While Statement and Decisions (2)
Question: How far off the ground is the dragon?

A) -10 B) 0 C) 2 D) 4 E) 10

Page 23

COSC 123 - Dr. Ramon Lawrence

Loop Statement
Question: How many times does this loop execute?

A) 0

B) 9

C) 10

D) 11

E) infinite

Page 24

COSC 123 - Dr. Ramon Lawrence

Loop Statement (2)
Question: How many times does this loop execute?

A) 0

B) 4

C) 5

D) 10

E) infinite

Page 25

COSC 123 - Dr. Ramon Lawrence

Exercises
Decisions and Loops

Exercise #1: Counting - Create a world with a 3D text object
that counts from 1 to 10. Then counts down from 10 to 1.

Exercise #2: Jumping - Create a world where four characters
perform jumps in unison five times. Each time give one of the
characters a 30% chance to replace a jump with a full turn.

Exercise #3: Bouncing Ball - Create a world where a ball rolls
off a table, bounces on the ground, and comes to rest.
Decrease the height of the bounce by half each time. Move the
ball away from the table slightly each bounce. Stop when the
bounce height is small.

Page 26

COSC 123 - Dr. Ramon Lawrence

Conclusion
Decisions using the If/Else statement allow for controlling
the flow of a program and decide when to execute certain
statements.

Repetition of a block of statements can be done using:
While statement that executes statements until its condition is

false

Loop statement that executes statements a specific number of
times

An infinite loop is a loop whose condition never becomes false
(the loop never ends).

Decisions using If/Else statements and repetition using
While/Loop statements can be nested.

Page 27

COSC 123 - Dr. Ramon Lawrence

Objectives
Key terms: decision, loop, condition

Alice skills:
Making decisions with If/Else.

Conditions: relational operators and Boolean (logical) operators.
Nested If/Else decisions.

Repetition using the While statement.

Repetition using the Loop statement.

Nested repetition statements.

Using 3D Text boxes.

COSC 123
Computer Creativity

Events

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Explore the different types of events in the Alice world.

2) Handle events for the keyboard and mouse.

Page 3

COSC 123 - Dr. Ramon Lawrence

Event Processing
Most software has a graphical user interface (GUI) that
contains buttons, text fields, lists, and menus.

An event is generated every time the user interacts with a user
interface component by clicking a mouse or typing.

The code that responds to events is called event handling.

There is a default event: When the world starts. This
event is executed immediately when the world is played.

Page 4

COSC 123 - Dr. Ramon Lawrence

Reference
Alice Events

World Events
 When the world starts

 Occurs once when world first plays

 While the world is running
 Executes continually while world runs

Mouse Events
 When the mouse is clicked on
something
 Occurs if button is pressed and released

 While the mouse is pressed on
something
 Occurs while mouse button held on object

 Let the mouse move the camera
 Dragging the mouse moves the camera

 Let the mouse orient the camera
 Dragging mouse moves camera direction

 Let the mouse move objects
 Dragging mouse can move objects

Keyboard Events
 When a key is typed

 Occurs when key is pressed and
released

 While a key is pressed
 Occurs while key is held

 Let the arrow keys move
the object
 Arrows keys move an object

Condition Events
 When a variable changes

 Occurs when variable changes

 While something is true
 Occurs while expression is true

 When something becomes
true
 Occurs once when true

Page 5

COSC 123 - Dr. Ramon Lawrence

World Events
World events occur when a world starts running or as it
continues to run.

When the world starts event happens once at start of
world and usually calls my first method.

While the world running event has three parts:
Begin and End are executed only once.

During section is executed repeatedly.

Page 6

COSC 123 - Dr. Ramon Lawrence

World Events
Repeating Actions While World Runs

The statements in the During section repeat for as long as the
world is running. Note that this is background animation, and
you can have other code to do other things at the same time.

Page 7

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
World Events

Use carousel.a2w.

Tasks:
Make the carousel pause 1 second before starting to turn.

Create three planes that fly past the carousel one at a time.

Page 8

COSC 123 - Dr. Ramon Lawrence

Keyboard Events
Keyboard events allow us to respond to keyboard presses.
The When a key is typed fires when a key is pressed and
released.

While a key is pressed events are fired when the user
presses and holds any of the standard keyboard keys (digits,
letters, space bar or enter key).

The Let the arrow keys move an object event allows
the user to move an object forward, backward, and turn right
and left using the arrow keys.

Page 9

COSC 123 - Dr. Ramon Lawrence

Keyboard Events Examples
Dancer

We will make a dancer, Lisa, move when we press certain keys.

Lisa will call kick
method (with right
leg) when R is typed.

While a key is pressed is
not in event menu, so must
change a When is typed event.

Allows Lisa to be
moved with arrow keys.

Lisa will call kick method with
both legs in order while B is held.

Capture a standing
pose and set pose
when user releases B
so Lisa is not in an
awkward position.

Page 10

COSC 123 - Dr. Ramon Lawrence

Mouse Events
Mouse events allow the user to interact with the mouse.

1) The When mouse is clicked on something event
executes code when a user clicks on an object.
2) The While mouse is pressed on something event
executes code in during section multiple times while the mouse
button is held on an object. Begin/end sections are done once.
When mouse is clicked
on something event

While mouse is pressed on
something event

Page 11

COSC 123 - Dr. Ramon Lawrence

Mouse Events
Moving the Camera and World Objects

3) Using Let the mouse move the camera event allows
the user to move the camera forward, backward, right, and left.

4) The Let the mouse orient the camera event allows
rotating the camera.

5) The Let the mouse move an object event allows the
user to move any object or a list of objects that you specify.

Page 12

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Keyboard and Mouse Events

Use Rockette.a2w.

Tasks:
Make the dancer do left leg kicks and a head turn with the "l"

key is typed.
Make the dancer do a left knee raise when the "h" key is

pressed and a right knee raise when the "g" key is pressed.

Make it so that when the user holds "b" key the dancer
repeatedly kicks her left leg and then her right leg.

Allow the user to move the dancer around with the arrow keys.
Make the dancer say "Hi there!" when you click on her.

Make the dancer say "Don't touch!" when you press (and
hold) the mouse button over her legs.

Make the mouse able to move and orient the camera.

Page 13

COSC 123 - Dr. Ramon Lawrence

Condition Events
Condition events occur when the program state changes such
as when the value of a variable changes.

Three types:
1) The When a variable changes event executes when
the value of a variable that you provide changes.

2) The While something is true event occurs as long
as a Boolean expression is true. (May be many times)
3) The When something becomes true event occurs
once when a Boolean expression becomes true when it was
previously false.

Page 14

COSC 123 - Dr. Ramon Lawrence

Events and Event Handling
Question: What happens when an event occurs and there is no
event handler for it?

A) An event handler is created for it automatically.

B) The event is ignored and discarded.

C) An error occurs.

Page 15

COSC 123 - Dr. Ramon Lawrence

World Events
Question: True or false: A world always needs a When the
world starts event.

A) true

B) false

Page 16

COSC 123 - Dr. Ramon Lawrence

World Events
Question: Which one of these statements is true?

A) The When the world starts event may be done multiple
times.

B) The begin section of the While the world is
running event is done every time the event occurs.

C) The during section of the While the world is
running event may be performed multiple times.

D) The end section of the While the world is running
event may be performed multiple times.

Page 17

COSC 123 - Dr. Ramon Lawrence

Keyboard Events
When a key is typed event

Question: The user is holding down the "b" key. How many
times does the When a key is typed event occur?

A) 0

B) 1

C) 2

D) many times (depends how long the key is held for)

Page 18

COSC 123 - Dr. Ramon Lawrence

Keyboard Events
While a key is pressed event

Question: The user is holding down the " b" key. How many
times does the While a key is pressed event occur?

A) 0

B) 1

C) 2

D) many times (depends how long the key is held for)

Page 19

COSC 123 - Dr. Ramon Lawrence

Mouse Events
While mouse is pressed event

Question: The user is holding down the mouse button on an
object. How many times does the While mouse is pressed
event occur?

A) 0

B) 1

C) 2

D) many times (depends how long the mouse button is held for)

Page 20

COSC 123 - Dr. Ramon Lawrence

Condition Events
While something is true event

Question: How many times does the during part of the event
execute if count is originally 0 and max is 10?

A) 0

B) 1

C) 9

D) 10

Page 21

COSC 123 - Dr. Ramon Lawrence

Exercises
Events

Exercise #1: Shooting Tank - Create a world with a tank.
Move the tank around with the arrow keys.
Use while a key is pressed for the L and R keys to

rotate the turret left and right.

Create a bullet (rectangle) and another object. When you press
space shoot the bullet (forward 10 m). If it hits an object, have it
say "Ouch!". Make sure you can shoot multiple times.

Exercise #2: Score a goal - Create a world with a net.
The left/right arrow keys move a net around a circle.

Have a ball randomly shoot out from the center of the circle in a
random direction.

The goal is to catch the ball in the net. Keep score.
Hint: Use a dummy object for the puck's starting spot. Make the puck

invisible (opacity 0) then move it back to starting spot. Page 22

COSC 123 - Dr. Ramon Lawrence

Conclusion
Events are generated under various circumstances such as
user interaction with the keyboard and mouse.

Event handlers allow a program to respond to events.

Some events fire (execute) only once while other events fire
repeatedly as long as the action is occurring.
In Alice, events have While in name if execute multiple times

and When if execute only once.

Event types in Alice:
World events – apply to whole world (starting, running)

Keyboard events – handle key presses

Mouse events – handle mouse clicks ; can be used to move
objects and camera

Condition events – detect variable changes

Page 23

COSC 123 - Dr. Ramon Lawrence

Objectives
Key terms:
event, event handling

Alice skills:
Creating event handlers for four types of events: world,

keyboard, mouse, condition.

Grouping objects in object tree.

Dummy objects for use with camera or object movement.

COSC 123
Computer Creativity

Lists and Arrays

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Create and use lists and arrays as examples of data
structures.

2) Use the For all together and For all in order
statements with lists.

Page 3

COSC 123 - Dr. Ramon Lawrence

Managing Multiple Objects
Programs need to be able to deal with lots of data without
becoming tedious to write.

A data structure holds and manages a group of objects using
one variable name.

Alice has two data structures: lists and arrays.

Page 4

COSC 123 - Dr. Ramon Lawrence

Lists
A list is a linear data structure whose size can grow.

A list has methods that allow you to:
retrieve an item at a particular index in the list

add an item to the front, end, or middle of the list

remove an item from the list

determine the size (number of items in the list)

List functionsList methods

Page 5

COSC 123 - Dr. Ramon Lawrence

Creating a List
A list is created in Alice by using the create new variable
button then check make a List box. Then, you can add
items to your list by clicking on the new item button.

Page 6

COSC 123 - Dr. Ramon Lawrence

List Example
 In this example there are ten objects in a
list.
For all together moves all objects in
the list at the same time.

List object
school

For all
together
statement

Page 7

COSC 123 - Dr. Ramon Lawrence

Lists
For all together and in order

The For all together statement performs the operations
on all objects at the same time.

The For all in order statement performs the operations
one at a time in the order the objects are in the list.

Page 8

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Lists

Use SchoolOfFish.a2w.

Tasks:
Add a new fish to the school.

Make a fish disappear from the school with 50% probability
every loop iteration.
Start off by making first fish in list disappear then try to make any fish in

the list disappear.

Note: Make an object disappear by setting its opacity to 0%.

Add a shark that swims into the school and eats a random fish
in the list every time it swims into the school.

Page 9

COSC 123 - Dr. Ramon Lawrence

List Structure
A list is a flexible linear data structure as you can add entries
any where in the list and the list can grow to any size.

This flexibility is achieved by linking each entry together. The
downside to this flexibility is that it is less efficient to get to any
particular element in the list as you must traverse the list.

Start of list End of list

Page 10

COSC 123 - Dr. Ramon Lawrence

Arrays
An array is a fixed size linear data structure that stores multiple
items. The size of the array is determined when it is created.

An element in an array can be accessed directly by its index
without visiting other items. The For all together and For
all in order statements cannot be applied to arrays.
Access each element in an array using an Loop instead.

Array with 6 elements:

0 1 2 3 4 5

Page 11

COSC 123 - Dr. Ramon Lawrence

Arrays Example

Page 12

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Arrays

Use hamster.a2w.

Tasks:
Add two more hamsters to the array.

Make all hamsters jump up in order.

Make the hamsters jump up in reverse order.

Make every second hamster jump.

Make a random hamster jump. Make it so a mouse click on a
hamster will whack it. Keep score.

Page 13

COSC 123 - Dr. Ramon Lawrence

Lists
For all together and For all in order

Question: What will this code do?

A) Move each dragon up/down separately then move each
dragon up/down together.

B) Move each dragon up/down together then move each dragon
up/down separately.

C) Move each dragon up/down together only.

D) Move each dragon up/down separately only. Page 14

COSC 123 - Dr. Ramon Lawrence

List Index
Question: Given the list below at what index is "A"?

D F G X A B C

A) 4

B) 5

C) 6

D) 7

Page 15

COSC 123 - Dr. Ramon Lawrence

List Insert
Question: Given the list below what is the result if insert Z at
index 2?

D F G X A B C

A) Z D F G X A B C

B) D Z F G X A B C

C) D F Z G X A B C

D) D F G Z X A B C

Page 16

COSC 123 - Dr. Ramon Lawrence

Arrays versus List
Question: Your program must store 10000 objects. You will
never have more than 10000 objects, and you need the ability to
get a particular object quickly.

What should you use an array or a list?

A) Array

B) List

Page 17

COSC 123 - Dr. Ramon Lawrence

Exercises
Lists and Arrays

Exercise #1: Soldier March
Create a group of 12 soldiers in three rows of four.

Make them all move forward, turn left half a turn, then move
forward again at the same time.

Make each row of soldiers do the actions above in turn.

Exercise #2: Pick an object - Create a world with five objects.
 Allow the user to click on the objects.

The order the objects are clicked are the order they should be
put into an array.

After the objects are put in an array, print out the contents of
the array.

Bonus: Instead of printing, line the objects up in the order they
were picked. Page 18

COSC 123 - Dr. Ramon Lawrence

Conclusion
Lists and arrays are data structures that hold and manage a
group of objects using one variable name.

The elements stored in lists and arrays can be accessed using
a numeric index, which starts at 0.

When performing list operations, list elements are shifted to
make room for new items or to close the gap after a removal.

An array is generally more efficient than a list, but it has a fixed
size.

Page 19

COSC 123 - Dr. Ramon Lawrence

Objectives
Key terms: data structure, list, array

Alice skills:
Create and use lists and arrays.
Use list methods and For all together and For all in
order.

Importing and exporting objects.

COSC 123
Computer Creativity

Introduction to Java

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Introduce Java, a general-purpose programming language,
and compare it with Alice

2) Examine the Eclipse development environment for
developing Java programs

3) Execute our first Java program and analyze its basic
contents

4) Learn how to read input, write to the screen, declare and use
variables, and perform basic calculations in Java

Page 3

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Java is a general-purpose, object-oriented language developed
in 1991 by a group led by James Gosling and Patrick Naughton
of Sun Microsystems.

Major advantages of Java:
Can run on almost any type of machine.

Popular language for web and system development.

Good teaching language because many issues such as
memory management are hidden.

Java is an interpreted, rather than compiled, language. This
makes it portable but also affects performance for some
applications.

Page 4

COSC 123 - Dr. Ramon Lawrence

The Java Virtual Machine (JVM)
The Java Virtual Machine (JVM) is a program that executes a
Java program on an individual machine.

After the Java compiler compiles your program:
your program is in Java byte form which is a set of instructions

for the JVM to execute (not the same as machine code)

When you run your program:
the JVM is started by the operating system

the JVM loads your program and begins executing it

each byte in your compiled Java program is either an
instruction or data used by the JVM

the JVM translates instructions in your program to the
appropriate machine code for the machine it is running on

The JVM is effectively a virtual machine in your computer.

Page 5

COSC 123 - Dr. Ramon Lawrence

Java and Alice

6-5

Java and Alice perform the same operations using different syntax.

Operation Alice Java

Assignment Set value =

Arithmetic +, -, *, / +, -, *, /

Remainder IEEERemainder %

Relational <, <=, >, >=, ==, != <, <=, >, >=, ==, !=

Logical Not, both a and b,

either a or b or both

! (not), a && b (and),

a || b (or)

Decisions If/else If/else

Repetition Loop, While for, while

Page 6

COSC 123 - Dr. Ramon Lawrence

Eclipse
It is possible to write Java programs using any text editor and
compile them using the Java compiler.

An integrated development environment makes it easier to
write code, find errors, and run your programs.

We will use the Eclipse environment in this course.
Eclipse is a generic, extensible development environment that

can be used for Java and other languages.

Eclipse makes coding easier with automatic error checking,
code completion, and source debugging.

Eclipse will NOT make it easier to figure out WHAT to write, but
it will make HOW to write it easier.

Page 7

COSC 123 - Dr. Ramon Lawrence

Eclipse Initial Setup
Creating a Workspace and a Project

A workspace is the place where
Eclipse will store all of your projects.
You will be prompted for your

workspace on start up if you have
not selected one.

Create a new workspace on F: with
a directory name workspace.

A project is a group of program files
for some purpose. We will create a
sample project called cosc123.
You will also create projects for
each assignment.
Give the project a name and click

finish. Ignore all options for now.

Create a New Project using
File->New->Java Project

Page 8

COSC 123 - Dr. Ramon Lawrence

Eclipse Main Screen

Execute (run) button

Console (execution)

Source
browser

File being edited

Code editor

Page 9

COSC 123 - Dr. Ramon Lawrence

Eclipse
Perspectives and Views

A perspective is an organization of
views to accomplish a certain task
(debugging, coding, etc.).
 The two perspectives we will use are

Java and Debugging.

Eclipse remembers how you place
the views in each perspective.

A view is a window on the screen
associated with a task.
 The major views are:

Navigator – shows files in project

Console – shows program output

Problems – shows errors in code

You may open, close, and organize
views in each perspective.

