
COSC 123
Computer Creativity

Java Classes

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Define classes, objects, methods, properties (instance
variables), and parameters in Java.

2) Inheritance derives new classes from existing ones. A
subclass inherits all methods and variables from its superclass.

3) Create objects from classes using new.

4) Explain the difference between an object and an object
reference.

5) List the types of variables (instance, static, local, parameter)
and explain how the type affects their scope and lifetime.

Page 3

COSC 123 - Dr. Ramon Lawrence

Java Object-Oriented Terminology
An object is an instance of a class that has its own properties
and methods. Properties and methods define what the object is
and what it can do. Each object has its own area in memory.

A class is a generic template (blueprint) for creating an object.
All objects of a class have the same methods and properties
(although the property values can be different).

A property (or instance variable) is an attribute of an object.

A method is a set of statements that performs an action. A
method works on an implicit object and may have parameters.

A parameter is data passed into a method for it to use. Page 4

COSC 123 - Dr. Ramon Lawrence

Class Definition
To define a class:
use the keyword class and provide a name for your class

enclose the contents of your class in brackets “{“, “}”

define any properties (instance variables) for your class

define any methods in your class

Example:

class classname
{ classname methods

classname variables
}

Page 5

COSC 123 - Dr. Ramon Lawrence

Variable Definition
To define a variable of a class:
define the variable as either public or private (access specifier)

provide the variable type and name as usual

Syntax:

Example:

class classname
{ accessSpecifier variableType variableName;

...
}

class MyClass
{ public int num;

private String st;
private double value;

}

Page 6

COSC 123 - Dr. Ramon Lawrence

Method Definition
To define a method of a class:
define the method as either public or private (access specifier)

provide the method return type, name, and parameters
Each parameter has a type and a name.

A return type of void means return nothing.

Syntax:

Example:

class classname
{ accessSpec retType methodName(par1, par2, …, parN)

{ method implementation}
}

class TestClass
{ public int count(int n) { return n+1; }

private void doNothing() { }
public String addS(String st) { return st+"S"; }

}

Page 7

COSC 123 - Dr. Ramon Lawrence

Method Definition
Parameters

A method may use parameters to perform its operations.
Each parameter has a type and a name.

Parameters are separated by commas.

Parameters can be changed by the method, but their value will
not be changed for the caller.

Page 8

COSC 123 - Dr. Ramon Lawrence

Method Definition
Return Types

Use the return statement to return a method value. Syntax:

Example:

return expression; OR

return;

class TestClass
{ public int retTest(int n)

{ if (n == 0)
return 1;

else
return n*2+1;

}
public void retNothing(String st)
{ if (st.equals(""))

return;
...

}
}

Page 9

COSC 123 - Dr. Ramon Lawrence

Your First Java Program (again)

The first line creates a public class called HelloWorld that is
the main class of your program and the name of the Java file.

Class HelloWorld contains a method main that is public.
Since class HelloWorld is the public class for this file, it is the

class that must contain the main method.

main is a method called with one parameter (String[] args).

main is a special method because it is automatically called when
you run your program.

public class HelloWorld
{ public static void main(String[] args)

{ System.out.println("Hello, World!");
}

}

Page 10

COSC 123 - Dr. Ramon Lawrence

The BankAccount class is used for describing bank accounts.
The methods defined in the BankAccount class are deposit,
withdraw, and getBalance.

The current balance in the account is private, so it can only
be changed by calling the methods.

public class BankAccount
{

private double balance;

public void deposit(double amount)
{ balance = balance + amount; }

public void withdraw(double amount)
{ balance = balance - amount; }

public double getBalance()
{ return balance; }

}

Class Example
BankAccount Class

Page 11

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Implement a class Employee:
An employee has a name (String) and a salary (double).

Write methods to get/set the name and salary.

2) Implement a class Purse:

A purse holds coins (toonies, loonies, and quarters only).

Write methods to get/set the number of coins in the purse.
Write a method called getValue() which returns the value of

all coins in the purse.

Page 12

COSC 123 - Dr. Ramon Lawrence

Inheritance Overview
Inheritance is a mechanism for enhancing and extending
existing, working classes.