Selecting Eclipse views using
Window->Show View

Page 10

COSC 123 - Dr. Ramon Lawrence

Eclipse
Creating a Program File

To create a program code file, select
File->New->File or

File->New->Class and provide a
folder and file name.

The other choice is to right click on a
folder in the navigation view and
select New->File.

Type the file name (should end with
.java) and click Finish.

To edit this file, double click on it, and
it will open in the editor.

Creating a new file using
File->New->File

Page 11

COSC 123 - Dr. Ramon Lawrence

Eclipse
Debugging and Breakpoints

Execute (run) button

Debug
button

Code editor

Console (execution)

Variable viewBreakpoint

Step and Play Buttons

Page 12

COSC 123 - Dr. Ramon Lawrence

Debugging Java Programs
When you write programs, it is very rare that you get the
program correct the first time. There are two types of errors:
1) Compile-time errors - are language syntax or structure

errors detected by the compiler when it compiles your program
A program will not run until all compile-time errors are corrected.

2) Run-time errors - are errors that occur while the program is
running and often result in incorrect results or program crashes.
Run-time errors are harder to detect because they result from a flaw in

your algorithm which is syntactically correct.

Page 13

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Running HelloWorld in Eclipse

1) Start Eclipse.
2) Create your workspace on F:.

3) Create a new project called COSC123.

4) Download or type in the file HelloWorld.java.

5) Run the program.

Page 14

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Overview

To program in Java you must follow a set of rules for specifying
your commands. This set of rules is called a syntax.

Important general rules of Java syntax:
Java is case-sensitive.
Main() is not the same as main() or MAIN().

Java accepts free-form layout.
Spaces and line breaks are not important except to separate words.

You can have as many words as you want on each line or spread them
across multiple lines.

However, you should be consistent and follow the programming
guidelines given for assignments.
 It will be easier for you to program and easier for the marker to mark.

Page 15

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program

To create this program:
Create a file called HelloWorld.java in an Eclipse project

and type in the code.

To compile and run this program:
Press the start button (green arrow) in Eclipse.

If the code is correct, the program will run, otherwise it will show
errors that you must fix first.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 16

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis

The first line of code:
says you want to create a class called HelloWorld
HelloWorld is the name you have chosen for your class.

 Class names normally begin with a capital letter.

A class is a blue-print for an object.
 An object is something that we store or modify in our program.

In this case, class HelloWorld is the name of our entire program.
 Notice that we saved the program as HelloWorld.java (this is important!)

the “public” keyword means the class is usable by the public

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 17

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis (2)

The “{“ and “}” characters are used to group commands.
The first pair of brackets shows what is in class HelloWorld.
In this case, the method main() is part of the HelloWorld class.

The second pair of brackets indicates what is contained in the
method called main().
The statement System.out.println("Hello World!"); is part of

the main() method.

You must ensure that your brackets are properly matched.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 18

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis (3)

The second line of code:
defines a method called main()

A method is a set of commands that tells Java what to do.
Every method must be inside a class in Java.

 The main() method is in the HelloWorld class.

The main() method is the first method executed in your program.
 The main() method must be in your program for it to work.

 Memorize the syntax for this method. You will not understand it until later in
the course.

The statements inside the brackets are the commands
executed when the method is run.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 19

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis (4)

The third line of code:
contains a statement executed when the main() method is run

This command calls a built-in method called println().
The println() method is in the System.out class.

The method is called with a parameter: "Hello World!".
The parameter to this method is what you want to print.

The parameter is contained in quotes (“”) because it is text.

Note that each statement ends with a semi-colon (“;”).

The brackets (“{“,”}”) denote the start and end of the method.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 20

COSC 123 - Dr. Ramon Lawrence

Output Text to the Screen
System.out.println

The println method prints output to the screen.
The println method accepts one String variable as output.

You can use the + (concatenation) to build an output string that consists of
many parts.

The System.out.print method does not advance to the next line.

Example:

public class ThreeplusFour
{ public static void main(String[] args)

{ System.out.println("3 + 4 is: ");
System.out.println(3+4);
System.out.println("6 + 9 is: "+(6+9));

}
}

Question: What is the output of this program? Why?

Page 21

COSC 123 - Dr. Ramon Lawrence

Reading Data from the User
The Scanner Class

The Scanner class reads data entered by the user. Methods:
int nextInt() – reads next integer

double nextDouble() – reads next floating point number

String next() – reads String (up to separator)

String nextLine() – reads entire line as a String

To use must import java.util.Scanner.
import java.util.Scanner;
public class AddTwoNum
{ public static void main(String[] argv)

{ // Code reads and adds two numbers
Scanner sc = new Scanner(System.in);
int num1 = sc.nextInt();
int num2 = sc.nextInt();
int result = num1+num2;
System.out.println(num1+" + "+num2+" = "+result);

}
} Page 22

COSC 123 - Dr. Ramon Lawrence

The Java API
The Java API
(Application
Programming Interface)
defines all the built-in
class and methods in
Java that you can use.

We are using the Java
6 API at:
http://java.sun.com/java
se/6/docs/api/

Page 23

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Create a program to ask the user for two numbers, subtract
them, and write out the answer.

2) Create a program to ask for a first name then a last name.
Output the full name in the form: lastname, firstname.

Page 24

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations
A value is a data item that is manipulated by the computer.

A variable is the name that the programmer users to refer to a
location in memory.

A location has an address in memory and stores a value.

IMPORTANT: The value at a given location in memory (named
using a variable name) can change using initialization or
assignment.

Page 25

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations
Example

We want to store a number that represents the total order value.

Step #1: Declare the variable by giving it a name and a type.

The computer allocates space for the variable in memory (at
some memory address). Every time we give the name total,
the computer knows what data item we mean.

The base types we will use are: int, double, and char.

int total;

Variable Name Lookup Table

Name Location Type
total 16 number

Memory

16 ????????
20
24
28

Page 26

COSC 123 - Dr. Ramon Lawrence

Step #2: Initialize the variable to have a starting value
If you do not initialize your variable to a starting value when you

first declare it, the value of the variable is initialized to 0 (for
numbers).

Example:

Values, Variables, and Locations
Example (2)

total = 1;

Variable Name Lookup Table

Name Location Type
total 16 number

Memory

16 ????????
20
24
28

1

Page 27

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations
Example (3)

Step #3: Value stored in location can be changed throughout the
program to whatever we want using assignment ("=" symbol).

total = total * 5 + 20;

Variable Name Lookup Table

Name Location Type
total 16 number

Memory

16 1
20
24
28

25

Page 28

COSC 123 - Dr. Ramon Lawrence

Variable Rules
Variables are also called identifiers. An identifier is a name that
begins with a letter or underscore and cannot contain spaces.
Every variable in a program must be declared before it is used.

Variable names ARE case-sensitive. Numbers are allowed (but
not at the start). Only other symbol allowed is underscore ('_');

Beware of declaring two variables with the same name.

Use meaningful variable names.

Reserved words cannot be used for variable names.

A constant is a variable which cannot change in your program.
We use the keyword final to indicate a constant.

You can declare multiple variables in the same statement:

int total = 0, count = 5;

final double PST = 0.07; // Constant

Page 29

COSC 123 - Dr. Ramon Lawrence

The Assignment Statement
An assignment statement changes the value of a variable.

The variable on the left-hand side of the = is assigned the value from the
right-hand side.

The value may be changed to a constant, to the result of an expression, or
to be the same as another variable.

The values of any variables used in the expression are always their values
before the start of the execution of the assignment.

Examples:
int A, B;

A = 5;
B = 10;
A = 10 + 6 / 2;
B = A;
A = 2*B + A – 5;

Question: What are the values of A and B? Page 30

COSC 123 - Dr. Ramon Lawrence

Expressions
An expression is a sequence of operands and operators that
yield a result. An expression contains:
operands - the data items being manipulated in the calculation
e.g. 5, “Hello, World”, myDouble

operators - the operations performed on the operands
e.g. +, -, /, *, % (modulus - remainder after integer division)

An operator can be:
unary - applies to only one operand
e.g. d = - 3.5; // “-” is a unary operator, 3.5 is the operand

binary - applies to two operands
e.g d = e * 5.0; // “*” is binary operator, e and 5.0 are operands

Page 31

COSC 123 - Dr. Ramon Lawrence

Expressions - Operator Precedence
Each operator has its own priority similar to their priority in
regular math expressions:
1) Any expression in parentheses is evaluated first starting with

the inner most nesting of parentheses.

2) Unary + and unary - have the next highest priorities.

3) Multiplication and division (*, /, %) are next.

4) Addition and subtraction (+,-) are then evaluated.

Page 32

COSC 123 - Dr. Ramon Lawrence

Strings
Strings are sequences of characters inside double quotes.

Example:

Strings are objects. Objects have methods.

The concatenation operator is used to combine two strings
into a single string. The notation is a plus sign '+'.

String personName = "Ramon Lawrence";
personName = "Joe Smith";

Question: What is the difference between these two statements?

String firstName = "Ramon", lastName = "Lawrence";
String fullName = firstName+lastName;

Page 33

COSC 123 - Dr. Ramon Lawrence

General Syntax Rules: Comments
Comments are used by the programmer to document and
explain the code. Comments are ignored by the computer.

There are two choices for commenting:
1) One line comment: put “//” before the comment and any

characters to the end of line are ignored by the computer.
2) Multiple line comment: put “/*” at the start of the comment

and “*/” at the end of the comment. The computer ignores
everything between the start and end comment indicators.

Example:
/* This is a multiple line

comment.
With many lines. */

// Single line comment
// Single line comment again
d = 5.0; // Comment after code Page 34

COSC 123 - Dr. Ramon Lawrence

Declaration/Initialization Example
public class TestInit
{ public static void main(String[] args)

{ final double d = 5.0; // d is a constant = 5
double e; // Declare double var. e
int j; // Declare int var. j
String s; // Declare string var. s

System.out.println(d); // Prints 5.0
System.out.println(j); // Would not compile!
j = 25;
System.out.println(j); // Prints 25
s="Test";
System.out.println(s); // Prints Test
e=d;
System.out.println(e); // Prints 5.0;
e=d+20000.5; // Note: No commas
System.out.println(e); // Prints 20005.5;

}
}

Page 35

COSC 123 - Dr. Ramon Lawrence

Importing Classes
Java provides many classes organized into packages.

To use a class, you must import it. The import syntax is:

The Math class contains methods such as square root or
rounding.

import packageName.ClassName;
import java.lang.Math; // Import Math class

// java.lang is package
import java.lang.*; // Import all classes in package

int num = Math.round(3.5); // Returns 4

Page 36

COSC 123 - Dr. Ramon Lawrence

Math Operations
Import & Math Function Example
import java.lang.Math;

public class TestMath
{ public static void main(String[] args)

{ double d = 5.0,e=1.5,f;
int j = 25,k;

f = -d*e;
System.out.println(f); // Prints -7.5
f = Math.pow(d,2);
System.out.println(f); // Prints 25.0
k = (int) Math.sqrt(j);
System.out.println(k); // Prints 5
System.out.println(Math.sqrt(j)); // Prints 5.0
d=d*e+j+Math.exp(j);
System.out.println(d); // Prints 7.2E10
System.out.println(k); // Prints 1
System.out.println(Math.round(e));// Prints 2

}
}

Page 37

COSC 123 - Dr. Ramon Lawrence

Compile vs. Run-time Errors
Question: A program is supposed to print the numbers from 1 to
10. It actually prints the numbers from 0 to 9. What type of error
is it?

A) Compile-time error

B) Run-time error

Page 38

COSC 123 - Dr. Ramon Lawrence

Variables – Basic Terminology
Question: Of the following three terms, what is most like a box?

A) value

B) variable

C) location

Page 39

COSC 123 - Dr. Ramon Lawrence

Variables - Definitions
Question: Which of the following statements is correct?

A) The location of a variable may change during the program.

B) The name of a variable may change during the program.

C) The value of a variable may change during the program.

Page 40

COSC 123 - Dr. Ramon Lawrence

Variables – Correct Variable Name
Question: Which of the following is a valid Java variable?

A) aBCde123

B) 123test

C) t_e_s_t!

Page 41

COSC 123 - Dr. Ramon Lawrence

Assignment
Question: What are the values of A and B after this code?

A) A = 6, B = 36

B) A = 4, B = 26

C) A = 6, B = 66

int A, B;

A = 2;
B = 4;
A = B + B / A;
B = A * 5 + 3 * 2;

Page 42

COSC 123 - Dr. Ramon Lawrence

String Concatentation
Question: What is the value of result after this code?

A) "Joe Smith"

B) "JoeSmith"

String st1="Joe", st2="Smith";

String result = st1 + st2;

Page 43

COSC 123 - Dr. Ramon Lawrence

String Concatentation (2)
Question: What is the result after this code?

A) 579

B) "579"

C) "123456"

String st1="123", st2="456";

String result = st1 + st2;

Page 44

COSC 123 - Dr. Ramon Lawrence

Code Output
Question: What is the output of this code if user enters 3 and 4?

A) 3 + 4 = 7

B) 4 + 3 = 7

C) 4 + + + 3 + = + 7

D) Code has errors and will not compile.

public class AddTwoNum
{ public static void main(String[] argv)

{ // Code reads and adds two numbers
Scanner sc = new Scanner(System.in);
int num1 = sc.nextInt();
int num2 = sc.nextInt();
int result = num1+num2;
System.out.println(num2+" + "+num1+" = "+result);

}
}

Page 45

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Write a Java program that prompts for a number and outputs
the square root of that number.

2) Write a program to read three numbers and then print their
sum.

Page 46

COSC 123 - Dr. Ramon Lawrence

Conclusion
Java is a general-purpose language for building programs. Its
performs similar operations as Alice but with different syntax.

Eclipse is a development environment for Java programs.
Eclipse is used to write, debug, and run programs.

A Java program consists of statements separated by semi-
colons. Variable declaration statements require a variable
name and type. A string is an example of an object.

Input can be retrieved using the Scanner class and data
printed using System.out.println().

Classes are imported into the program when required.

Page 47

COSC 123 - Dr. Ramon Lawrence

Objectives
Key terms:
JVM, Eclipse, IDE

variable, value, location, assignment

Java skills:
Create a workspace and project in Eclipse.

Create and run Java programs using Eclipse.

Basic debugging and breakpoints

Java syntax: statements, variables, expressions, comments
Output using System.out.println

Input using and Scanner class

Using the Java API for reference

Strings and concatenation

Importing classes from packages Page 48

COSC 123 - Dr. Ramon Lawrence

Detailed Objectives
Comparison of Java and Alice syntax for operations.

Eclipse definitions: workspace, project, perspective, view

Compile vs. run-time errors and debugging

Declaring variables and assigning values to variables

Using the Eclipse IDE

Output and input of data

Definitions: declare, assignment, identifier, constant, expression

COSC 123
Computer Creativity

Java Decisions and Loops

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) A decision is made by evaluating a condition in an if/else
statement and performing certain actions depending if the
condition is true or false.

2) Repetition is performed by using loops that repeat a set of
statements multiple times.

Page 3

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Decisions are used to allow the program to perform different
actions in certain conditions.
For example, if a person applies for a driver’s license and is not

16, then the computer should not give them a license.

To make a decision in a program we must do several things:
1) Determine the condition in which to make the decision.
In the license example, we will not give a license if the person is under 16.

2) Tell the computer what to do if the condition is true or false.
A decision always has a Boolean value or true/false answer.

The syntax for a decision uses the if statement.

Page 4

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Performing Comparisons

Relational operators compare two items called operands.
Syntax: operand1 operator operand2

Comparison operators in Java:
> - Greater than
>= - Greater than or equal
< - Less than
<= - Less than or equal
== - Equal (Note: Not "=" which is used for assignment!)
!= - Not equal

The result of a comparison is a Boolean value which is either
true or false.

Page 5

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Example Comparisons
int j=25, k = 45;
double d = 2.5, e=2.51;
boolean result;

result = (j == k); // false
result = (j <= k); // true
result = (d == e); // false (rounding!)
result = (d != e); // true
result = (k >= 25); // true
result = (25 == j); // true
result = (j > k); // false
result = (e < d); // false
j = k;
result = (j == k); // true

// Note: Never compare doubles using "==" due to
// precision and rounding problems.

Page 6

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Comparing Strings and Objects

Comparing strings and objects is different than numbers.
Operators such as <, > are not useful for strings and objects.

Operator “==“ is defined but it is not very useful.
The “==“ operator compares if two string/object references refer to the

same object NOT if the string/object has the same value.

Compare strings using equals() and compareTo() methods:
String str1 = "abc", str2="def";
str1.equals(str2); // True if str1 is equal to str2
str1.equalsIgnoreCase(str2); // Comparison without case
str1.compareTo(str2); // will be < 0 if str1 < str2
str1.compareTo(str2); // will be > 0 if str1 > str2
str1.compareTo(str2); // will be = 0 if str1 equals str2

Page 7

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Example String Comparisons
public class TestStringComparisons
{ public static void main(String[] args)

{ String st1 = "Hello", st2="Hell", st3="Test",st4;

System.out.println(st1.equals(st2)); // false
System.out.println(st1.compareTo(st2)); // 1
System.out.println(st2.compareTo(st1)); // -1
System.out.println(st3.compareTo(st1)); // 12
System.out.println(st3.compareTo("ABC")); // 19
st4 = st1.substring(0,4);
System.out.println(st2.equals(st4)); // true
System.out.println(st2.compareTo(st4)); // 0
st4 = st4.toUpperCase();
st2 = st2.toLowerCase();
System.out.println(st2.equals(st4)); // false
System.out.println(st2.equalsIgnoreCase(st4));

//true
}

}

Page 8

COSC 123 - Dr. Ramon Lawrence

String Comparisons
Question: What is the output of this code?

A) equal

B) not equal

String str, str2;
Scanner sc = new Scanner(System.in);
str = sc.nextLine(); // User enters: abc
str2 = sc.nextLine();// User enters: abc

if (str == str2)
System.out.print("equal");

else
System.out.print("not equal");

Page 9

COSC 123 - Dr. Ramon Lawrence

Making Decisions
If Statement

To make decisions with conditions, we use the if statement.
If the condition is true, the statement(s) after if are executed

otherwise they are skipped.
If there is an else clause, statements after else are executed

if the condition is false.

Syntax:

Example:
if (age > 19) OR if (age > 19)

teenager=false; teenager=false;
else

teenager=true;

if (condition) OR if (condition)
statement; statement;

else
statement;

Page 10

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Block Syntax

Currently, using our if statement we are only allowed to execute
one line of code (one statement).
What happens if we want to have more than one statement?

We use the block syntax for denoting a multiple statement
block. A block is started with a “{“ and ended with a “}”.
All statements inside the brackets are grouped together.

Example:

We will use block statements in many other situations as well.

if (age > 19)
{ teenager=false;

hasLicense=true;
...

}

Page 11

COSC 123 - Dr. Ramon Lawrence

Making Decisions
If Statement Example
int age;
boolean teenager, hasLicense=false;
System.out.print("Enter your age: ");
Scanner sc = new Scanner(System.in);
age = sc.nextInt();

if (age > 19)
{ teenager = false;

hasLicense = true;
}
else if (age < 13)
{ teenager = false;

hasLicense = false;
}
else
{ teenager = true; // Do not know if have license
}
System.out.println("Is teenager: "+teenager);
System.out.println("Has license? "+hasLicense);

Page 12

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Question: What is the output of this code?

A) big

B) small

C) bigsmall

int num=10;

if (num > 10)
System.out.println("big");

else
System.out.println("small");

Page 13

COSC 123 - Dr. Ramon Lawrence

Making Decisions (2)
Question: What is the output of this code?

A) big

B) small

C) bigsmall

int num=9;

if (num != 10)
System.out.print("big");

System.out.println("small");

Page 14

COSC 123 - Dr. Ramon Lawrence

Making Decisions (3)
Question: What is the output of this code?

A) big

B) small

C) bigsmall

int num=10;

if (num == 10)
{ System.out.print("big");

System.out.println("small");
}

Page 15

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Nested If Statement

We nest if statements for more complicated decisions.

Verify that you use blocks appropriately to group your code!

Example:

if (age > 16)
{ if (sex == "male")

{ System.out.println("Watch out!");
}
else
{ System.out.println("Great driver!");
}

}
else
{ System.out.println("Sorry! Too young to drive.");
}

Page 16

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Nested If Statement Example
public class NestedIf
{ public static void main(String[] args)

{ double salary, tax;
String married;
Scanner sc = new Scanner(System.in);

System.out.print("Enter M=married, S=single: ");
married=sc.next();
System.out.print("Enter your salary: ");
salary=sc.nextDouble();

if (married.equals("S"))
{ // Single person

if (salary > 50000)
tax = salary*0.5;

else if (salary > 35000)
tax = salary*0.45;

else
tax = salary*0.30;

} // End if single person

Page 17

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Nested If Statement Example

else if (married.equals("M"))
{ // Married person

if (salary > 50000)
tax = salary*0.4;

else if (salary > 35000)
tax = salary*0.35;

else
tax = salary*0.20;

} // End if married person
else // Invalid input

tax = -1;

if (tax != -1)
{ System.out.println("Salary: "+salary);

System.out.println("Tax: "+tax);
}
else

System.out.println("Invalid input!");
}

}
Page 18

COSC 123 - Dr. Ramon Lawrence

Nested Conditions and Decisions
Dangling Else Problem

The dangling else problem occurs when a programmer
mistakes an else clause to belong to a different if statement
than it really does.
Remember, blocks (brackets) determine which statements are

grouped together, not indentation!

Example:

Incorrect Correct

if (country == "US")) if (country == "US")
if (state == "HI")) { if (state == "HI")

shipping = 10.00; shipping = 10.00;
else // Belongs to 2nd if! }

shipping = 20.00; // Wrong! else
shipping = 20.00;

Page 19

COSC 123 - Dr. Ramon Lawrence

Nested Conditions and Decisions
Boolean Expressions

A Boolean expression is a sequence of conditions combined
using AND (&&), OR (||), and NOT (!).
Allows you to test more complex conditions

Group subexpressions using parentheses

Syntax: (expr1) && (expr2) - expr1 AND expr2

(expr1) || (expr2) - expr1 OR expr2

!(expr1) - NOT expr1

Examples:
var b;

1) b = (x > 10) && !(x < 50);
2) b = (month == 1) || (month == 2) || (month == 3);
3) if (day == 28 && month == 2)
4) if !(num1 == 1 && num2 == 3)
5) b = ((10 > 5 || 5 > 10) && ((10>5 && 5>10));// False

Page 20

COSC 123 - Dr. Ramon Lawrence

Boolean Expressions
Question: Is result true or false?

A) true

B) false

int x = 10, y = 20;
int result = (x > 10) || (y < 20);
System.out.println(result);

Page 21

COSC 123 - Dr. Ramon Lawrence

Boolean Expressions (2)
Question: Is result true or false?

A) true

B) false

int x = 10, y = 20;
int result = !(x != 10) && (y == 20);
System.out.println(result);

Page 22

COSC 123 - Dr. Ramon Lawrence

Boolean Expressions (3)
Question: Is result true or false?

A) true

B) false

int x = 10, y = 20;
int result = (x >= y) || (y <= x);
System.out.println(result);

Page 23

COSC 123 - Dr. Ramon Lawrence

Making Decisions (4)
Question: What is the output of this code?

A) big

B) small

C) bigsmall

D) ten

E) bigten

int num=12;

if (num >= 8)
System.out.print("big");

if (num == 10)
System.out.print("ten");

else
System.out.print("small");

Page 24

COSC 123 - Dr. Ramon Lawrence

Making Decisions (5)
Boolean Expressions

Question: What is the output of this code?

A) bigx

B) bigy

C) bigxnot equal

D) bigxbigynot equal

E) bigxbigy

int x = 10, y = 20;

if (x >= 5)
{ System.out.print("bigx");

if (y >= 10)
System.out.print("bigy");

}
else if (x == 10 || y == 15)

if (x < y && x != y)
System.out.print("not equal");

Page 25

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Switch Statement

There may be cases where you want to compare a single
integer value against many constant alternatives. Instead of
using many if statements, you can use a switch statement.
If there is no matching case, the default code is executed.

Execution continues until the break statement. (Remember it!)

Note: You can only use a switch statement if your cases are
integer numbers. (Characters (‘a’, ‘b’,...,) are also numbers.)

Syntax:

switch (integer number)
{ case num1: statement break;

case num2: statement break;
...
default: statement break;

}

Page 26

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Switch Statement Example
public class TestSwitch
{ public static void main(String[] args)

{ int num;
Scanner sc = new Scanner(System.in);

System.out.println("Enter a day number: ");
num=sc.nextInt();
switch (num)
{ case 1: System.out.println("Sunday"); break;

case 2: System.out.println("Monday"); break;
case 3: System.out.println("Tuesday"); break;
case 4: System.out.println("Wednesday"); break;
case 5: System.out.println("Thursday"); break;
case 6: System.out.println("Friday"); break;
case 7: System.out.println("Saturday"); break;
default: { System.out.println("Invalid day!");

System.out.println("Valid #’s 1-7!");
} break;

}
}

}

Page 27

COSC 123 - Dr. Ramon Lawrence

Switch Statement
Question: What is the output of this code?

A) one

B) two

C) three

D) other

int num=2;

switch (num)
{ case 1: System.out.print("one"); break;

case 2: System.out.print("two"); break;
case 3: System.out.print("three"); break;
default: System.out.print("other"); break;

}

Page 28

COSC 123 - Dr. Ramon Lawrence

Switch Statement (2)
Question: What is the output of this code?

A) one

B) onetwo

C) onetwothree

D) other

E) onetwothreeother

int num=1;

switch (num)
{ case 1: System.out.print("one");

case 2: System.out.print("two");
case 3: System.out.print("three"); break;
default: System.out.print("other");

}

Page 29

COSC 123 - Dr. Ramon Lawrence

Decision Practice Questions
1) Write a program that reads an integer N.
If N < 0, print “Negative number”, if N = 0, print “Zero”, If N > 0,

print “Positive Number”.

2) Write a program that reads in a number for 1 to 5 and prints
the English word for the number. For example, 1 is “one”.

3) Write a program to read in your name and age and print
them. Your program should print “Not a teenager” if your age is
greater than 19 or less than 13, otherwise print “Still a
teenager”.

Page 30

COSC 123 - Dr. Ramon Lawrence

Iteration and Looping
Overview

A computer does simple operations extremely quickly.

If all programs consisted of simple statements and decisions as
we have seen so far, then we would never be able to write
enough code to use a computer effectively.

To make a computer do a set of statements multiple times we
program looping structures.

A loop repeats a set of statements multiple times until some
condition is satisfied.
Each time a loop is executed is called an iteration.

Page 31

COSC 123 - Dr. Ramon Lawrence

The While Loop
The most basic looping structure is the while loop.

A while loop continually executes a set of statements while a
condition is true.

Syntax:

Example:

while (<condition>)
{ <statements>
}

int j=0;
while (j <= 5)
{ j=j+1;

System.out.println(j);
}

Page 32

COSC 123 - Dr. Ramon Lawrence

The ++ and -- Operators
It is very common to subtract 1 or add 1 from the current value
of an integer variable.

There are two operators which abbreviate these operations:
++- add one to the current integer variable

-- - subtract one from the current integer variable

Example:

int j=0;

j++; // j = 1; Equivalent to j = j + 1;
j--; // j = 0; Equivalent to j = j - 1;

Page 33

COSC 123 - Dr. Ramon Lawrence

The For Loop
The most common type of loop is the for loop. Syntax:

Explanation:
1) initialization section - is executed once at the start of the loop

2) continuation section - is evaluated before every loop iteration
to check for loop termination

3) next iteration section - is evaluated after every loop iteration
to update the loop counter

for (<initialization>; <continuation>; <next iteration>)
{ <statement list>
}

Page 34

COSC 123 - Dr. Ramon Lawrence

Iteration & Looping
The For Loop

Although Java will allow almost any code in the three sections,
there is a typical usage:

Example:

for (i = start; i < end; i++)
{ statement
}

int i;

for (i = 0; i < 5; i++)
{ System.out.println(i); // Prints 0 to 4
}

Page 35

COSC 123 - Dr. Ramon Lawrence

Java Rules for Loops
The iteration variable is a normal variable that must be
declared, but it has the special role of controlling the iteration.
i, j, and k are the most common choices due to convention and

because they are short.

The starting point of the iteration can begin anywhere, including
negative numbers.

The continuation/termination test must be an expression that
results in a Boolean value. It should involve the iteration
variable to avoid an infinite loop.

The next iteration can have any statements, although usually
only use the step size to change iteration variable.
The step size can be positive or negative and does not always

have to be 1.

Page 36

COSC 123 - Dr. Ramon Lawrence

Common Problems – Infinite Loops
Infinite loops are caused by an incorrect loop condition or not
updating values within the loop so that the loop condition will
eventually be false.

Examples:

int i;

for (i=0; i < 10; i--) // Should have been i++
{ System.out.println(i); // Infinite loop: 0,-1,-2,..
}

i = 0;
while (i < 10)
{ System.out.println(i); // Infinite loop: 0,0,0,..
} // Forgot to change i in loop

Page 37

COSC 123 - Dr. Ramon Lawrence

Common Problems – Using Brackets
A one statement loop does not need brackets, but we will
always use brackets. Otherwise problems may occur:

Do not put a semi-colon at the end of the loop:

int i;

for (i=0; i <= 10; i++); // Causes empty loop
{ System.out.println(i); // Prints 11
}

int i=0;
while (i <= 10)

System.out.println(i); // Prints 0 (infinite loop)
i++; // Does not get here…

// Forgot brackets { and } - i++ not in loop!

Page 38

COSC 123 - Dr. Ramon Lawrence

Common Problems – Off-by-one Error
The most common error is to be "off-by-one". This occurs
when you stop the loop one iteration too early or too late.

Example:
This loop was supposed to print 0 to 10, but it does not.

for (i=0; i < 10; i++)
document.write(i); // Prints 0..9 not 0..10

Question: How can we fix this code to print 0 to 10?

Page 39

COSC 123 - Dr. Ramon Lawrence

Common Problems – Iteration Variable
Scope Issues: It is possible to declare a variable in a for loop
but that variable goes out of scope (disappears) after the loop
is completed.

int i;
for (i=0; i <= 10; i++)
{ System.out.println(i); // Prints 0..10

...
}
System.out.println(i); // Prints 11

Other approach:

for (int i=0; i <= 10; i++)// Declare i in for loop
{ System.out.println(i); // Prints 0..10

...
}
System.out.println(i); // Not allowed - i does

// not exist outside loop

Page 40

COSC 123 - Dr. Ramon Lawrence

For Loops
Question: What is the output of this code?

A) nothing

B) error

C) 11

D) The numbers 0, 1, 2, …, 10

int i;

for (i=0; i <= 10; i++);
System.out.print(i);

Page 41

COSC 123 - Dr. Ramon Lawrence

For Loops
Question: What is the output of this code?

A) nothing

B) error

C) The numbers 0, 1, 2, …, 9

D) The numbers 0, 1, 2, …, 10

int i;

for (i=0; i < 10; i++)
System.out.print(i);

Page 42

COSC 123 - Dr. Ramon Lawrence

For Loops
Question: What is the output of this code?

A) nothing

B) infinite loop

C) The numbers 2, 3, 4, …, 9

D) The numbers 2, 3, 4, …, 10

int i;

for (i=2; i < 10; i--)
System.out.print(i);

Page 43

COSC 123 - Dr. Ramon Lawrence

The do..while Loop
The last looping structure called a do..while loop. The
do..while loop is similar to the while loop except that the loop
condition is tested at the bottom of the loop instead of the top.
This structure is useful when you know a loop must be

executed at least once, but you do not know how many times.

Syntax:

Example:

do
{ statement
} while (condition);

do
{ num = num / 2;
} while (num >= 0);

Page 44

COSC 123 - Dr. Ramon Lawrence

Loop Nesting
Similar to decisions statements such as if and switch, it is
possible to nest for, while, and do..while loops.
Note that the loops do not all have to be of the same type.
i.e. You can have a for loop as an outer loop, and a while loop as an

inner loop.

Be very careful to include correct brackets when nesting loops.
It is a good idea to always include brackets in your code to

make your code more readable and prevent mistakes.

Page 45

COSC 123 - Dr. Ramon Lawrence

Nested For/While Loop Example
// Prints N x N matrix until N = -1

public class NestedForWhile
{ public static void main(String[] args)

{ int i, j, num;
Scanner sc = new Scanner(System.in);

System.out.print(“Enter a matrix size: “);
num=sc.nextInt();
while (num != -1)
{

for (i=1; i <= num; i++)
{ for (j=1; j <= num; j++)

System.out.print(j+" "); // No brackets!
System.out.println();

}
System.out.print(“Enter a matrix size: “);
num=console.readInt();

}
}

} Page 46

COSC 123 - Dr. Ramon Lawrence

Advanced Topic: Break Statement
What happens if you want to exit a loop before the end?
You can use the break statement to immediately exit the

current loop block.
Note: The break statement exits the current loop. If you have a nested

loop, you will need multiple break statements to get out of all loops.

Example:

while (true)
{ System.out.print(“Enter a matrix size: “);

num=console.readInt();
if (num == -1)

break;
...

}
// After break - execution starts here

Page 47

COSC 123 - Dr. Ramon Lawrence

Advanced Topic: Continue Statement
What happens if you want to quickly skip back to the start of
the loop (end the current iteration) while in the middle of the
loop statements?
You can use the continue statement to immediately stop the

current loop iteration and start the next one.
Note: This is rarely used.

Example:

for (i=0; i < 5; i++) // After continue, start i=3
{ if (i == 2)

continue; // For some reason we don’t like 2!
System.out.println(i);

}

// Question: What is the better way to do this?

Page 48

COSC 123 - Dr. Ramon Lawrence

Looping Review
A loop structure makes the computer repeat a set of statements
multiple times.
for loop is used when you know exactly how many iterations to

perform

while loop is used when you keep repeating the loop until a
condition is no longer true

a do..while loop is used when a loop has to be performed at least
once

When constructing your loop structure make sure that:
you have the correct brackets to group your statements

you do not add additional semi-colons that are unneeded

make sure your loop terminates (no infinite loop)

Remember the operators ++ and -- as short-hand notation.

Page 49

COSC 123 - Dr. Ramon Lawrence

Continue Statement
Question: How many numbers are printed?

A) 0

B) 4

C) 5

D) 9

for (int i=2; i < 10; i++)
{ if (i % 2 == 0)

continue;
System.out.print(i);

}

Page 50

COSC 123 - Dr. Ramon Lawrence

Break Statement
Question: How many numbers are printed?

A) 9

B) 5

C) 4

D) 3

for (int i=2; i < 10; i++)
{ if (i > 4)

break;
System.out.print(i);

}

Page 51

COSC 123 - Dr. Ramon Lawrence

Practice Questions: Iteration
1) How many times does each loop execute:

2) Write a program to print the numbers from 1 to N.
a) Modify your program to only print the even numbers.

3) Write a method that builds and prints an integer matrix of the
form: (where N is given).
1 1 1 … 1

2 2 2 … 2

…

N N N … N

a) for(j=0; j <= 10; j--)
b) for(j=0; j <= 10; j++)
c) for(j=0; j < 10; j++)
d) for(j=-10; j <= 10; j++)
e) for(j=0; j <= 20; j=j+2)

Page 52

COSC 123 - Dr. Ramon Lawrence

Conclusion
A decision is performed by evaluating a Boolean condition with
an if/else statement.

A loop allows the repetition of a set of statements multiple
times until some condition is satisfied.
We will primarily use for loops that have 3 components:
initialization - setup iteration variable start point

continuation - use iteration variable to check if should stop

next iteration - increment/decrement iteration variable

Decision and loops can be nested.