In real life, you inherit some of the properties from your parents when you
are born. However, you also have unique properties specific to you.

In Java, a class that extends another class inherits some of its properties
(methods, instance variables) and can also define properties of its own.

extends is the key word used to indicate when one class is
related to another by inheritance.

Syntax: class subclass extends superclass

The superclass is the existing, parent class.

The subclass is the new class which contains the functionality of
the superclass plus new variables and methods.

A subclass may only inherit from one superclass.

Page 13

COSC 123 - Dr. Ramon Lawrence

Why use inheritance?
The biggest reason for using inheritance is to re-use code.
Once a class has been created to perform a certain function it

can be re-used in other programs.

Further, using inheritance the class can be extended to tackle
new, more complex problems without having to re-implement
the part of the class that already works.

The alternative is copy and paste which is bad, especially when
the code changes.

Page 14

COSC 123 - Dr. Ramon Lawrence

What is inherited?
When a subclass inherits (or extends) a superclass:

Instance variable inheritance:
All instance variables of the superclass are inherited by the

subclass.
However, if a variable is private, it can only be accessed using

methods defined by the superclass.

Method inheritance:
All superclass methods are inherited by the subclass, but they

may be overridden.

Page 15

COSC 123 - Dr. Ramon Lawrence

Inheritance Example
Consider the BankAccount class that we created to model
bank account objects.
A bank account has an account number and a balance.

How about if we want to create a special kind of bank account
called a SavingsAccount?

A savings account is a special bank account because it also
pays interest at a given interest rate.

Instead of programming the entire SavingsAccount class and
duplicating features already in the BankAccount class, we can
extend the BankAccount class and inherit its properties when
we create a SavingsAccount.

Page 16

COSC 123 - Dr. Ramon Lawrence

public class BankAccount
{ public void deposit(double amount)

{ balance = balance + amount; }
public void withdraw(double amount)
{ balance = balance - amount; }
public double getBalance()
{ return balance; }
public int getAccount()
{ return accountNum; }
public int getLastAccount()
{ return lastAccountNum; }
public BankAccount()
{ this(0); }
public BankAccount(double b)
{ balance = b; lastAccountNum++;

accountNum = lastAccountNum;
}
private double balance;
private int accountNum;
private static int lastAccountNum = 0; // Static

}

BankAccount Code

Page 17

COSC 123 - Dr. Ramon Lawrence

public class SavingsAccount extends BankAccount
{

public void addInterest()
{ deposit(getBalance()*rate/100); }

public SavingsAccount()
{ this(0); }
public SavingsAccount(double r)
{ rate = r; }

private double rate; // Interest rate paid
}

Notes:
1) Inherited variables: balance,accountNum,lastaccountNum
2) Inherited methods: deposit, withdraw, getAccount,

getLastAccount
3) Inherited variables are private in BankAccount, so we

cannot access them directly.
(Use deposit and getBalance methods.)

SavingsAccount Code

Page 18

COSC 123 - Dr. Ramon Lawrence

Class Diagrams
Class diagrams display the relationship between related
classes using a diagram.
We will follow the Unified Modeling Language (UML) syntax.
Each class has its own box.

There is an arrow from a subclass to a superclass if that class extends
the superclass.

Example:

SavingsAccount

BankAccount

SavingsAccount
extends BankAccount

Page 19

COSC 123 - Dr. Ramon Lawrence

Superclass and Subclass
Question: Which class is the superclass?

A) X

B) Y

Y

X

Page 20

COSC 123 - Dr. Ramon Lawrence

Inheritance
Question: Which statement is true?

A) A subclass can access all variables it inherited from the
superclass.

B) A subclass can declare an instance variable with the same
name as an instance variable in its superclass.

C) A class can have more than one superclass.

Page 21

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

One of the features of object-oriented programming is that not
all parts of a program have access to all the data and methods.

Each class, method, and instance variable has one of the four
access specifiers to indicate which other objects and methods
in your program have access to it. Four types:
public – Accessible by all code (everyone, the public)

private – Only accessible by methods in the class.

protected – Only accessible by methods in the class or
classes derived from this class by inheritance.

default – If nothing is specified, assume package access where
all methods in same package (directory) can access it.