Page 53

COSC 123 - Dr. Ramon Lawrence

Objectives
Java skills:
Make decisions using if/else statement.

Use Boolean variables to represent true/false.

Use relational operators in conditions.

Comparing Strings and Objects using equals and compareTo.

Build complex conditions using AND, OR, and NOT.

Switch statement

Iteration using three loop constructs:
while statement

for statement

do…while statement

Break and continue statements

Nesting of if/else and iteration statements
Page 54

COSC 123 - Dr. Ramon Lawrence

Detailed Objectives
Write decisions using the if/else statement.

Define: Boolean, condition

List and use the comparison operators.

Explain the dangling else problem.

Construct and evaluate Boolean expressions using AND, OR,
and NOT.

Explain why cannot use == with Strings/Objects.

Define: loop, iteration

Explain the difference between the while and for loops.

Explain what ++ and -- operators do.

Be able to use a for loop structure to solve problems.

Be aware and avoid common loop problems.

Define: infinite loop

COSC 123
Computer Creativity

Java Classes

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Define classes, objects, methods, properties (instance
variables), and parameters in Java.

2) Inheritance derives new classes from existing ones. A
subclass inherits all methods and variables from its superclass.

3) Create objects from classes using new.

4) Explain the difference between an object and an object
reference.

5) List the types of variables (instance, static, local, parameter)
and explain how the type affects their scope and lifetime.

Page 3

COSC 123 - Dr. Ramon Lawrence

Java Object-Oriented Terminology
An object is an instance of a class that has its own properties
and methods. Properties and methods define what the object is
and what it can do. Each object has its own area in memory.

A class is a generic template (blueprint) for creating an object.
All objects of a class have the same methods and properties
(although the property values can be different).

A property (or instance variable) is an attribute of an object.

A method is a set of statements that performs an action. A
method works on an implicit object and may have parameters.

A parameter is data passed into a method for it to use. Page 4

COSC 123 - Dr. Ramon Lawrence

Class Definition
To define a class:
use the keyword class and provide a name for your class

enclose the contents of your class in brackets “{“, “}”

define any properties (instance variables) for your class

define any methods in your class

Example:

class classname
{ classname methods

classname variables
}

Page 5

COSC 123 - Dr. Ramon Lawrence

Variable Definition
To define a variable of a class:
define the variable as either public or private (access specifier)

provide the variable type and name as usual

Syntax:

Example:

class classname
{ accessSpecifier variableType variableName;

...
}

class MyClass
{ public int num;

private String st;
private double value;

}

Page 6

COSC 123 - Dr. Ramon Lawrence

Method Definition
To define a method of a class:
define the method as either public or private (access specifier)

provide the method return type, name, and parameters
Each parameter has a type and a name.

A return type of void means return nothing.

Syntax:

Example:

class classname
{ accessSpec retType methodName(par1, par2, …, parN)

{ method implementation}
}

class TestClass
{ public int count(int n) { return n+1; }

private void doNothing() { }
public String addS(String st) { return st+"S"; }

}

Page 7

COSC 123 - Dr. Ramon Lawrence

Method Definition
Parameters

A method may use parameters to perform its operations.
Each parameter has a type and a name.

Parameters are separated by commas.

Parameters can be changed by the method, but their value will
not be changed for the caller.

Page 8

COSC 123 - Dr. Ramon Lawrence

Method Definition
Return Types

Use the return statement to return a method value. Syntax:

Example:

return expression; OR

return;

class TestClass
{ public int retTest(int n)

{ if (n == 0)
return 1;

else
return n*2+1;

}
public void retNothing(String st)
{ if (st.equals(""))

return;
...

}
}

Page 9

COSC 123 - Dr. Ramon Lawrence

Your First Java Program (again)

The first line creates a public class called HelloWorld that is
the main class of your program and the name of the Java file.

Class HelloWorld contains a method main that is public.
Since class HelloWorld is the public class for this file, it is the

class that must contain the main method.

main is a method called with one parameter (String[] args).

main is a special method because it is automatically called when
you run your program.

public class HelloWorld
{ public static void main(String[] args)

{ System.out.println("Hello, World!");
}

}

Page 10

COSC 123 - Dr. Ramon Lawrence

The BankAccount class is used for describing bank accounts.
The methods defined in the BankAccount class are deposit,
withdraw, and getBalance.

The current balance in the account is private, so it can only
be changed by calling the methods.

public class BankAccount
{

private double balance;

public void deposit(double amount)
{ balance = balance + amount; }

public void withdraw(double amount)
{ balance = balance - amount; }

public double getBalance()
{ return balance; }

}

Class Example
BankAccount Class

Page 11

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Implement a class Employee:
An employee has a name (String) and a salary (double).

Write methods to get/set the name and salary.

2) Implement a class Purse:

A purse holds coins (toonies, loonies, and quarters only).

Write methods to get/set the number of coins in the purse.
Write a method called getValue() which returns the value of

all coins in the purse.

Page 12

COSC 123 - Dr. Ramon Lawrence

Inheritance Overview
Inheritance is a mechanism for enhancing and extending
existing, working classes.

In real life, you inherit some of the properties from your parents when you
are born. However, you also have unique properties specific to you.

In Java, a class that extends another class inherits some of its properties
(methods, instance variables) and can also define properties of its own.

extends is the key word used to indicate when one class is
related to another by inheritance.

Syntax: class subclass extends superclass

The superclass is the existing, parent class.

The subclass is the new class which contains the functionality of
the superclass plus new variables and methods.

A subclass may only inherit from one superclass.

Page 13

COSC 123 - Dr. Ramon Lawrence

Why use inheritance?
The biggest reason for using inheritance is to re-use code.
Once a class has been created to perform a certain function it

can be re-used in other programs.

Further, using inheritance the class can be extended to tackle
new, more complex problems without having to re-implement
the part of the class that already works.

The alternative is copy and paste which is bad, especially when
the code changes.

Page 14

COSC 123 - Dr. Ramon Lawrence

What is inherited?
When a subclass inherits (or extends) a superclass:

Instance variable inheritance:
All instance variables of the superclass are inherited by the

subclass.
However, if a variable is private, it can only be accessed using

methods defined by the superclass.

Method inheritance:
All superclass methods are inherited by the subclass, but they

may be overridden.

Page 15

COSC 123 - Dr. Ramon Lawrence

Inheritance Example
Consider the BankAccount class that we created to model
bank account objects.
A bank account has an account number and a balance.

How about if we want to create a special kind of bank account
called a SavingsAccount?

A savings account is a special bank account because it also
pays interest at a given interest rate.

Instead of programming the entire SavingsAccount class and
duplicating features already in the BankAccount class, we can
extend the BankAccount class and inherit its properties when
we create a SavingsAccount.

Page 16

COSC 123 - Dr. Ramon Lawrence

public class BankAccount
{ public void deposit(double amount)

{ balance = balance + amount; }
public void withdraw(double amount)
{ balance = balance - amount; }
public double getBalance()
{ return balance; }
public int getAccount()
{ return accountNum; }
public int getLastAccount()
{ return lastAccountNum; }
public BankAccount()
{ this(0); }
public BankAccount(double b)
{ balance = b; lastAccountNum++;

accountNum = lastAccountNum;
}
private double balance;
private int accountNum;
private static int lastAccountNum = 0; // Static

}

BankAccount Code

Page 17

COSC 123 - Dr. Ramon Lawrence

public class SavingsAccount extends BankAccount
{

public void addInterest()
{ deposit(getBalance()*rate/100); }

public SavingsAccount()
{ this(0); }
public SavingsAccount(double r)
{ rate = r; }

private double rate; // Interest rate paid
}

Notes:
1) Inherited variables: balance,accountNum,lastaccountNum
2) Inherited methods: deposit, withdraw, getAccount,

getLastAccount
3) Inherited variables are private in BankAccount, so we

cannot access them directly.
(Use deposit and getBalance methods.)

SavingsAccount Code

Page 18

COSC 123 - Dr. Ramon Lawrence

Class Diagrams
Class diagrams display the relationship between related
classes using a diagram.
We will follow the Unified Modeling Language (UML) syntax.
Each class has its own box.

There is an arrow from a subclass to a superclass if that class extends
the superclass.

Example:

SavingsAccount

BankAccount

SavingsAccount
extends BankAccount

Page 19

COSC 123 - Dr. Ramon Lawrence

Superclass and Subclass
Question: Which class is the superclass?

A) X

B) Y

Y

X

Page 20

COSC 123 - Dr. Ramon Lawrence

Inheritance
Question: Which statement is true?

A) A subclass can access all variables it inherited from the
superclass.

B) A subclass can declare an instance variable with the same
name as an instance variable in its superclass.

C) A class can have more than one superclass.

Page 21

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

One of the features of object-oriented programming is that not
all parts of a program have access to all the data and methods.

Each class, method, and instance variable has one of the four
access specifiers to indicate which other objects and methods
in your program have access to it. Four types:
public – Accessible by all code (everyone, the public)

private – Only accessible by methods in the class.

protected – Only accessible by methods in the class or
classes derived from this class by inheritance.

default – If nothing is specified, assume package access where
all methods in same package (directory) can access it.

Page 22

COSC 123 - Dr. Ramon Lawrence

Public and Private Examples
public class MyClass
{ public void setValue(int n)

{ num = n; } // setValue() is a public method

private void show() // show() is a private method
{ st = "Hello"; }

private int num; // num is a private variable
public String st; // st is a public variable
double d; // d has package access

}
Summary:
1) Method setValue() is public, so it can be accessed
from anywhere in the program.
2) Method show() is private so only another method in the
class MyClass can access it.
3) Variable num is private, only methods in MyClass can
access it.
4) st is public. It is accessible anywhere in the program.
5) d has default (package) access. Any method in a file
in the same package (directory) can access it.

Page 23

COSC 123 - Dr. Ramon Lawrence

Access Specifier Rules
There is one special rule in Java that you must follow:
There can be only one public class per file, and the name of

that class has to be the same as the name of the file.

There are also some common programming rules which you
will use in this course:
Always state if a class/variable/method is public or private.

Variables in an object are almost always private.
Other objects/methods do not have access to the data directly.

Most methods of an object are public.
These methods allow other objects/methods to see/manipulate the data.

Class names should begin with a capital letter.

Method and variable names should begin with a small letter.
Page 24

COSC 123 - Dr. Ramon Lawrence

Inheritance Question
1) Create a CheckingAccount class which inherits from
BankAccount. The CheckingAccount class:
inherits getBalance() from BankAccount

overrides deposit() and withdraw() from BankAccount,
so it can keep track of the number of transactions
(transactionCount)

defines a method deductFees() which withdraws $1 for each
transaction (transactionCount) then resets the # of
transactions

Page 25

COSC 123 - Dr. Ramon Lawrence

Inheritance Questions (2)
2) Create:
1) A superclass Pet. A Pet contains:
a name and methods to get/set its name

2) A subclass Cat of Pet. A Cat contains:
a boolean variable hasClaws which is true if the cat has claws

define methods to get/set the hasClaws instance variable

3) A subclass Dog of Pet that contains:
an integer variable numTricks that stores the number of tricks the dog

can perform
define methods to get/set the value of numTricks

Page 26

COSC 123 - Dr. Ramon Lawrence

Creating and Using Objects
A class is just a blue-print for creating objects.
By itself, a class performs no work or stores no data.

For a class to be useful, we must create objects of the class.
Each object created is called an object instance.

To create an object, we use the new method.

When an object is created using the new method:

Java allocates space for the object in memory.

The constructor for the object is called to initialize its contents.

Java returns a pointer to where the object is stored in memory
which we will call an object reference.

Page 27

COSC 123 - Dr. Ramon Lawrence

Constructors
A constructor is a method that is called when the object is first
created and initializes the variables of an object.
If you do not supply a constructor for a class, Java supplies a

default constructor which has no parameters.

You may define your own constructors for your objects to
guarantee that an object has the correct initial values.
A constructor may have parameters like any other method.

Syntax and Example:
class classname // (Syntax)
{ classname() {} // Default constructor

classname(par1, par2, …, parN) {} //Parameters
}
class MyClass //(Example)
{ MyClass() { num = 0; } // Default constructor

MyClass(int n) { num = n; } // Parameters
private int num; // Variable initialized

} Page 28

COSC 123 - Dr. Ramon Lawrence

The BankAccount class now defines two constructors:

Default constructor initializes balance to 0.

Constructor with parameter initializes balance to a given value.

public class BankAccount
{ public void deposit(double amount)

{ balance = balance + amount; }
public void withdraw(double amount)
{ balance = balance - amount; }
public double getBalance()
{ return balance; }

public BankAccount() { balance = 0; }
public BankAccount(double b) { balance = b; }

private double balance;
}

Bank Account Example Revisited

Page 29

COSC 123 - Dr. Ramon Lawrence

Creating Objects using new
Objects are created using the new method.

The new method allocates space for the object in memory,
calls the appropriate object constructor, and returns an object
reference to be stored in an object reference variable.

Example:

BankAccount checking = new BankAccount();
// Creates a BankAccount object referenced by checking
BankAccount savings = new BankAccount();
// Creates a BankAccount object referenced by savings

BankAccount mySavings; // Declares object reference

mySavings = new BankAccount(); // Creates object

Page 30

COSC 123 - Dr. Ramon Lawrence

Object References
It is important to realize the difference between an object and
an object reference.

When you declare an object variable in Java, you are actually
declaring an object reference to that particular object type.
Until you create an object using the new method, there is no

object in memory which is pointed to by the object reference.

An object is the physical memory representation of the data.
An object has a location in memory and a type (class).
Each object has its own data values.

Page 31

COSC 123 - Dr. Ramon Lawrence

Changing Object References
Object references are pointers to objects in memory that can
be assigned to the same value as another reference using '='
or assigned to null (which means they refer to nothing).

Example:

BankAccount checking = new BankAccount(50);
// Creates a BankAccount object referenced by checking
BankAccount savings = new BankAccount(100);
// Creates a BankAccount object referenced by savings
BankAccount mySavings; // Declares object reference

mySavings = savings; // mySavings points to savings
System.out.println(mySavings.getBalance()); // 100
mySavings = checking; // mySavings points to checking
System.out.println(mySavings.getBalance()); // 50

Page 32

COSC 123 - Dr. Ramon Lawrence

Objects in Memory
Remember that each object has its own space in memory AND
each object reference variable also has its own memory space.

Object references point to objects and can be changed.

Memory diagram based on previous example:

checking

mySavings

savings
balance = 100

balance = 50

mySavings = checking

mySavings = savings

1000

1004

1008

10000

11000

10000

11000

11000

Page 33

COSC 123 - Dr. Ramon Lawrence

null Object References
Sometimes a programmer wants an object reference to point to
nothing. To make an object reference refer to nothing, you
assign it a value of null.

Example:

BankAccount checking = new BankAccount(50);
BankAccount savings = new BankAccount(100);
BankAccount mySavings; // Declares object reference

mySavings = savings; // mySavings points to savings
System.out.println(mySavings.getBalance()); // 100
mySavings = null; // mySavings now points to null
System.out.println(mySavings.getBalance()); // Error!

Page 34

COSC 123 - Dr. Ramon Lawrence

null Object References Example
A null reference effectively stores the address of 0. Since this
is not a valid memory address for the program, your program
will generate a run-time error during execution.
 The compiler does not check null references for you!

Example:
checking

mySavings

savings
balance = 100

balance = 50

mySavings = savings

1000

1004

1008

10000

11000

10000

null

11000

mySavings = null

Page 35

COSC 123 - Dr. Ramon Lawrence

Calling Object Methods
A method is called on an object by supplying an object
reference and the name and parameters of the method.

Syntax:

objectReference.methodName(parameters)

Remember:
Each object has its own class which defines which methods it

can perform.

Each object has its own area of memory storing its data.

An object reference is a pointer to a particular object in
memory, so Java knows which object we are talking about by
providing the object reference.
The object reference is called an implicit parameter.

Page 36

COSC 123 - Dr. Ramon Lawrence

Creating and Using Objects
Calling Object Methods Example

public class TestBankAccount
{ public static void main(String []args)

{ BankAccount savings = new BankAccount(100);
BankAccount checking = new BankAccount(50);
BankAccount myRef; // No object allocated!

System.out.println(savings.getBalance()); // 100
System.out.println(checking.getBalance());// 50
System.out.println(myRef.getBalance()); // Error!
savings.deposit(50);
checking.withdraw(40);
myRef = savings;
myRef.withdraw(20);
System.out.println(savings.getBalance()); // 130
System.out.println(checking.getBalance()); // 10
System.out.println(myRef.getBalance()); // 130
myRef = checking;
myRef.deposit(50);
System.out.println(myRef.getBalance()); // 60

}
}

Page 37

COSC 123 - Dr. Ramon Lawrence

Advanced: Implicit Parameter this
When an object method is called, we tell Java which object to
use based on an object reference.

This object reference is then accessible within an object
method as the this reference.

Example:

public class TestThis
{ public static void main(String []args)

{ BankAccount checking = new BankAccount(50);
BankAccount savings = new BankAccount(100);

System.out.println(savings.getBalance());
// this reference set to savings
System.out.println(checking.getBalance());
// this reference set to checking

}
}

Page 38

COSC 123 - Dr. Ramon Lawrence

Implicit Parameter this (2)
public class BankAccount
{ public void deposit(double amount)

{ this.balance = this.balance + amount; }
public void withdraw(double amount)
{ this.balance = this.balance - amount; }
public double getBalance()
{ return this.balance; }

// this points to the current object being used
// Using this is optional because Java assumes you
// are working with the current object

public BankAccount()
{ this.balance = 0; }
public BankAccount(double balance)
{ this.balance = balance; }

private double balance;
}

Page 39

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

Question: A method in class X is defined as private. Can it
access a public variable in class Y?

A) Yes

B) No

Page 40

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

Question: Which statement is true?

A) It is a good idea to make all instance variables public.

B) Every parameter should be declared as public or private.

C) A method in class X can call a private method in class Y.

D) A method in class X can access a private instance variable in
class X.