Page 22

COSC 123 - Dr. Ramon Lawrence

Public and Private Examples
public class MyClass
{ public void setValue(int n)

{ num = n; } // setValue() is a public method

private void show() // show() is a private method
{ st = "Hello"; }

private int num; // num is a private variable
public String st; // st is a public variable
double d; // d has package access

}
Summary:
1) Method setValue() is public, so it can be accessed
from anywhere in the program.
2) Method show() is private so only another method in the
class MyClass can access it.
3) Variable num is private, only methods in MyClass can
access it.
4) st is public. It is accessible anywhere in the program.
5) d has default (package) access. Any method in a file
in the same package (directory) can access it.

Page 23

COSC 123 - Dr. Ramon Lawrence

Access Specifier Rules
There is one special rule in Java that you must follow:
There can be only one public class per file, and the name of

that class has to be the same as the name of the file.

There are also some common programming rules which you
will use in this course:
Always state if a class/variable/method is public or private.

Variables in an object are almost always private.
Other objects/methods do not have access to the data directly.

Most methods of an object are public.
These methods allow other objects/methods to see/manipulate the data.

Class names should begin with a capital letter.

Method and variable names should begin with a small letter.
Page 24

COSC 123 - Dr. Ramon Lawrence

Inheritance Question
1) Create a CheckingAccount class which inherits from
BankAccount. The CheckingAccount class:
inherits getBalance() from BankAccount

overrides deposit() and withdraw() from BankAccount,
so it can keep track of the number of transactions
(transactionCount)

defines a method deductFees() which withdraws $1 for each
transaction (transactionCount) then resets the # of
transactions

Page 25

COSC 123 - Dr. Ramon Lawrence

Inheritance Questions (2)
2) Create:
1) A superclass Pet. A Pet contains:
a name and methods to get/set its name

2) A subclass Cat of Pet. A Cat contains:
a boolean variable hasClaws which is true if the cat has claws

define methods to get/set the hasClaws instance variable

3) A subclass Dog of Pet that contains:
an integer variable numTricks that stores the number of tricks the dog

can perform
define methods to get/set the value of numTricks

Page 26

COSC 123 - Dr. Ramon Lawrence

Creating and Using Objects
A class is just a blue-print for creating objects.
By itself, a class performs no work or stores no data.

For a class to be useful, we must create objects of the class.
Each object created is called an object instance.

To create an object, we use the new method.

When an object is created using the new method:

Java allocates space for the object in memory.

The constructor for the object is called to initialize its contents.

Java returns a pointer to where the object is stored in memory
which we will call an object reference.

Page 27

COSC 123 - Dr. Ramon Lawrence

Constructors
A constructor is a method that is called when the object is first
created and initializes the variables of an object.
If you do not supply a constructor for a class, Java supplies a

default constructor which has no parameters.

You may define your own constructors for your objects to
guarantee that an object has the correct initial values.
A constructor may have parameters like any other method.

Syntax and Example:
class classname // (Syntax)
{ classname() {} // Default constructor

classname(par1, par2, …, parN) {} //Parameters
}
class MyClass //(Example)
{ MyClass() { num = 0; } // Default constructor

MyClass(int n) { num = n; } // Parameters
private int num; // Variable initialized

} Page 28

COSC 123 - Dr. Ramon Lawrence

The BankAccount class now defines two constructors:

Default constructor initializes balance to 0.

Constructor with parameter initializes balance to a given value.

public class BankAccount
{ public void deposit(double amount)

{ balance = balance + amount; }
public void withdraw(double amount)
{ balance = balance - amount; }
public double getBalance()
{ return balance; }

public BankAccount() { balance = 0; }
public BankAccount(double b) { balance = b; }

private double balance;
}

Bank Account Example Revisited

Page 29

COSC 123 - Dr. Ramon Lawrence

Creating Objects using new
Objects are created using the new method.

The new method allocates space for the object in memory,
calls the appropriate object constructor, and returns an object
reference to be stored in an object reference variable.

Example:

BankAccount checking = new BankAccount();
// Creates a BankAccount object referenced by checking
BankAccount savings = new BankAccount();
// Creates a BankAccount object referenced by savings

BankAccount mySavings; // Declares object reference

mySavings = new BankAccount(); // Creates object

Page 30

COSC 123 - Dr. Ramon Lawrence

Object References
It is important to realize the difference between an object and
an object reference.