Page 41

COSC 123 - Dr. Ramon Lawrence

Objects and Object References
Question: How many objects are created by this code?

A) 1

B) 2

C) 3

D) 4

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount();
myAcct = savings;
checking = new BankAccount();

Page 42

COSC 123 - Dr. Ramon Lawrence

Objects and Object References
Question: How much money is in the account referenced by the
myAcct2 object reference?

A) unknown

B) 50

C) 100

D) undefined

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount(50);
myAcct = savings;
checking = new BankAccount(100);
savings = checking;
myAcct2 = myAcct;

Page 43

COSC 123 - Dr. Ramon Lawrence

1) Explain the difference between a class, an object, and an
object reference.

2) Create a program which creates a new BankAccount object
called savings with an initial balance of $100. Then, deposit
$40, withdraw $20, and print the current balance.

3) Modify the BankAccount class to also store an interest rate.
Allow the user to specify the interest rate in a constructor.

Create a method for setting the interest rate.

Create a method called calcInterest() to update the current
balance based on the interest rate.

Test your class with an account with $1000 and 10% interest
rate. Deposit $100, calculate interest, and print balance.

Practice Questions

Page 44

COSC 123 - Dr. Ramon Lawrence

Interfaces
Interfaces are used to allow a class to implement methods of
another class without inheriting from it.

An interface is a class where:
All methods are public and abstract (no implementation).

All variables are static and final. (no instance variables).

A class which implements an interface must implement all
methods of the interface.

A class can implement multiple interfaces.
Keyword to indicate implementing an interface is: implements

Page 45

COSC 123 - Dr. Ramon Lawrence

Interfaces Example

interface Shape {
int numSides();
int getArea();

}

class Square implements Shape {
public int numSides() { return 4; }
public int getArea() { return len*height; }

private int len;
private int height;

}

Page 46

COSC 123 - Dr. Ramon Lawrence

Object - THE SUPERCLASS
The class Object in Java is the root of the inheritance hierarchy
or the superclass of all classes.
That is, every class defined in Java and that you define inherits

from the Object class.

If you define a class that does not inherit from another class,
your class automatically extends the Object class.

The Object class has some defined methods:
String toString()
 returns a string representation of the object

boolean equals(Object other)
tests whether the object equals another object

Object clone()
makes a full (or deep) copy of the object

 does not just copy the object reference, copies the entire object

Page 47

COSC 123 - Dr. Ramon Lawrence

public class BankAccount
{

public String toString()
{ return "BankAccount[balance="+ balance+ "]"; }

...

private double balance;
private int accountNum;
private static int lastAccountNum = 0; // Static

}

toString() method:
1) Returns a string representation of your object.

Overriding toString method

Page 48

COSC 123 - Dr. Ramon Lawrence

Casting and Method Access
It is possible to assign an object reference of a subclass to the
an object reference variable of a superclass.
This is allowed because a subclass is a special case of the

superclass.

However, you are unable to access any methods/variables in
the subclass using a superclass object reference.

All objects inherit from the Object class, so they can be
assigned to an Object reference variable.

It is possible to explicitly cast an object reference variable for a
superclass to a subclass variable only if the superclass variable
references a valid subclass instance.
Otherwise, a run-time error will result.

Page 49

COSC 123 - Dr. Ramon Lawrence

public class TestSubclass
{ public static void main(String[] args)

{ BankAccount checking = new BankAccount(100);
SavingsAccount savings = new SavingsAccount(10);
BankAccount anyAccount;

savings.deposit(50);
anyAccount = checking;
System.out.println(anyAccount.getBalance()); // 100

// refer to subclass object using a superclass ref.
anyAccount = savings;
System.out.println(anyAccount.getBalance()); // 50

savings.addInterest(); // legal call
// addInterest call below does not work
// as it is not defined in BankAccount class
anyAccount.addInterest();

}
}

Subclass to Superclass Example

Page 50

COSC 123 - Dr. Ramon Lawrence

Object References Example
class Person{ private String name;

public String getName() { return name; }
public Person(String s) {name=s;} }

class Student extends Person { private String major;
public String getMajor() { return major; }
public Student(String n, String m)
{ super(n); major=m;} }

public class TestInheritance
{ public static void main(String[] args)

{ Person p = new Person(“Joe”);
Student s = new Student(“Fred”,”Comp.Sci.”);
Object o=s; // Yes-Object is superclass
s=(Student) p; // No-Run-time error
p=s; // Yes-Person is superclass
p.getName(); // Yes-available in Person class
p.getMajor(); // No-getMajor()not in Person class
s=(Student) p; // Yes - p refers to a Student obj.

}
}

Page 51

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Overview

Depending on the type of variable, the period of existence of
the variable, called its lifetime, will change.

The lifetime of a variable is based on when the variable is
created and how long it stays around in the program.
When a variable is first defined in a program its lifetime begins.

When a variable exits scope its lifetime ends.

The scope of a variable is the part of the program where you
can access or use the variable.

Page 52

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Variable Types

There are four basic variable types in Java:
1) Instance variables - are variables that are defined in a class

and are part of an object.

2) Static variables - are variables in a class which are common
to all object instances. Only one copy of variable for all objects.
Note that a static variable exists in a separate memory area and not

within any particular object instance. Use keyword static.

3) Local variables - are variables defined in methods.

4) Parameter variables - are variables passed to methods to
help them perform their computation.

Page 53

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Scope of Variable Types

The scope of variables depends directly on their type:
1) Instance variables - are created when an object instance is

created using the new method. Instance variables are defined
as long as there is at least one reference to the object in your
program which is still in scope.

2) Static variables - are created when the class they are defined
in is first loaded and are defined until the class is unloaded.
This means static variables are around for the duration of your program.

3) Local variables - are created when the program enters the
block in which they are defined and destroyed when the program
exits that block.
A variable defined in brackets (“{“,”}”) is accessible anywhere within the

block including nested blocks.

4) Parameter variables - are created when a method is first
called and are destroyed when a method returns. Page 54

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Variable Scope Rules

1) A variable defined in a block outlined using brackets is
accessible within the block and any subblocks. Example:

2) Two variables of the same name cannot be declared in the
same scope.

public static void main(String[] args)
{ int i;

{ int j;
... // i & j accessible here

} // j goes out of scope
... // only i accessible here

}

public static void main(String[] args)
{ int i;

...
double i; // Not allowed i is already defined

}

Page 55

COSC 123 - Dr. Ramon Lawrence

public class MethodScope
{ public static void main(String[] args)

{ double amount = 25; // amount defined in main()
BankAccount acct = new BankAccount(100);
acct.withdraw(amount); //amount in main() copied to
// amt in withdraw() - Not same variable!

} // amount, acct go out of scope
// Object acct can be deleted with variable balance

}

class BankAccount
{ public void withdraw(double amt)

{ if (amt <= balance)
{ double newBalance = balance - amt;

// newBalance is only defined within brackets
balance = newBalance;

} // newBalance goes out of scope and is deleted
} // method variable amt goes out of scope

private double balance; // instance variable
}

Variable Scope
Scope Example

Page 56

COSC 123 - Dr. Ramon Lawrence

1) Variables with the same name in different scopes are
different variables!

The double r in method area is a different variable than the
variable Rectangle r in main as they have different scopes.

public static double area(Rectangle rect)
{ double r = rect.getWidth() * rect.getHeight();

return r;
}

public static void main(String[] args)
{ Rectangle r = new Rectangle(5, 10, 20, 30);

double a = area(r);
}

Variable Scope
Common Scope Errors

Page 57

COSC 123 - Dr. Ramon Lawrence

2) Beware of scope issues when declaring variables in for
loops!

public class TestForScope
{ public static void main(String[] args)

{ for (int i=1; i <= 5; i++)
{ System.out.println(i); // 1,2,3,4,5
}
// for loop has its own copy of variable i
// i in for loop goes out of scope
System.out.println(i); //Not allowed- i is gone!

}
}

Variable Scope
Common Scope Errors (2)

Page 58

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Advanced Topic: Shadowing

Shadowing occurs when a variable in an inner scope overrides
or shadows a variable in an outer scope with the same name.
Typically, shadowing is an unintended programming mistake.

Shadowing is possible with variables of different types.
Example:

In the example, the programmer accidentally redeclared the
string variable name in the constructor which overrides the
instance variable in the class.

public class Coin
{ public Coin(double aValue, String aName)

{ value = aValue;
String name = aName; // Shadows name in class

}
...
private double value;
private String name; // name defined here

}

Page 59

COSC 123 - Dr. Ramon Lawrence

Advanced:
Method Parameters: Pass-by-value

All method parameters are passed to a method by value which
means that even if they are changed in a method, they are not
updated in the caller method.

To return a value from a method:
1) Return a single value using a return type.

2) Pass object references to the method which allow object
values to be changed.

Note: Although you cannot change the value of any
parameters, by passing object references which have access to
objects, you can change object data.
However, you cannot change the object reference value itself.

Page 60

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Advanced Topic: Garbage Collection

Have you ever wondered what happens to objects that you no
longer need after you created them using new?

Unlike other languages, a Java programmer is not responsible
for deleting or destroying objects that you no longer use.

When an object has no valid references to it, Java may delete
the object in memory in a process called garbage collection.

The lifetime of an object in memory:
1) The object is created using new and a reference to its

location in memory is created.

2) The object may have multiple object references during the
program execution.

3) When all object reference variables go out of scope, the
object has no more references and is marked for deletion.

4) Java periodically scans memory and deletes objects.

Page 61

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions

With this code explain the lifetime and scope of all variables.

public class VariableScope
{ public static void main(String[] args)

{ double amount = 25;
BankAccount acct = new BankAccount(200);
for (int i=1; i <= 3; i++)

acct.deposit(amount);
System.out.println(acct.getBalance()); // 125.0

}

private void doNothing(double a)
{ int i = 5; return; }

public static final int MYNUM = 25;
}

Page 62

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions (2)

class BankAccount
{ public void deposit(double amount)

{ if (amount <= balance)
{ double newBalance = balance - amount;

balance = newBalance;
}
double balance = 50;

}
public double getBalance()
{ return balance; }

public BankAccount(double b)
{ balance = b; lastAccountNum++;

accountNum = lastAccountNum;
}

private double balance;
private int accountNum;
private static int lastAccountNum = 0;

}

Page 63

COSC 123 - Dr. Ramon Lawrence

Conclusion
Key object-oriented terminology:
Object – an instance of a class.

Class – an object template with methods and properties.

Method – a set of statements that performs an action.

Parameter – data passed into a method.

Properties – are attributes of objects.

Access specifiers limit what methods can access.

Inheritance is a mechanism for creating a new class by
extending the features of an existing class.
Object references point to objects in memory. Use new to create
objects. Methods are called using an object reference.

The scope and lifetime of a variable depends on its type
(instance, static, local, parameter). Page 64

COSC 123 - Dr. Ramon Lawrence

Objectives
Definitions: class, object, method, parameter, instance variable,
inheritance, superclass, subclass, interface

Java skills:
Defining a class with variables and methods.

Meaning of access specifiers: public, protected, private.
Inheritance using extends and method/attribute inheritance.

Creating objects using new.

Purpose, use, and definition of constructors.

Difference between objects and object references.

Calling methods using object references. Implicit parameter this.

Parameters are pass by value.

Variable scope and lifetime for variable types.

Advanced topics: shadowing, garbage collection

COSC 123
Computer Creativity

Java Lists and Arrays

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Objectives
1) Create and use arrays of base types and objects.

2) Create and use ArrayList.

3) Understand the role of generic types to catch and prevent
errors.

Page 3

COSC 123 - Dr. Ramon Lawrence

Arrays Overview
Suppose you need many variables in your program.

You could either create a separate name for each variable:
double d1, d2, d3, d4, d5;

Or you could create an array that has multiple spots (indexes):
double[] myArray = new double[5];

myArray[0] = 5;

myArray[4] = 3;

0 1 2 3 4

5 3

d1 d2 d3 d4 d5

Indexes
A spot

(location) Page 4

COSC 123 - Dr. Ramon Lawrence

Arrays
An array is a collection of data items of the same type.

An array reference is denoted using the open and close square
brackets “[]” during declaration.

You can have an array of any data type including the base types (int,
double, String) and object-types (BankAccount).

Examples:

Similar to an object, when you declare an array you are
creating a reference to an array. Until you actually create the
space for the array using new, no array exists in memory.
String[] strings = new String[10];

int[] myArray;
String[] strings;
BankAccount[] accounts;

Page 5

COSC 123 - Dr. Ramon Lawrence

Array Indexing
When creating an array using new, the number in square
brackets is the number of elements in the array:
double[] values = new double[20]; // 20 items

Note the first element of the array has index 0 instead of 1.
In the previous example, the first index is 0 and the last is 19.

When an array is created, its values are initialized to defaults:
 0 for numbers, false for boolean, null for object references

To access or set a value in an array, use its subscript:
values[0] = 10; // Sets first element to 10

values[19] = values[0]; // Sets last element same as 1st
Page 6

COSC 123 - Dr. Ramon Lawrence

Array Details
Java performs automatic bound checking whenever an array
element is referenced.
If the index is in the valid range, the reference is carried out.

If the index is not valid, an exception,
ArrayIndexOutOfBoundsException, is thrown.

To get the length of an array in your program:
int[] numbers = new int[25];

int size = numbers.length; // Returns 25

You can initialize an array with values when you first declare it:
int[] primes = {2, 3, 5, 7, 11};

 new is not used with an initializer list. Initializers can only be used during declaration.

Page 7

COSC 123 - Dr. Ramon Lawrence

array reference
0
1
2
3
4

Arrays in Memory Diagram
Base Types

An array of base types stores the values in the slots in the
array. Example:

numbers

int[] numbers = new int[5];
numbers[0] = 10;
numbers[1] = 40;
numbers[2] = numbers[0]+10;

10
40
20
0
0

the array

array indices

Page 8

COSC 123 - Dr. Ramon Lawrence

array reference
0
1
2
3
4

Arrays of Objects
An object array is an array of object references. Example:

names

String[] names = new String[5];
names[0] = "Joe";
names[1] = "Steve";
names[4] = "Fred";

null
null

Joe

Steve

Fred

When allocating an object array, Java does not also allocate space for each
object in the array. Each object reference is initialized to null.

You must create a new object for each object reference.

Page 9

COSC 123 - Dr. Ramon Lawrence

Arrays as Parameters and References
An array can be passed as a parameter to a method and
returned from a method.
The values of the array can be changed but not the array

reference itself. This is similar to how objects work.

Since an array is just a reference, it is possible to change which
array a reference points to using assignment:
int[] array1 = new int[10];

int[] array2 = new int[20];

array2 = array1; // array2 now references array1

Page 10

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Create an int array with name myArray with 20 elements.

2) Set the value of the 1st element to 10.

3) Set the value of the last element to 1.

4) Create an array that has 10 elements. Put the numbers from
1 to 10 in the array.

5) How do you know how many elements are in an array?

Page 11

COSC 123 - Dr. Ramon Lawrence

Arrays
Question: What is the size of this array?

A) error

B) 10

C) 9

D) 11

int[] myArray = new int[10];

Page 12

COSC 123 - Dr. Ramon Lawrence

Arrays
Question: What are the contents of this array?

A) error

B) 0, 1, 2, 3

C) 1, 2, 3, 4
D) 4, 3, 2, 1

int[] myArray = new int[4];

myArray[3] = 1;
myArray[2] = 2;
myArray[1] = 3;
myArray[0] = 4;

Page 13

COSC 123 - Dr. Ramon Lawrence

Java Collections
A collection is an object that serves as a repository for other
objects. A collection provides methods to add, remove, and
manage the elements it contains.

The underlying data structure used to implement the collection
is independent of the operations the collection provides.

Java Collections API classes defines collection interfaces such
as Set, List, SortedSet, Queue, and BlockingQueue.

List collection has two linear data structure implementations:
ArrayList - resizable-array implementation of the List interface.

LinkedList - linked list implementation of the List interface.

Page 14

COSC 123 - Dr. Ramon Lawrence

ArrayLists
An ArrayList implements a resizable array of objects.

Base types such as int are not objects. Use wrapper class Integer.

Create an ArrayList by:

Add element to an ArrayList by:

Remove element from an ArrayList by:

ArrayList names = new ArrayList(); // Size 10 (default)
ArrayList accounts = new ArrayList(5); // Size of 5

names.add("Joe"); // Add to end of list
names.add(2,"Steve"); // Add at index 2 and shift up

names.remove(2); // Remove index 2 and shift down

Page 15

COSC 123 - Dr. Ramon Lawrence

ArrayLists (2)
Get number of items in list by:

Get element at an index from an ArrayList by:

Set element at an index in an ArrayList by:

int count = names.size();

String n = names.get(2); // Get item at index 2

names.set(2,"Fred"); // Put Fred at index 2

Page 16

COSC 123 - Dr. Ramon Lawrence

Traversing an ArrayList
A simple way to traverse an ArrayList is using a for loop:

for (int i=0; i < names.size(); i++)
{ String s = (String) names.get(i);

System.out.println(s);
}

Page 17

COSC 123 - Dr. Ramon Lawrence

Traversing an ArrayList
Iterators

All collections also have iterators which are special classes
designed to allow you to traverse through the collection.

Using an iterator with an ArrayList:

Iterator it = names.iterator();
while (it.hasNext())
{ String s = (String) it.next();

System.out.println(s);
}

Page 18

COSC 123 - Dr. Ramon Lawrence

Generic Types
Collections store any type of object as all objects are a subclass
of Object. It is better to precisely specify what objects are in a
collection so that the compiler can check for errors.

All collections support generic (or parameterized) types to
indicate what type is stored in the collection.