When you declare an object variable in Java, you are actually
declaring an object reference to that particular object type.
Until you create an object using the new method, there is no

object in memory which is pointed to by the object reference.

An object is the physical memory representation of the data.
An object has a location in memory and a type (class).
Each object has its own data values.

Page 31

COSC 123 - Dr. Ramon Lawrence

Changing Object References
Object references are pointers to objects in memory that can
be assigned to the same value as another reference using '='
or assigned to null (which means they refer to nothing).

Example:

BankAccount checking = new BankAccount(50);
// Creates a BankAccount object referenced by checking
BankAccount savings = new BankAccount(100);
// Creates a BankAccount object referenced by savings
BankAccount mySavings; // Declares object reference

mySavings = savings; // mySavings points to savings
System.out.println(mySavings.getBalance()); // 100
mySavings = checking; // mySavings points to checking
System.out.println(mySavings.getBalance()); // 50

Page 32

COSC 123 - Dr. Ramon Lawrence

Objects in Memory
Remember that each object has its own space in memory AND
each object reference variable also has its own memory space.

Object references point to objects and can be changed.

Memory diagram based on previous example:

checking

mySavings

savings
balance = 100

balance = 50

mySavings = checking

mySavings = savings

1000

1004

1008

10000

11000

10000

11000

11000

Page 33

COSC 123 - Dr. Ramon Lawrence

null Object References
Sometimes a programmer wants an object reference to point to
nothing. To make an object reference refer to nothing, you
assign it a value of null.

Example:

BankAccount checking = new BankAccount(50);
BankAccount savings = new BankAccount(100);
BankAccount mySavings; // Declares object reference

mySavings = savings; // mySavings points to savings
System.out.println(mySavings.getBalance()); // 100
mySavings = null; // mySavings now points to null
System.out.println(mySavings.getBalance()); // Error!

Page 34

COSC 123 - Dr. Ramon Lawrence

null Object References Example
A null reference effectively stores the address of 0. Since this
is not a valid memory address for the program, your program
will generate a run-time error during execution.
 The compiler does not check null references for you!

Example:
checking

mySavings

savings
balance = 100

balance = 50

mySavings = savings

1000

1004

1008

10000

11000

10000

null

11000

mySavings = null

Page 35

COSC 123 - Dr. Ramon Lawrence

Calling Object Methods
A method is called on an object by supplying an object
reference and the name and parameters of the method.

Syntax:

objectReference.methodName(parameters)

Remember:
Each object has its own class which defines which methods it

can perform.

Each object has its own area of memory storing its data.

An object reference is a pointer to a particular object in
memory, so Java knows which object we are talking about by
providing the object reference.
The object reference is called an implicit parameter.

Page 36

COSC 123 - Dr. Ramon Lawrence

Creating and Using Objects
Calling Object Methods Example

public class TestBankAccount
{ public static void main(String []args)

{ BankAccount savings = new BankAccount(100);
BankAccount checking = new BankAccount(50);
BankAccount myRef; // No object allocated!

System.out.println(savings.getBalance()); // 100
System.out.println(checking.getBalance());// 50
System.out.println(myRef.getBalance()); // Error!
savings.deposit(50);
checking.withdraw(40);
myRef = savings;
myRef.withdraw(20);
System.out.println(savings.getBalance()); // 130
System.out.println(checking.getBalance()); // 10
System.out.println(myRef.getBalance()); // 130
myRef = checking;
myRef.deposit(50);
System.out.println(myRef.getBalance()); // 60

}
}

Page 37

COSC 123 - Dr. Ramon Lawrence

Advanced: Implicit Parameter this
When an object method is called, we tell Java which object to
use based on an object reference.

This object reference is then accessible within an object
method as the this reference.