Examples:

// ArrayList can ONLY store strings

ArrayList<String> myNames = new ArrayList<String>(5);

// This ArrayList can only store BankAccount objects
ArrayList<BankAccount> accounts

= new ArrayList<BankAccount>();

Page 19

COSC 123 - Dr. Ramon Lawrence

ArrayList Example
import java.util.ArrayList;

public class TestArrayList
{ public static void main(String[] args)

{ ArrayList a = new ArrayList();
BankAccount b1, b = new BankAccount(100);
SavingsAccount s1, s = new SavingsAccount(5,50);

a.add(b); // Add bank account b to list
a.add(0,s); // Add s to front of list
b1 = (BankAccount) a.get(1);
s1 = (SavingsAccount) a.get(0);
System.out.println(b1.getBalance());
System.out.println(s1.getBalance());

a.remove(0); // Remove s from list
System.out.println(a.size()); // Prints 1

}
} Page 20

COSC 123 - Dr. Ramon Lawrence

ArrayList
Question: What is the value of st?

A) Fred

B) Joe

C) Steve
D) error

ArrayList a = new ArrayList();
a.add("Fred");
a.add(0,"Joe");
a.add("Steve");
a.remove(1);
String st = (String) a.get(1);

Page 21

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Write a method reverse that returns a new array that
contains the reverse sequence of numbers.
Example:
1 4 9 19 9 7 4 9 11 becomes 11 9 4 7 9 19 9 4 1

2) Write a method that reads in strings using Scanner and
stores them in an ArrayList until "STOP" is entered. Print
out the list after you finish reading.

Page 22

COSC 123 - Dr. Ramon Lawrence

Conclusion
Arrays are a data structure for storing multiple items using the
same name.
An array has a fixed size and is indexed from 0 to size-1.

An array can store both base types or object references.

A collection is an object that stores other objects and provides
methods for adding, removing, and retrieving objects.
An ArrayList is a linear collection.
ArrayList has methods for adding, removing, getting, and

setting values.
ArrayList can be traversed using a loop or an iterator.

A generic type ensures the collection only stores the proper
objects.

Page 23

COSC 123 - Dr. Ramon Lawrence

Objectives
Java skills:
Creating an array

Array indexing and bounds checking

Arrays of base types and objects

Arrays as parameters
Copying arrays and System.arraycopy

Two-dimensional arrays
ArrayList – create, add, remove, get, set, traversing

Iterators

COSC 123
Computer Creativity

Graphics and Events

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Draw shapes, text in various fonts, and colors.

2) Build window applications using JFrame/JPanel and Swing
components.

3) Understand events, event listeners, and event adapters.

4) Write code for handling mouse, keyboard, and window
events.

Page 3

COSC 123 - Dr. Ramon Lawrence

Java Programs
Overview

To this point, all our Java programs have received input and
displayed output in the console (text window).

Types of Java programs:
1) Console applications - text-based applications which

perform input and output using the console

2) Graphical applications - stand-alone Java applications
which have a graphic user interface with components such as
windows, control buttons, menus, and check boxes.

Page 4

COSC 123 - Dr. Ramon Lawrence

Graphical Applications
Overview

A graphical application is a Java program with a graphical
user interface.

A frame window is a window on the screen that has a border
and a title bar.

A frame window is defined in Java using the JFrame class that
is present in the javax.swing package.
The javax.swing package is also called the Swing toolkit.

Page 5

COSC 123 - Dr. Ramon Lawrence

Creating a Frame Windows
To create a frame window:
import javax.swing.JFrame

create our own class (like MyFrame) which extends JFrame

provide a constructor for our MyFrame class

set the size of our frame using the setSize method
usually performed in MyFrame constructor

To use the MyFrame window:
define a mainline which instantiates a MyFrame instance

use the setTitle method to set the frame title (optional)

use the setVisible method to display the frame on the
screen

Page 6

COSC 123 - Dr. Ramon Lawrence

Graphical Applications
Creating a Frame Window

import javax.swing.JFrame;
public class MyFrame extends JFrame
{ public static void main(String[] args)

{ MyFrame frame = new MyFrame();
frame.setTitle("Frame Title");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

public MyFrame()
{ final int DEFAULT_FRAME_WIDTH = 300;

final int DEFAULT_FRAME_HEIGHT = 300;
setSize(DEFAULT_FRAME_WIDTH, DEFAULT_FRAME_HEIGHT);

}
}

Page 7

COSC 123 - Dr. Ramon Lawrence

A “Hello World!” Window
The window displays Hello World!

Question: What does extends mean? Page 8

COSC 123 - Dr. Ramon Lawrence

The Coordinate System
Drawing on the screen is done by specifying coordinates which
refer to a location on the screen.
The origin is the upper-left hand corner of the screen.

The x coordinate gets bigger as we move to the right.

The y coordinate gets bigger as we move down.

Diagram:
(0,0)

y

(80, 10)

(30, 70)

x

Page 9

COSC 123 - Dr. Ramon Lawrence

drawString Method
The drawString method draws a text string on the screen.

Usage:
g.drawString(message, x, y)
x, y co-ordinates are the base point of the message

Example:
g.drawString("Hello World!", 10, 40);

(0,0)
x

y

(10, 40) Hello World!

Page 10

COSC 123 - Dr. Ramon Lawrence

Drawing
To draw shapes on the screen, we use the draw method.

The draw method takes a shape that we create and draws it on
the screen.

Example:
Rectangle box = new Rectangle(10, 10, 20, 30);

g2.draw(box);

Page 11

COSC 123 - Dr. Ramon Lawrence

Drawing Shapes
There are several methods to draw shapes:
1) Ellipse:
 Ellipse2D.Double egg = new Ellipse2D.Double(topx, topy, width, height);

 Ellipse2D.Double egg = new Ellipse2D.Double(5, 10, 15, 20);

2) Rectangle:
Rectangle box = new Rectangle(topx, topy, width, height);

Rectangle box = new Rectangle(10, 10, 20, 30);

3) Line:
Line2D.Double = new Line2D.Double(x1, y1, x2, y2);

4) Point:
Point2D.Double = new Point2D.Double(x,y);

You can also fill a shape with a color using the fill method:
g2.fill(box);

g2.fill(egg); Page 12

COSC 123 - Dr. Ramon Lawrence

Changing Colors
There are 3 basic display colors which are combined to form all
colors displayed on a computer.
Red, green, and blue are used in the RGB color model.

Any color can be defined by specifying what percentage of red,
blue, and green is in the color.

The class for colors in Java is called Color.
import java.awt.Color;

Color orange = new Color(1.0F, 0.8F, 0.0F);

Changing what color your text or shapes is drawn in:
g.setColor(orange);

There are also static colors predefined in Java:
Color.black, Color.red, Color.white, Color.orange,

etc.

Page 13

COSC 123 - Dr. Ramon Lawrence

Changing Fonts
The drawString method uses a default font if none is given.

A font consists of:
a font face name (Serif, SansSerif, Monospaced, Dialog, etc.)
a style (Font.PLAIN, Font.BOLD, Font.ITALIC, etc.)

a font size (specified in points: 1 inch = 72 points)

The font class in Java is called Font:
import java.awt.Font;

Font bigFont = new Font("Serif", Font.BOLD, 36);

Set the current font:
g.setFont(bigFont);

Then use drawString:
g.drawString("Hello World!", 50, 100);

Page 14

COSC 123 - Dr. Ramon Lawrence

Drawing Fonts

Page 15

COSC 123 - Dr. Ramon Lawrence

Car Drawing Example

Page 16

COSC 123 - Dr. Ramon Lawrence

Exercises
1) Draw three circles of different colors.

2) Draw a "better" looking car.

Page 17

COSC 123 - Dr. Ramon Lawrence

Adding Components to a Frame
Content is added to the frame on the content pane.
One common component to add is a JPanel that allows you to
draw graphics.
A container is a component that can hold other components.

There are five regions of a JFrame where you can place
components:
North, West, Center, East, South

Example:

Container contentPane = getContentPane();
MyPanel panel = new MyPanel();
contentPane.add(panel, "Center");

Page 18

COSC 123 - Dr. Ramon Lawrence

Java Swing Components
The Java Swing package contains the user interface
components that we will use in our graphical applications.
Component Import Package
JButton javax.swing.JButton

ButtonGroup javax.swing.ButtonGroup

Check box javax.swing.JCheckBox

Combo box javax.swing.JComboBox

JFrame javax.swing.JFrame

JLabel javax.swing.JLabel

JPanel javax.swing.JPanel

Radio button javax.swing.JRadioButton

Text field javax.swing.JTextField

Page 19

COSC 123 - Dr. Ramon Lawrence

GUI Example

Page 20

COSC 123 - Dr. Ramon Lawrence

GUI Example (2)

Page 21

COSC 123 - Dr. Ramon Lawrence

GUI Example (3)

Page 22

COSC 123 - Dr. Ramon Lawrence

GUI Components
JLabel

The JLabel class is used to display a label (or text) on the
screen that cannot be edited by the user.

A label can be aligned by using:
Center - SwingConstants.CENTER

Right - SwingConstants.RIGHT

Left - SwingConstants.LEFT

JLabel myLabel = new JLabel("My Label",
SwingConstants.RIGHT);

Page 23

COSC 123 - Dr. Ramon Lawrence

GUI Components
JTextField and JTextArea
JTextField allows us to read in a single line of text.
JTextArea allows us to handle multiple lines of text.

With a JTextField, you may give the # of characters:

With a JTextArea, you can give the # of rows/cols:

JTextField txtField = new JTextField(5); // 5 chars.

JTextArea txtArea = new JTextArea(5,40);//5 rows, 40 cols

Page 24

COSC 123 - Dr. Ramon Lawrence

GUI Components
JTextField and JTextArea Methods

Some useful methods for text fields:

JTextField txtField = new JTextField();

txtField.setText("Hello World!"); // Set the field text
txtField.setEditable(false); // Do not allow field edits
txtField.setFont(hugeFont); // Change the field font
txtField.getText(); // Get current field text

Page 25

COSC 123 - Dr. Ramon Lawrence

GUI Components
JRadioButton Overview

The JRadioButton class allows the user to select from
disjoint inputs (i.e. the user can select only one out of a list).

The ButtonGroup class allows the programmer to specify
which buttons are grouped with each other.

You can select buttons or determine if buttons are selected by:

JRadioButton smallButton = new JRadioButton("Small");
JRadioButton mediumButton = new JRadioButton("Medium");
JRadioButton largeButton = new JRadioButton("Large");

ButtonGroup sizeGroup = new ButtonGroup();
sizeGroup.add(smallButton);
sizeGroup.add(mediumButton);
sizeGroup.add(largeButton);

smallButton.setSelected(true);
if (smallButton.isSelected()) return "Small"; Page 26

COSC 123 - Dr. Ramon Lawrence

GUI Components
JCheckBox Overview

The JCheckBox class allows the user to select yes/no valued
inputs (i.e. true or false).

Note: Do not place check boxes inside a button group because
they are not mutually exclusive.

JCheckBox boldCheckBox = new JCheckBox("Bold");

Page 27

COSC 123 - Dr. Ramon Lawrence

GUI Components
JComboBox Overview

The JComboBox class allows the user to select from a large list
of disjoint inputs where radio buttons are too awkward.
A JComboBox allows you to select an item from the list.

If the list is editable, you can type in your own selection that
may not already be in the list.

You can get the selected item in the list by:

Note that JComboBox, JCheckBox, and JRadioButton all
generate action events that should be detected using an action
listener.

JComboBox itemCombo = new JComboBox();
itemCombo.addItem("Item 1");
itemCombo.addItem("Item 2");

String st = (String) itemCombo.getSelectedItem();

Page 28

COSC 123 - Dr. Ramon Lawrence

GUI Components
JButton Overview

The JButton class allows you to put a button on your frame.

When creating a button, it can have just text, just a picture, or a
picture and text.

leftButton = new JButton("left");
leftButton = new JButton(new ImageIcon("left.gif"));
leftButton = new JButton("left",newImageIcon("left.gif"));

Page 29

COSC 123 - Dr. Ramon Lawrence

Coordinates
Question: Select from the coordinates below the pair that best
describes this point's location. Assume box is 100 by 100.

A) (10,80)

B) (80,10)

C) (10,20)

D) (20,10)

Page 30

COSC 123 - Dr. Ramon Lawrence

Components
Question: What is the best component to use if the user can
select yes/no to multiple items independently?

A) JRadioButton

B) JComboBox

C) JCheckBox

D) JButton

Page 31

COSC 123 - Dr. Ramon Lawrence

Components
Question: What is the best component to use if the user must
pick only one item from 50 possible choices?

A) JRadioButton

B) JComboBox

C) JCheckBox

D) JButton

Page 32

COSC 123 - Dr. Ramon Lawrence

Events and Event Handling
GUI Programming Philosophy

In graphical applications, the programmer must react instead
of dictate the events that occur in a program.

As a programmer, you design a graphical user interface with
windows, buttons, and components that the user can interact
with. You do not know the order or the sequence of events the
user will generate, but you must be able to react to them.

Page 33

COSC 123 - Dr. Ramon Lawrence

Events and Event Handling Overview
An event is a notification to your program that something has
occurred.
For graphical events (mouse click, data entry), the Java window

manager notifies your program that an event occurred.
There are different kinds of events such as keyboard events, mouse

click events, mouse movement events, etc.

An event handler or listener is part of your program that is
responsible for "listening" for event notifications and handling
them properly.
An event listener often only listens for certain types of events.

An event source is the user interface component that
generated the event.
A button, a window, and scrollbars are all event sources.

Page 34

COSC 123 - Dr. Ramon Lawrence

Event Handling Overview

Event
Occurs

Event
Object Created

Program notified
of event

No event
listener Event listener

Event
Ignored/Discarded

Listener/program
processes event

Program waits for
next event

Page 35

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example
Handling mouse click events requires three classes:
1) The event class - that stores information about the event.
For mouse clicks, this class is MouseEvent.

The MouseEvent class has methods getX() and getY() that indicate
the position of the mouse at the time the event was generated.

Each event class has the method Object getSource() that returns
the source of the event.

2) The listener class - allows your program to detect events.
Building your own listener class requires implementing a pre-
defined interface.
For mouse clicks, the interface is MouseListener. MouseAdapter is

a class that implements the MouseListener interface.

3) The event source - is the component in your GUI that
generated the event.

Page 36

COSC 123 - Dr. Ramon Lawrence

MouseListener Interface
The MouseListener interface must be implemented by your
class that handles mouse events. It has the methods:

To add a listener, use the method:
addMouseListener(listener_name);

public interface MouseListener
{ void mouseClicked(MouseEvent event);

// Called when the mouse has been clicked on component
void mouseEntered(MouseEvent event);
// Called when the mouse enters a component
void mouseExited(MouseEvent event);
// Called when the mouse exits a component
void mousePressed(MouseEvent event);
// Called when a mouse button pressed on a component
void mouseReleased(MouseEvent event);
// Called when mouse button released on a component

}

Page 37

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example Code

Page 38

COSC 123 - Dr. Ramon Lawrence

Event Listeners and Inner Classes
Typically, your event listener class will perform some function
based on the user input.
This function often involves accessing the private variables of

the Frame class you defined.

However, if the listener class is implemented outside of the
Frame class, it has no more access rights to the private
instance variables of that class then any other class.

The solution to this problem is to use inner classes.

An inner class is a class that is defined inside another class.
The methods of the inner class have access to the private

variables of the outer class.
The inner class is typically defined as private.

An inner class object remembers the object that created it.

Page 39

COSC 123 - Dr. Ramon Lawrence

Egg Draw Example Code

Draws an ellipse where
the user clicks.

 The mouse listener is
an inner class.

 Every time the user
clicks the mouse, the
listener repositions
the ellipse and calls
repaint to redraw.

Page 40

COSC 123 - Dr. Ramon Lawrence

WindowListener Interface
The WindowListener interface must be implemented by your
frame class to handle its events. It has the methods:

Most programs only care about the window closed event.
That is where System.exit(0) is typically placed.

There is also a WindowAdapter class that can be extended
instead of implementing all interface methods.

public interface WindowListener
{ void windowOpened(WindowEvent e);

void windowClosed(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);
void windowIconified(WindowEvent e);
void windowDeiconfied(WindowEvent e);
void windowClosing(WindowEvent e);

}

Page 41

COSC 123 - Dr. Ramon Lawrence

Frame Window Event Example
Note the use of
WindowAdapter as we only
care about the window
closing event.

Page 42

COSC 123 - Dr. Ramon Lawrence

Action Listeners
GUI components like buttons, text fields, combo boxes, and
check boxes all generate action events.

The ActionListener interface has a single method:

An action event is generated when you click on the control or
press Enter for text fields.

public interface ActionListener
{ public void actionPerformed(ActionEvent event);
}

Page 43

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example
In this example, we will create a JFrame with
a JPanel and a JTextField and ask the
user for the number of ellipses ("eggs") to
draw on the screen.

Notes:
1) The JPanel component paints itself in the
paintComponent method. This method
MUST call super.paintComponent as the
first line.
Note that this is different than the paint

method in applets.

2) When the user changes the value in the
text field, you must call repaint to get the
JPanel to repaint itself.

Page 44

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example Code

Page 45

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example Code (2)

Page 46

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example Code (3)

Page 47

COSC 123 - Dr. Ramon Lawrence

JButton and ActionListener
When a button is clicked, it sends an action event that must be
captured using an action listener.

You may either create one action listener for all buttons (which
uses the event.getSource method to determine the button
pressed) or create a separate listener for each button.

leftButton = new JButton("left");
ActionListener listener = new ButtonListener();
leftButton.addActionListener(listener);

Page 48

COSC 123 - Dr. Ramon Lawrence

public class MyFrame
{ public MyFrame()

{ ...
upButton = new JButton("Up");
ActionListener listener = new UpListener();
upButton.addActionListener(listener);
...