Example:

public class TestThis
{ public static void main(String []args)

{ BankAccount checking = new BankAccount(50);
BankAccount savings = new BankAccount(100);

System.out.println(savings.getBalance());
// this reference set to savings
System.out.println(checking.getBalance());
// this reference set to checking

}
}

Page 38

COSC 123 - Dr. Ramon Lawrence

Implicit Parameter this (2)
public class BankAccount
{ public void deposit(double amount)

{ this.balance = this.balance + amount; }
public void withdraw(double amount)
{ this.balance = this.balance - amount; }
public double getBalance()
{ return this.balance; }

// this points to the current object being used
// Using this is optional because Java assumes you
// are working with the current object

public BankAccount()
{ this.balance = 0; }
public BankAccount(double balance)
{ this.balance = balance; }

private double balance;
}

Page 39

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

Question: A method in class X is defined as private. Can it
access a public variable in class Y?

A) Yes

B) No

Page 40

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

Question: Which statement is true?

A) It is a good idea to make all instance variables public.

B) Every parameter should be declared as public or private.

C) A method in class X can call a private method in class Y.

D) A method in class X can access a private instance variable in
class X.

Page 41

COSC 123 - Dr. Ramon Lawrence

Objects and Object References
Question: How many objects are created by this code?

A) 1

B) 2

C) 3

D) 4

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount();
myAcct = savings;
checking = new BankAccount();

Page 42

COSC 123 - Dr. Ramon Lawrence

Objects and Object References
Question: How much money is in the account referenced by the
myAcct2 object reference?

A) unknown

B) 50

C) 100

D) undefined

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount(50);
myAcct = savings;
checking = new BankAccount(100);
savings = checking;
myAcct2 = myAcct;

Page 43

COSC 123 - Dr. Ramon Lawrence

1) Explain the difference between a class, an object, and an
object reference.

2) Create a program which creates a new BankAccount object
called savings with an initial balance of $100. Then, deposit
$40, withdraw $20, and print the current balance.

3) Modify the BankAccount class to also store an interest rate.
Allow the user to specify the interest rate in a constructor.

Create a method for setting the interest rate.

Create a method called calcInterest() to update the current
balance based on the interest rate.

Test your class with an account with $1000 and 10% interest
rate. Deposit $100, calculate interest, and print balance.

Practice Questions

Page 44

COSC 123 - Dr. Ramon Lawrence

Interfaces
Interfaces are used to allow a class to implement methods of
another class without inheriting from it.

An interface is a class where:
All methods are public and abstract (no implementation).

All variables are static and final. (no instance variables).

A class which implements an interface must implement all
methods of the interface.

A class can implement multiple interfaces.
Keyword to indicate implementing an interface is: implements

Page 45

COSC 123 - Dr. Ramon Lawrence

Interfaces Example

interface Shape {
int numSides();
int getArea();

}

class Square implements Shape {
public int numSides() { return 4; }
public int getArea() { return len*height; }

private int len;
private int height;

}

Page 46

COSC 123 - Dr. Ramon Lawrence

Object - THE SUPERCLASS
The class Object in Java is the root of the inheritance hierarchy
or the superclass of all classes.
That is, every class defined in Java and that you define inherits

from the Object class.

If you define a class that does not inherit from another class,
your class automatically extends the Object class.

The Object class has some defined methods:
String toString()
 returns a string representation of the object

boolean equals(Object other)
tests whether the object equals another object

Object clone()
makes a full (or deep) copy of the object

 does not just copy the object reference, copies the entire object

Page 47

COSC 123 - Dr. Ramon Lawrence

public class BankAccount
{

public String toString()
{ return "BankAccount[balance="+ balance+ "]"; }

...

private double balance;
private int accountNum;
private static int lastAccountNum = 0; // Static

}

toString() method:
1) Returns a string representation of your object.

Overriding toString method

Page 48

COSC 123 - Dr. Ramon Lawrence

Casting and Method Access
It is possible to assign an object reference of a subclass to the
an object reference variable of a superclass.
This is allowed because a subclass is a special case of the

superclass.

However, you are unable to access any methods/variables in
the subclass using a superclass object reference.

All objects inherit from the Object class, so they can be
assigned to an Object reference variable.

It is possible to explicitly cast an object reference variable for a
superclass to a subclass variable only if the superclass variable
references a valid subclass instance.
Otherwise, a run-time error will result.