}
...
private JButton upButton;
...
private class UpListener implements ActionListener
{ public void actionPerformed(ActionEvent event)

{ // performs action when up button is clicked
}

}
}

One Button Action Listener

Page 49

COSC 123 - Dr. Ramon Lawrence

public class MyFrame
{ public MyFrame()

{ ...
upButton = new JButton("Up");
downButton = new JButton("Down");
leftButton = new JButton("Left");
rightButton = new JButton("Right");
ActionListener listener = new DirectionListener();
upButton.addActionListener(listener);
downButton.addActionListener(listener);
leftButton.addActionListener(listener);
rightButton.addActionListener(listener);
// create a Panel containing all buttons and add
// to content pane

}
private JButton upButton, downButton, leftButton;
private JButton rightButton;

Multiple Button Action Listener

Page 50

COSC 123 - Dr. Ramon Lawrence

...
private class DirectionListener implements

ActionListener
{ public void actionPerformed(ActionEvent event)

{ // performs action when any button is clicked
Object source = event.getSource();
if (source == upButton)
// Perform up action
else if (source == downButton)
// Perform down action
else if (source == leftButton)
// Perform left action
else if (source == rightButton)
// Perform right action

}
}

Multiple Button Action Listener (2)

Page 51

COSC 123 - Dr. Ramon Lawrence

Listeners and Adapters
Question: Which one is a true statement?

A) To handle mouse events, create a class that extends
MouseListener.

B) To handle mouse events, create a class that implements
MouseAdapter.

C) To handle mouse events, create a class that extends
MouseAdapter.

D) You must implement all event methods when your class
extends MouseAdapter.

Page 52

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Create a program that displays the string "Hello world" at the
location where the user clicks the mouse.
Notes:
When the user clicks a mouse, move the location of "Hello World!".
Use MouseAdapter and inner classes.

2) Create a program that opens up a window with "1" as the
title. Then,
If the user clicks on the window, a new window is opened with

value of "2".

If the user clicks on either open window, a new window is
opened with value of "3". This may repeat for any # of windows.

When a window is closed, all other windows stay open.

When the last window is closed, the program quits.

Page 53

COSC 123 - Dr. Ramon Lawrence

Menus Overview
Menus allow the user to select options without using buttons
and fields.
A menu is located at the top of the frame in a menu bar.

A menu is a collection of menu items and more menus.
You add menu items and submenus with the add method.

When a menu item is selected, it generates an action event.
Thus, each menu item should have a listener defined.

Page 54

COSC 123 - Dr. Ramon Lawrence

Menus Example
In this example, we will create a menu that
allows us to move a rectangle around the
window based on user selections.

Page 55

COSC 123 - Dr. Ramon Lawrence

Menus Example Code
This is the basic setup for
creating a frame.

Note the JMenuItem
instance variables, one for
each menu item.

Page 56

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (2)
Still in the constructor, this code
begins by creating a JMenuBar
and setting it as the frame's
menu bar.

Then, the file menu is created
with two items: new and exit.
Note that an ActionListener
is added for each menu item,
and it is the same listener object.

Later we will see how the
listener determines what menu
item was selected.

The next code creates the edit
menu. Note that the move menu
is a submenu of the edit menu.

Page 57

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (3)
The top of the code finishes
the edit menu by adding the
randomize menu item.

The MenuListener is the
class that is used to respond
to menu action events.

Note that the getSource
method is used to determine
the menu item selected which
is then compared with all the
menu items created.

Once the appropriate menu
item is found, the correct
method is called to perform
the menu action.

Page 58

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (4)
A standard class extending
WindowAdapter is used to
detect when the window is
closed and to terminate the
application.

RectanglePanel is the
panel where the rectangle is
drawn.

The rectangle has a fixed
size and starts off at (0,0).

The reset method is called
when the new menu item is
selected. It places the
rectangle back at (0,0) and
calls repaint to make sure
the panel is redrawn to reflect
the changes.

Page 59

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (5)
The randomize method
places the rectangle at a
random location in the
window and redraws the
panel.

The moveRectangle
method moves the rectangle
an amount left/right (dx) or
up/down (dy) from its current
location.

Page 60

COSC 123 - Dr. Ramon Lawrence

Exercise
Create an application that has a File menu and an edit menu.
The file menu should have an exit item that closes the

application.

The edit menu should have two subitems:
shape – has submenu of rectangle, square, and circle

color – has submenu of red, green, blue, yellow

When the use selects a shape and color, remember the shape
and color. Default is rectangle and red.

When the user clicks on a place on the screen, draw that shape
in that color.

Page 61

COSC 123 - Dr. Ramon Lawrence

Timer
A timer can be used to create events at set times. A timer
generates ActionEvents.

Creating a timer:

Starting and stopping a timer:

Timer timer = new Timer(1000, listener);
// The timer fires every 1000 ms (1 second).
// The listener class is called every time.

timer.start();
timer.stop();

Page 62

COSC 123 - Dr. Ramon Lawrence

Timer Example Code
This draws a
random picture
every 4 seconds.

This is the
listener for the
timer which just
calls repaint.

Note the creation
and starting of the
timer.

Page 63

COSC 123 - Dr. Ramon Lawrence

Keyboard Events
A keyboard event occurs when a keyboard key is pressed.

Key events allow a program to respond immediately as the
user presses keys.

A listener responds when any key is pressed, then decides
what to do based on the specific key pressed.

Keyboard events:
public void keyPressed(KeyEvent evt);
public void keyReleased(KeyEvent evt);
public void keyTyped(KeyEvent evt);

Page 64

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code

This allows the user
to move a square
and change its color
by pressing keys.

Note that the panel
is setup to listen for
keyboard, mouse,
and focus events.

Page 65

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (2)

The constructor
for the panel
adds listeners
for the events.

The
paintComponent
method draws
the panel. It
also draws the
rectangle.

Page 66

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (3)

If the panel
gains or loses
focus, repaint is
called to update
the graphics on
the panel.

Page 67

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (4)

The keyTyped
method detects
when a user
types a key and
changes the
color of the
square
accordingly.

Page 68

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (5)
The

keyPressed
method detects
when a key is
pressed and
moves the
square.

Page 69

COSC 123 - Dr. Ramon Lawrence

Graphical User Interfaces
Conclusion

Buttons, text fields, check boxes, combo boxes, and menus are
all components in the Java Swing package that can be used to
developed a GUI for your application.

Components generate events (usually action events) to indicate
when they have been clicked on or accessed by the user.
We handle the events using listeners and adapters.

The important thing about Swing is not memorizing the
components and their methods, but understanding how the
components work and generate events.
Focus on event handling and the concept of using components,

not on the definition of the components!

Page 70

COSC 123 - Dr. Ramon Lawrence

Objectives
Definitions: event, event handler/listener, event source

Java skills:
Create applets and place on web pages.

Use the Java coordinate system.

Draw basic shapes, change colors and fonts.
Window applications using JFrame and JPanel.

Java Swing components: JButton, JCheckBox, JComboBox,
JLabel, JPanel, JRadioButton, JTextField, JTextArea

Event listeners versus event adapters
Mouse events: MouseListener, MouseAdapter

Window events: WindowListener, WindowAdapter

ActionListener and use with JButton

Page 71

COSC 123 - Dr. Ramon Lawrence

Objectives (2)
Java skills (cont.):
Using inner classes.
Menus: JMenu, JMenuItem, JMenuBar

Timer and timer events

Keyboard events: KeyListener

COSC 123
Computer Creativity

I/O Streams and Exceptions

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Objectives
Explain the purpose of exceptions.

Examine the try-catch-finally statement for handling exceptions.

Show how to throw exceptions to other methods.

Identify I/O streams with specific focus on reading and writing
text files and handling I/O exceptions.

Page 3

COSC 123 - Dr. Ramon Lawrence

Exception Handling
An exception is an error situation that must be handled or the
program will fail.
Exception handling is a mechanism for communicating error

conditions between methods of your program.

Examples:
Attempting to divide by zero

An array index that is out of bounds

A specified file that could not be found

A requested I/O operation that could not be completed normally

Attempting to follow a null reference

Attempting to execute an operation that violates some kind of
security measure

Page 4

COSC 123 - Dr. Ramon Lawrence

Uncaught Exceptions
If a program does not handle the exception, it will terminate
abnormally and produce the message that describes the
exception that occurred and where in the code it was produced.

Example:

The output is the call stack trace that indicates where the
exception occurred.

Page 5

COSC 123 - Dr. Ramon Lawrence

The try-catch Statement
The try-catch statement identifies a block of statements that
may throw an exception.

A catch clause defines how a particular kind of exception is
handled. Each catch clause is called an exception handler.

When the try-catch statement is executed, the statements in
the try block are executed.

If an exception is thrown at any point during the execution of
the try block, control is immediately transferred to the
appropriate catch handler.

Page 6

COSC 123 - Dr. Ramon Lawrence

try
{

Scanner sc = new Scanner(System.in);
System.out.print("Enter your age? ");
int age = sc.nextInt();
System.out.println("You are: "+age+" years old!!!");

}
catch (InputMismatchException e)
{ System.out.println("Input was not a number.");
}

Catching Exceptions Example Code

Page 7

COSC 123 - Dr. Ramon Lawrence

The finally Clause
A try-catch statement can have an optional finally
clause which defines a section of code that is executed no
matter how the try block is exited.

If no exception is generated, the statements in the finally
clause are executed after the try block is complete.

If an exception is generated in the try block, control first
transfers to the appropriate catch clause, then to finally
clause.

Page 8

COSC 123 - Dr. Ramon Lawrence

try
{

Scanner sc = new Scanner(System.in);
System.out.println("Enter your age?");
int age = sc.nextInt();
System.out.println("You are: "+age+" years old!!!");

}
catch (InputMismatchException e)
{ System.out.println("Input was not a number.");
}
finally
{ System.out.println("We always go in here!");
}

Finally Example

Page 9

COSC 123 - Dr. Ramon Lawrence

Throwing Exceptions
Your method has two ways of handling exceptions:
1) It can handle them inside the method using a try-catch-
finally block.

2) It can throw the exception to the method that called it and
force that method to handle it.

To throw an exception you must do two things:
1) List the type of exception that is thrown in the method

header.

2) Not catch an exception (do not use try-catch block) or create
a new exception and call throw to pass it to the caller.

When an exception is thrown, the method exits immediately
similar to a return statement.

Page 10

COSC 123 - Dr. Ramon Lawrence

public class ThrowException
{

public static void main(String[] args)
{

System.out.println("This isn't smart...");
doSomethingDumb();

}

public static int doSomethingDumb()
throws ArithmeticException

{
int num1 = 5, num2 = 0;
int result = num1/num2; // Divide by zero
return result;

}
}

Throwing Exceptions Example Code

Page 11

COSC 123 - Dr. Ramon Lawrence

Checked and Unchecked Exceptions
Checked exceptions are exceptions that you must tell the
compiler how your code is handling them.
A checked exception must be either caught or thrown.
Checked exceptions are typically exceptions that are not your fault.
e.g. IOException (and all its subclasses)

Unchecked exceptions are exceptions that the compiler does
not force your program to handle.
An unchecked exception is automatically passed to the caller

method if it is not handled by the method that generated the
exception.
Unchecked exceptions include NumberFormatException,
IllegalArgumentException, and NullPointException.

Exceptions that are a subclass of RuntimeException are unchecked.
Page 12

COSC 123 - Dr. Ramon Lawrence

Exceptions
Question: TRUE or FALSE: A good programmer can always
avoid exceptions.

A) TRUE

B) FALSE

Page 13

COSC 123 - Dr. Ramon Lawrence

Exceptions
Question: TRUE or FALSE: An uncaught exception may be
passed through several methods before the program crashes.

A) TRUE

B) FALSE

Page 14

COSC 123 - Dr. Ramon Lawrence

Exceptions
Question: What does this code output if the user enters "32"?

A) nothing
B) 32

C) Input was not a number.

D) 32 HELLO!

try
{ Scanner sc = new Scanner(System.in);

System.out.print("Enter a number: ");
int num = sc.nextInt();
System.out.print(num+" ");

}
catch (InputMismatchException e)
{ System.out.print("Input was not a number. ");
}
finally
{ System.out.print("HELLO!");
}

Page 15

COSC 123 - Dr. Ramon Lawrence

Exceptions
Question: What does this code output if the user enters "abc"?

A) abc

B) Input was not a number.

C) abc HELLO!

D) Input was not a number. HELLO!

try
{ Scanner sc = new Scanner(System.in);

System.out.print("Enter a number: ");
int num = sc.nextInt();
System.out.print(num+" ");

}
catch (InputMismatchException e)
{ System.out.print("Input was not a number. ");
}
finally
{ System.out.print("HELLO!");
}

Page 16

COSC 123 - Dr. Ramon Lawrence

Java File Input/Output
A stream is an ordered sequence of bytes.

A stream may be either an input stream or an output stream.

An input stream is a stream from which information is read.

An output stream is a stream to which information is written.
Streams may generate exceptions such as IOException.

The System class contains three object reference variables:

Page 17

COSC 123 - Dr. Ramon Lawrence

Reading and Writing Text Files
A file is opened as a stream for reading or writing.

Programmers need to know the contents of the file and how to
translate it to a usable form.

If for some reason there is a problem finding or opening a file,
the attempt to create a File object will throw an IOException.

To put a backslash ("\") in a filename string, you must enter each
backslash TWICE as backslash is an escape character.
e.g. File in = new File("c:\\homework\\input.dat");

Output file streams should be explicitly closed or they may not
correctly retain the data written to them.

Page 18

COSC 123 - Dr. Ramon Lawrence

Scanner sc = null;
try
{ sc = new Scanner(new File("MyFile.txt"));

while (sc.hasNextLine())
{ String st = sc.nextLine();

System.out.println(st);
}

}
catch (FileNotFoundException e)
{ System.out.println("Did not find input file: "+e);
}
finally
{ if (sc != null)

sc.close();
}

Note: The Scanner class handles some exceptions for you.

Read Text File with Scanner

Page 19

COSC 123 - Dr. Ramon Lawrence

PrintWriter out = null;
try
{

out = new PrintWriter("output.txt");
// Write the numbers 1 to 10 in the file
for (int i=1; i <=10; i++)

out.println(i);
}
catch (FileNotFoundException e)
{ System.out.println("Could not create output file: "+e);
}
finally
{ if (out != null)

out.close();
}

Write Text File with PrintWriter

Page 20

COSC 123 - Dr. Ramon Lawrence

Streams and Exceptions
Practice Question

1) Write a program that prompts the user for a filename then
opens the text file and counts the number of lines in the file.

Page 21

COSC 123 - Dr. Ramon Lawrence

Conclusions
An exception is an error situation that must be handled or the
program will fail.
Exception handling is a mechanism for communicating error

conditions between methods of your program.

There are two ways for handling exceptions:
1) Instead method using a try-catch-finally block.

2) By throwing it to the caller method.

Checked exceptions must always be handled.

A stream is a sequential sequence of bytes which can be used
for input or output. Files are streams as is System.out.

Reading from text files can be done using Scanner class
similar to reading from System.in.

Writing to text files is done using the PrintWriter class.
Make sure to close all files! Page 22

COSC 123 - Dr. Ramon Lawrence

Objectives
Key terms:
exceptions and exception handling

Java skills:
exception handling using try-catch-finally statement

uncaught exceptions and the call stack trace

throwing exceptions (throws in method header)

checked vs. unchecked exception

streams and the standard I/O streams in the System class
Reading from a text file using Scanner

Writing to a text file using PrintWriter

COSC 123
Computer Creativity

Course Review

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Reading Data from the User
The Scanner Class

The Scanner class reads data entered by the user. Methods:
int nextInt() - reads next integer

double nextDouble() – reads next floating point number

String next() – reads String (up to separator)

String nextLine() – reads entire line as a String

To use must import java.util.Scanner.
import java.util.Scanner;
public class AddTwoNum
{ public static void main(String[] argv)

{ // Code reads and adds two numbers
Scanner sc = new Scanner(System.in);
int num1 = sc.nextInt();
int num2 = sc.nextInt();
int result = num1+num2;
System.out.println(num1+" + "+num2+" = "+result);

}
}

Page 3

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations
A value is a data item that is manipulated by the computer.

A variable is the name that the programmer users to refer to a
location in memory.

A location has an address in memory and stores a value.

IMPORTANT: The value at a given location in memory (named
using a variable name) can change using initialization or
assignment.

Page 4

COSC 123 - Dr. Ramon Lawrence

Compile vs. Run-time Errors
Question: A program is supposed to print the numbers from 1 to
10. It actually prints the numbers from 0 to 9. What type of error
is it?

A) Compile-time error

B) Run-time error

Page 5

COSC 123 - Dr. Ramon Lawrence

Variables - Definitions
Question: Which of the following statements is correct?

A) The location of a variable may change during the program.

B) The name of a variable may change during the program.

C) The value of a variable may change during the program.

Page 6

COSC 123 - Dr. Ramon Lawrence

Assignment
Question: What are the values of A and B after this code?

A) A = 6, B = 3

B) A = 11, B = 56

C) A = 5, B = 90

int A, B;

A = 6;
B = 3;
A = 3 * B + A / B;
B = A + 5 * 3 * B;

Page 7

COSC 123 - Dr. Ramon Lawrence

Code Output
Question: What is the output of this code if user enters 3 and 4?

A) 3 + 4 = 7

B) 4 + 3 = 7

C) 3 – 4 = 7

D) 4 – 3 = 7

public class AddTwoNum
{ public static void main(String[] argv)

{ // Code reads and adds two numbers
Scanner sc = new Scanner(System.in);
int num1 = sc.nextInt();
int num2 = sc.nextInt();
int result = num1+num2;
System.out.println(num2+" - "+num1+" = "+result);

}
}

Page 8

COSC 123 - Dr. Ramon Lawrence

Practice Question
1) Create a program to ask the user for two numbers, a
operation to perform (+,-,/,*), and then do that operation.

Page 9

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Decisions are used to allow the program to perform different
actions in certain conditions.

To make a decision in a program we must do several things:
1) Determine the condition in which to make the decision.

2) Tell the computer what to do if the condition is true or false.
A decision always has a Boolean value or true/false answer.

The syntax for a decision uses the if statement:

if (age > 19) OR if (age > 19)
teenager=false; teenager=false;

else
teenager=true;

Page 10

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Block Syntax

Use the block syntax for denoting a multiple statement block.
A block is started with a “{“ and ended with a “}”.
All statements inside the brackets are grouped together.

Example:

The dangling else problem occurs when a programmer
mistakes an else clause to belong to a different if statement
than it really does.
Remember, blocks (brackets) determine which statements are

grouped together, not indentation!

if (age > 19)
{ teenager=false;

hasLicense=true;
...

}

Page 11

COSC 123 - Dr. Ramon Lawrence

Nested Conditions and Decisions
Boolean Expressions

A Boolean expression is a sequence of conditions combined
using AND (&&), OR (||), and NOT (!).
Allows you to test more complex conditions

Group subexpressions using parentheses

Syntax: (expr1) && (expr2) - expr1 AND expr2

(expr1) || (expr2) - expr1 OR expr2

!(expr1) - NOT expr1

Examples:
var b;

1) b = (x > 10) && !(x < 50);
2) b = (month == 1) || (month == 2) || (month == 3);
3) if (day == 28 && month == 2)
4) if !(num1 == 1 && num2 == 3)
5) b = ((10 > 5 || 5 > 10) && ((10>5 && 5>10));// False

Page 12

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Switch Statement

There may be cases where you want to compare a single
integer value against many constant alternatives. Instead of
using many if statements, you can use a switch statement.
If there is no matching case, the default code is executed.

Execution continues until the break statement. (Remember it!)

Note: You can only use a switch statement if your cases are
integer numbers. (Characters (‘a’, ‘b’,...,) are also numbers.)

Syntax:

switch (integer number)
{ case num1: statement break;

case num2: statement break;
...
default: statement break;

}

Page 13

COSC 123 - Dr. Ramon Lawrence

Making Decisions (3)
Question: What is the output of this code?

A) big

B) small

C) bigsmall

int num=10;

if (num == 10)
{ System.out.print("big");

System.out.println("small");
}

Page 14

COSC 123 - Dr. Ramon Lawrence

Making Decisions (4)
Question: What is the output of this code?

A) big

B) small

C) bigsmall

D) ten

E) bigten

int num=10;

if (num >= 8)
System.out.print("big");
if (num == 10)

System.out.print("ten");
else

System.out.print("small");

Page 15

COSC 123 - Dr. Ramon Lawrence

Switch Statement (2)
Question: What is the output of this code?

A) onetwo

B) two

C) twothree

D) other

E) onetwothreeother

int num=2;

switch (num)
{ case 1: System.out.print("one");

case 2: System.out.print("two");
case 3: System.out.print("three"); break;
default: System.out.print("other");

}

Page 16

COSC 123 - Dr. Ramon Lawrence

Decision Practice Question
1) Write a program that reads a number N.
If N has 1 digit, print 1 digit.

If N has 2 digits, print 2 digits.

Otherwise if N has 3 or more digits, print 3 or more digits.

Page 17

COSC 123 - Dr. Ramon Lawrence

The For Loop
The most common type of loop is the for loop. Syntax:

Explanation:
1) initialization section - is executed once at the start of the loop

2) continuation section - is evaluated before every loop iteration
to check for loop termination

3) next iteration section - is evaluated after every loop iteration
to update the loop counter

Example:

for (<initialization>; <continuation>; <next iteration>)
{ <statement list>
}

int i;

for (i = 0; i < 5; i++)
{ System.out.println(i); // Prints 0 to 4
} Page 18

COSC 123 - Dr. Ramon Lawrence

For Loops
Question: What is the output of this code?

A) nothing

B) error

C) The numbers 0, 1, 2, …, 5

D) The numbers 0, 1, 2, …, 6

for (i=0; i < 6; i++)
System.out.print(i);

Page 19

COSC 123 - Dr. Ramon Lawrence

For Loops
Question: What is the output of this code?

A) nothing

B) infinite loop

C) The numbers 2, 3, 4, …, 19

D) The numbers 2, 3, 4, …, 20

for (i=2; i < 20; i--)
System.out.print(i);

Page 20

COSC 123 - Dr. Ramon Lawrence

Loops Practice Question
1) Write a program that reads a number N and calculate the
sum of the numbers from 1 to N.

If that is too easy for you, calculate only the sum of the even
numbers from 1 to N!

Page 21

COSC 123 - Dr. Ramon Lawrence

Java Object-Oriented Terminology
An object is an instance of a class that has its own properties
and methods. Properties and methods define what the object is
and what it can do. Each object has its own area in memory.

A class is a generic template (blueprint) for creating an object.
All objects of a class have the same methods and properties
(although the property values can be different).

A property (or instance variable) is an attribute of an object.

A method is a set of statements that performs an action. A
method works on an implicit object and may have parameters.

A parameter is data passed into a method for it to use. Page 22

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

One of the features of object-oriented programming is that not
all parts of a program have access to all the data and methods.

Each class, method, and variable needs to have one of the four
access specifiers defined that indicate which other objects
and methods in your program have access to it. Four types:
public – Accessible by all code (everyone, the public)

private – Only accessible by methods in the class.

protected – Only accessible by methods in the class or
classes derived from this class by inheritance.

default – If nothing is specified, assume package access where
all methods in same package can access it.

Page 23

COSC 123 - Dr. Ramon Lawrence

The BankAccount class is used for describing bank accounts.
The methods defined in the BankAccount class are deposit,
withdraw, and getBalance.

The current balance in the account is private, so it can only
be changed by calling the methods.

public class BankAccount
{

private double balance;

public void deposit(double amount)
{ balance = balance + amount; }

public void withdraw(double amount)
{ balance = balance - amount; }

public double getBalance()
{ return balance; }

}

Class Example
BankAccount Class

Page 24

COSC 123 - Dr. Ramon Lawrence

Class Practice Questions
1) Write the setBalance method for the BankAccount class.

2) Add an instance variable called name for the name of the
owner of the BankAccount. Add get/set methods for this
instance variable.

3) Add a default constructor (no parameters) and an
overloaded constructor that accepts balance and name as
parameters.

Page 25

COSC 123 - Dr. Ramon Lawrence

Creating and Using Objects
A class is just a blue-print for creating objects.
By itself, a class performs no work or stores no data.

For a class to be useful, we must create objects of the class.
Each object created is called an object instance.

To create an object, we use the new method.

When an object is created using the new method:

Java allocates space for the object in memory.

The constructor for the object is called to initialize its contents.

Java returns a pointer to where the object is stored in memory
which we will call an object reference.

Page 26

COSC 123 - Dr. Ramon Lawrence

Objects and Object References
Question: How many object references are in this code?

A) 1

B) 2

C) 3

D) 4

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount();
myAcct = savings;
checking = new BankAccount();

Page 27

COSC 123 - Dr. Ramon Lawrence

Objects and Object References
Question: How much money is in the account referenced by the
myAcct2 object reference?

A) unknown

B) 50

C) 100

D) undefined

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount(50);
myAcct = savings;
savings = null;
checking = new BankAccount(100);
savings = checking;
myAcct2 = myAcct;

Page 28

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Scope of Variable Types

The scope of variables depends directly on their type:
1) Instance variables - are created when an object instance is

created using the new method. Instance variables are defined
as long as there is at least one reference to the object in your
program which is still in scope.

2) Static variables - are created when the class they are defined
in is first loaded and are defined until the class is unloaded.
This means static variables are around for the duration of your program.

3) Local variables - are created when the program enters the
block in which they are defined and destroyed when the program
exits that block.
A variable defined in brackets (“{“,”}”) is accessible anywhere within the

block including nested blocks.

4) Parameter variables - are created when a method is first
called and are destroyed when a method returns.

Page 29

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions

With this code explain the lifetime and scope of all variables.

public class VariableScope
{ public static void main(String[] args)

{ double amount = 25;
BankAccount acct = new BankAccount(200);
for (int i=1; i <= 3; i++)

acct.deposit(amount);
System.out.println(acct.getBalance()); // 125.0

}

private void doNothing(double a)
{ int i = 5; return; }

public static final int MYNUM = 25;
}

Page 30

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions (2)

class BankAccount
{ public void deposit(double amount)

{ if (amount <= balance)
{ double newBalance = balance - amount;

balance = newBalance;
}
double balance = 50;

}
public double getBalance()
{ return balance; }

public BankAccount(double b)
{ balance = b; lastAccountNum++;

accountNum = lastAccountNum;
}

private double balance;
private int accountNum;
private static int lastAccountNum = 0;

}

Page 31

COSC 123 - Dr. Ramon Lawrence

Inheritance Overview
Inheritance is a mechanism for enhancing and extending
existing, working classes.

In real life, you inherit some of the properties from your parents when you
are born. However, you also have unique properties specific to you.

In Java, a class that extends another class inherits some of its properties
(methods, instance variables) and can also define properties of its own.

Extends is the key word used to indicate when one class is
related to another by inheritance.

Syntax: class subclass extends superclass

The superclass is the existing, parent class.

The subclass is the new class which contains the functionality of
the superclass plus new variables and methods.

Page 32

COSC 123 - Dr. Ramon Lawrence

Inheritance Question
1) Create a CheckingAccount class which inherits from
BankAccount. The CheckingAccount class:
inherits getBalance() from BankAccount

overrides deposit() and withdraw() from BankAccount,
so it can keep track of the number of transactions
(transactionCount)

defines a method deductFees() which withdraws $1 for each
transaction (transactionCount) then resets the # of
transactions

Page 33

COSC 123 - Dr. Ramon Lawrence

Arrays
An array is a collection of data items of the same type.

An array reference is denoted using the open and close square
brackets “[]” during declaration.

You can have an array of any data type including the base types (int,
double, String) and object-types (BankAccount).

Examples:

Similar to an object, when you declare an array you are
creating a reference to an array. Until you actually create the
space for the array using new, no array exists in memory.
String[] strings = new String[10];

int[] myArray;
String[] strings;
BankAccount[] accounts;

Page 34

COSC 123 - Dr. Ramon Lawrence

Arrays
Question: What is the size of this array?

A) error

B) 10

C) 9

D) 11

int[] myArray = new int[10];

Page 35

COSC 123 - Dr. Ramon Lawrence

Arrays
Question: What are the contents of this array?

A) error

B) 0, 1, 2, 3

C) 1, 2, 3, 4
D) 4, 0, 3, 2

int[] myArray = new int[4];

myArray[0] = 1;
myArray[3] = 2;
myArray[2] = 3;
myArray[0] = 4;

Page 36

COSC 123 - Dr. Ramon Lawrence

ArrayLists
An ArrayList implements a resizable array of objects.

Base types such as int are not objects. Use wrapper class Integer.

Create an ArrayList by:

Add element to an ArrayList by:

Remove element from an ArrayList by:

ArrayList names = new ArrayList(); // Size 10 (default)
ArrayList accounts = new ArrayList(5); // Size of 5

names.add("Joe"); // Add to end of list
names.add(2,"Steve"); // Add at index 2 and shift down

names.remove(2); // Remove index 2 and shift up

Page 37

COSC 123 - Dr. Ramon Lawrence

ArrayLists (2)
Get number of items in list by:

Get element at an index from an ArrayList by:

Set element at an index in an ArrayList by:

A simple way to traverse an ArrayList is using a for loop:

int count = names.size();

String n = names.get(2); // Get item at index 2

names.set(2,"Fred"); // Put Fred at index 2

for (int i=0; i < names.size(); i++)
{ String s = (String) names.get(i);

System.out.println(s);
}

Page 38

COSC 123 - Dr. Ramon Lawrence

ArrayList
Question: What is the value of st?

A) Fred

B) Joe

C) Steve
D) error

ArrayList a = new ArrayList();
a.add("Fred");
a.add(1,"Joe");
a.add(1,"Steve");
a.remove(0);
String st = (String) a.get(0);

Page 39

COSC 123 - Dr. Ramon Lawrence

ArrayList Practice Question
1) Write a method that takes an ArrayList as a parameter
and returns an ArrayList with all the items in reverse order.

For example, if the list was {Joe, Fred, Smith} then after
reverse the list is {Smith, Fred, Joe}.

Page 40

COSC 123 - Dr. Ramon Lawrence

The Coordinate System
Drawing on the screen is done by specifying coordinates which
refer to a location on the screen.
The origin is the upper-left hand corner of the screen.

The x coordinate gets bigger as we move to the right.

The y coordinate gets bigger as we move down.

Diagram:
(0,0)

y

(80, 10)

(30, 70)

x

Page 41

COSC 123 - Dr. Ramon Lawrence

Drawing Methods
1) Ellipse:
 Ellipse2D.Double egg = new Ellipse2D.Double(topx, topy, width, height);

 Ellipse2D.Double egg = new Ellipse2D.Double(5, 10, 15, 20);

2) Rectangle:
Rectangle box = new Rectangle(topx, topy, width, height);

Rectangle box = new Rectangle(10, 10, 20, 30);

3) Line:
Line2D.Double = new Line2D.Double(x1,y1, x2, y2);

4) Point:
Point2D.Double = new Point2D.Double(x,y);

You can also fill a shape with a color using the fill method:
g2.fill(box);

g2.fill(egg);

Page 42

COSC 123 - Dr. Ramon Lawrence

Drawing Methods (2)
Change colors:
g2.setColor(Color.orange);

Draw a string
g2.drawString("Hello", 50, 100); // message, x, y

Page 43

COSC 123 - Dr. Ramon Lawrence

Java Swing Components
The Java Swing package contains the user interface
components that we will use in our graphical applications.
Component

JButton

ButtonGroup

Check box

Combo box

JFrame

JLabel

JPanel

Radio button

Text field

JMenuBar

JMenu
JMenuItem Page 44

COSC 123 - Dr. Ramon Lawrence

Coordinates
Question: Select from the coordinates below the pair that best
describes this point's location. Assume box is 100 by 100.

A) (10,80)

B) (80,10)

C) (10,20)

D) (20,10)

Page 45

COSC 123 - Dr. Ramon Lawrence

Events and Event Handling Overview
An event is a notification to your program that something has
occurred.
For graphical events (mouse click, data entry), the Java window

manager notifies your program that an event occurred.
There are different kinds of events such as keyboard events, mouse

click events, mouse movement events, etc.

An event handler or listener is part of your program that is
responsible for "listening" for event notifications and handling
them properly.
An event listener often only listens for certain types of events.

An event source is the user interface component that
generated the event.
A button, a window, and scrollbars are all event sources.

Page 46

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example
Handling mouse click events requires three classes:
1) The event class - that stores information about the event.
For mouse clicks, this class is MouseEvent.

The MouseEvent class has methods getX() and getY() that indicate
the position of the mouse at the time the event was generated.

2) The listener class - allows your program to detect events.
Building your own listener class requires implementing a pre-
defined interface.
For mouse clicks, the listener interface is MouseListener.

An event listener is a class that implements all methods of an event
interface.

An event adapter extends a class and only requires you implement
method for the events that you are interested in.

3) The event source - is the component in your GUI that
generated the event.

Page 47

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example Code

Page 48

COSC 123 - Dr. Ramon Lawrence

Exception Handling
An exception is an error situation that must be handled or the
program will fail. Exception handling is how your program
deals with exceptions when they occur.

Two ways of handling exceptions:
1) Handle them inside the method using a try-catch-
finally block.

2) Throw the exception to the method that called it and force
that method to handle it.

Two types of exceptions:
Checked exceptions are exceptions that you must tell the

compiler how your code is handling them. (e.g. IOException)
A checked exception must be either caught or thrown.

Unchecked exceptions are exceptions that the compiler does
not force your program to handle.

Page 49

COSC 123 - Dr. Ramon Lawrence

The try-catch-finally Statement
The try-catch-finally statement identifies a block of
statements that may throw an exception and provides code to
handle exceptions if they occur.

Three components:
try block - has statements to execute that may cause

exceptions. Each statement is executed one at a time. If an
exception occurs, jump out of try block to a catch clause. If no
exception, go to finally clause (if it exists).

catch block – handles a particular kind of exception and has
code that performs the desired action if it occurs. Only one
catch clause is every executed and are not executed if an
exception does not occur.

finally block – code that is always executed regardless if all
statements completed successfully or an exception occurred

Page 50

COSC 123 - Dr. Ramon Lawrence

Exceptions
Question: TRUE or FALSE: An uncaught exception may be
passed through several methods before the program crashes.

A) TRUE

B) FALSE

Page 51

COSC 123 - Dr. Ramon Lawrence

Exceptions
Question: What does this code output if the user enters "32"?

A) nothing
B) 32

C) Input was not a number.

D) 32 HELLO!

try
{ Scanner sc = new Scanner(System.in);

System.out.print("Enter a number: ");
int num = sc.nextInt();
System.out.print(num+" ");

}
catch (InputMismatchException e)
{ System.out.print("Input was not a number. ");
}
finally
{ System.out.print("HELLO!");
}

Page 52

COSC 123 - Dr. Ramon Lawrence

Scanner sc = null;
try
{ sc = new Scanner(new File("MyFile.txt"));

while (sc.hasNextLine())
{ String st = sc.nextLine();

System.out.println(st);
}

}
catch (FileNotFoundException e)
{ System.out.println("Did not find input file: "+e); }
finally
{ if (sc != null)

sc.close();
}

Note: The Scanner class handles some exceptions for you
and makes it easier to read numbers and other types that
are not Strings. It should be the one used.

Read Text File with Scanner

Page 53

COSC 123 - Dr. Ramon Lawrence

Streams and Exceptions
Practice Question

1) Write a program that opens up the file "test.txt" that contains
numbers and computes a sum where every odd number is
added and every even number is subtracted.

Page 54

COSC 123 - Dr. Ramon Lawrence

Putting it all together...
Computer programming is the art and science of solving
problems on the computer.
As you have seen, there are many different ways to approach

and solve the same problem.
Each technique may have different benefits and performance.

Computer science is about learning how to make the correct
and most efficient decisions on how to solve problems.

Anyone can program on a computer, but computer scientists know why
they are programming a solution and what they are doing.

The most exciting aspect of programming is the satisfaction of
building a program to solve a problem.
Whether it is a simple algorithm or a program that runs a

nuclear power plant.
You do not quite have the skills or experience to solve the large

problems, but you can solve smaller problems and appreciate the
difficulty inherent in solving the larger ones.