Page 49

COSC 123 - Dr. Ramon Lawrence

public class TestSubclass
{ public static void main(String[] args)

{ BankAccount checking = new BankAccount(100);
SavingsAccount savings = new SavingsAccount(10);
BankAccount anyAccount;

savings.deposit(50);
anyAccount = checking;
System.out.println(anyAccount.getBalance()); // 100

// refer to subclass object using a superclass ref.
anyAccount = savings;
System.out.println(anyAccount.getBalance()); // 50

savings.addInterest(); // legal call
// addInterest call below does not work
// as it is not defined in BankAccount class
anyAccount.addInterest();

}
}

Subclass to Superclass Example

Page 50

COSC 123 - Dr. Ramon Lawrence

Object References Example
class Person{ private String name;

public String getName() { return name; }
public Person(String s) {name=s;} }

class Student extends Person { private String major;
public String getMajor() { return major; }
public Student(String n, String m)
{ super(n); major=m;} }

public class TestInheritance
{ public static void main(String[] args)

{ Person p = new Person(“Joe”);
Student s = new Student(“Fred”,”Comp.Sci.”);
Object o=s; // Yes-Object is superclass
s=(Student) p; // No-Run-time error
p=s; // Yes-Person is superclass
p.getName(); // Yes-available in Person class
p.getMajor(); // No-getMajor()not in Person class
s=(Student) p; // Yes - p refers to a Student obj.

}
}

Page 51

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Overview

Depending on the type of variable, the period of existence of
the variable, called its lifetime, will change.

The lifetime of a variable is based on when the variable is
created and how long it stays around in the program.
When a variable is first defined in a program its lifetime begins.

When a variable exits scope its lifetime ends.

The scope of a variable is the part of the program where you
can access or use the variable.

Page 52

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Variable Types

There are four basic variable types in Java:
1) Instance variables - are variables that are defined in a class

and are part of an object.

2) Static variables - are variables in a class which are common
to all object instances. Only one copy of variable for all objects.
Note that a static variable exists in a separate memory area and not

within any particular object instance. Use keyword static.

3) Local variables - are variables defined in methods.

4) Parameter variables - are variables passed to methods to
help them perform their computation.

Page 53

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Scope of Variable Types

The scope of variables depends directly on their type:
1) Instance variables - are created when an object instance is

created using the new method. Instance variables are defined
as long as there is at least one reference to the object in your
program which is still in scope.

2) Static variables - are created when the class they are defined
in is first loaded and are defined until the class is unloaded.
This means static variables are around for the duration of your program.

3) Local variables - are created when the program enters the
block in which they are defined and destroyed when the program
exits that block.
A variable defined in brackets (“{“,”}”) is accessible anywhere within the

block including nested blocks.

4) Parameter variables - are created when a method is first
called and are destroyed when a method returns. Page 54

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Variable Scope Rules

1) A variable defined in a block outlined using brackets is
accessible within the block and any subblocks. Example:

2) Two variables of the same name cannot be declared in the
same scope.

public static void main(String[] args)
{ int i;

{ int j;
... // i & j accessible here

} // j goes out of scope
... // only i accessible here

}

public static void main(String[] args)
{ int i;

...
double i; // Not allowed i is already defined

}

Page 55

COSC 123 - Dr. Ramon Lawrence

public class MethodScope
{ public static void main(String[] args)

{ double amount = 25; // amount defined in main()
BankAccount acct = new BankAccount(100);
acct.withdraw(amount); //amount in main() copied to
// amt in withdraw() - Not same variable!

} // amount, acct go out of scope
// Object acct can be deleted with variable balance

}

class BankAccount
{ public void withdraw(double amt)

{ if (amt <= balance)
{ double newBalance = balance - amt;

// newBalance is only defined within brackets
balance = newBalance;

} // newBalance goes out of scope and is deleted
} // method variable amt goes out of scope

private double balance; // instance variable
}

Variable Scope
Scope Example

Page 56

COSC 123 - Dr. Ramon Lawrence

1) Variables with the same name in different scopes are
different variables!

The double r in method area is a different variable than the
variable Rectangle r in main as they have different scopes.

public static double area(Rectangle rect)
{ double r = rect.getWidth() * rect.getHeight();

return r;
}

public static void main(String[] args)
{ Rectangle r = new Rectangle(5, 10, 20, 30);

double a = area(r);
}

Variable Scope
Common Scope Errors

Page 57

COSC 123 - Dr. Ramon Lawrence

2) Beware of scope issues when declaring variables in for
loops!

public class TestForScope
{ public static void main(String[] args)

{ for (int i=1; i <= 5; i++)
{ System.out.println(i); // 1,2,3,4,5
}
// for loop has its own copy of variable i
// i in for loop goes out of scope
System.out.println(i); //Not allowed- i is gone!

}
}

Variable Scope
Common Scope Errors (2)

Page 58

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Advanced Topic: Shadowing

Shadowing occurs when a variable in an inner scope overrides
or shadows a variable in an outer scope with the same name.
Typically, shadowing is an unintended programming mistake.

Shadowing is possible with variables of different types.
Example:

In the example, the programmer accidentally redeclared the
string variable name in the constructor which overrides the
instance variable in the class.

public class Coin
{ public Coin(double aValue, String aName)

{ value = aValue;
String name = aName; // Shadows name in class

}
...
private double value;
private String name; // name defined here

}

Page 59

COSC 123 - Dr. Ramon Lawrence

Advanced:
Method Parameters: Pass-by-value

All method parameters are passed to a method by value which
means that even if they are changed in a method, they are not
updated in the caller method.

To return a value from a method:
1) Return a single value using a return type.

2) Pass object references to the method which allow object
values to be changed.

Note: Although you cannot change the value of any
parameters, by passing object references which have access to
objects, you can change object data.
However, you cannot change the object reference value itself.

Page 60

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Advanced Topic: Garbage Collection

Have you ever wondered what happens to objects that you no
longer need after you created them using new?

Unlike other languages, a Java programmer is not responsible
for deleting or destroying objects that you no longer use.

When an object has no valid references to it, Java may delete
the object in memory in a process called garbage collection.

The lifetime of an object in memory:
1) The object is created using new and a reference to its

location in memory is created.

2) The object may have multiple object references during the
program execution.

3) When all object reference variables go out of scope, the
object has no more references and is marked for deletion.

4) Java periodically scans memory and deletes objects.

Page 61

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions

With this code explain the lifetime and scope of all variables.

public class VariableScope
{ public static void main(String[] args)

{ double amount = 25;
BankAccount acct = new BankAccount(200);
for (int i=1; i <= 3; i++)

acct.deposit(amount);
System.out.println(acct.getBalance()); // 125.0

}

private void doNothing(double a)
{ int i = 5; return; }

public static final int MYNUM = 25;
}

Page 62

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions (2)

class BankAccount
{ public void deposit(double amount)

{ if (amount <= balance)
{ double newBalance = balance - amount;

balance = newBalance;
}
double balance = 50;

}
public double getBalance()
{ return balance; }

public BankAccount(double b)
{ balance = b; lastAccountNum++;

accountNum = lastAccountNum;
}

private double balance;
private int accountNum;
private static int lastAccountNum = 0;

}

Page 63

COSC 123 - Dr. Ramon Lawrence

Conclusion
Key object-oriented terminology:
Object – an instance of a class.

Class – an object template with methods and properties.

Method – a set of statements that performs an action.

Parameter – data passed into a method.

Properties – are attributes of objects.

Access specifiers limit what methods can access.

Inheritance is a mechanism for creating a new class by
extending the features of an existing class.
Object references point to objects in memory. Use new to create
objects. Methods are called using an object reference.

The scope and lifetime of a variable depends on its type
(instance, static, local, parameter). Page 64

COSC 123 - Dr. Ramon Lawrence

Objectives
Definitions: class, object, method, parameter, instance variable,
inheritance, superclass, subclass, interface

Java skills:
Defining a class with variables and methods.

Meaning of access specifiers: public, protected, private.
Inheritance using extends and method/attribute inheritance.

Creating objects using new.

Purpose, use, and definition of constructors.

Difference between objects and object references.

Calling methods using object references. Implicit parameter this.

Parameters are pass by value.

Variable scope and lifetime for variable types.

Advanced topics: shadowing, garbage collection

