
COSC 123
Computer Creativity

Java Decisions and Loops

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points

 1) A decision is made by evaluating a condition in an if/else
statement and performing certain actions depending if the
condition is true or false.

 2) Repetition is performed by using loops that repeat a set of
statements multiple times.

Page 3

COSC 123 - Dr. Ramon Lawrence

Making Decisions

 Decisions are used to allow the program to perform different
actions in certain conditions.

For example, if a person applies for a driver‟s license and is not
16, then the computer should not give them a license.

 To make a decision in a program we must do several things:

1) Determine the condition in which to make the decision.

In the license example, we will not give a license if the person is under 16.

2) Tell the computer what to do if the condition is true or false.

A decision always has a Boolean value or true/false answer.

 The syntax for a decision uses the if statement.

Page 4

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Performing Comparisons

 Relational operators compare two items called operands.

Syntax: operand1 operator operand2

 Comparison operators in Java:

> - Greater than

>= - Greater than or equal

< - Less than

<= - Less than or equal

== - Equal (Note: Not "=" which is used for assignment!)

!= - Not equal

 The result of a comparison is a Boolean value which is either
true or false.

Page 5

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Example Comparisons

int j=25, k = 45;

double d = 2.5, e=2.51;
boolean result;

result = (j == k); // false
result = (j <= k); // true
result = (d == e); // false (rounding!)
result = (d != e); // true
result = (k >= 25); // true
result = (25 == j); // true
result = (j > k); // false
result = (e < d); // false
j = k;
result = (j == k); // true

// Note: Never compare doubles using "==" due to
// precision and rounding problems.

Page 6

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Comparing Strings and Objects

 Comparing strings and objects is different than numbers.

Operators such as <, > are not useful for strings and objects.

Operator “==“ is defined but it is not very useful.

The “==“ operator compares if two string/object references refer to the
same object NOT if the string/object has the same value.

 Compare strings using equals() and compareTo() methods:

String str1 = "abc", str2="def";
str1.equals(str2); // True if str1 is equal to str2
str1.equalsIgnoreCase(str2); // Comparison without case
str1.compareTo(str2); // will be < 0 if str1 < str2
str1.compareTo(str2); // will be > 0 if str1 > str2
str1.compareTo(str2); // will be = 0 if str1 equals str2

Page 7

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Example String Comparisons

public class TestStringComparisons

{ public static void main(String[] args)
 { String st1 = "Hello", st2="Hell", st3="Test",st4;

 System.out.println(st1.equals(st2)); // false
 System.out.println(st1.compareTo(st2)); // 1
 System.out.println(st2.compareTo(st1)); // -1
 System.out.println(st3.compareTo(st1)); // 12
 System.out.println(st3.compareTo("ABC")); // 19
 st4 = st1.substring(0,4);
 System.out.println(st2.equals(st4)); // true
 System.out.println(st2.compareTo(st4)); // 0
 st4 = st4.toUpperCase();
 st2 = st2.toLowerCase();
 System.out.println(st2.equals(st4)); // false
 System.out.println(st2.equalsIgnoreCase(st4));
 //true
 }
}

Page 8

COSC 123 - Dr. Ramon Lawrence

String Comparisons

 Question: What is the output of this code?

 A) equal

 B) not equal

String str, str2;
Scanner sc = new Scanner(System.in);
str = sc.nextLine(); // User enters: abc
str2 = sc.nextLine();// User enters: abc

if (str == str2)
 System.out.print("equal");
else
 System.out.print("not equal");

Page 9

COSC 123 - Dr. Ramon Lawrence

Making Decisions
If Statement

 To make decisions with conditions, we use the if statement.

If the condition is true, the statement(s) after if are executed
otherwise they are skipped.

If there is an else clause, statements after else are executed
if the condition is false.

 Syntax:

 Example:

if (age > 19) OR if (age > 19)

 teenager=false; teenager=false;
 else
 teenager=true;

if (condition) OR if (condition)

 statement; statement;
 else
 statement;

Page 10

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Block Syntax

 Currently, using our if statement we are only allowed to execute
one line of code (one statement).

What happens if we want to have more than one statement?

 We use the block syntax for denoting a multiple statement
block. A block is started with a “{“ and ended with a “}”.

All statements inside the brackets are grouped together.

 Example:

 We will use block statements in many other situations as well.

if (age > 19)

{ teenager=false;
 hasLicense=true;
 ...
}

Page 11

COSC 123 - Dr. Ramon Lawrence

Making Decisions
If Statement Example

int age;

boolean teenager, hasLicense=false;
System.out.print("Enter your age: ");
Scanner sc = new Scanner(System.in);
age = sc.nextInt();

if (age > 19)
{ teenager = false;
 hasLicense = true;
}
else if (age < 13)
{ teenager = false;
 hasLicense = false;
}
else
{ teenager = true; // Do not know if have license
}

System.out.println("Is teenager: "+teenager);

System.out.println("Has license? "+hasLicense);

Page 12

COSC 123 - Dr. Ramon Lawrence

Making Decisions

 Question: What is the output of this code?

 A) big

 B) small

 C) bigsmall

int num=10;

if (num > 10)
 System.out.println("big");
else
 System.out.println("small");

Page 13

COSC 123 - Dr. Ramon Lawrence

Making Decisions (2)

 Question: What is the output of this code?

 A) big

 B) small

 C) bigsmall

int num=9;

if (num != 10)
 System.out.print("big");
System.out.println("small");

Page 14

COSC 123 - Dr. Ramon Lawrence

Making Decisions (3)

 Question: What is the output of this code?

 A) big

 B) small

 C) bigsmall

int num=10;

if (num == 10)
{ System.out.print("big");
 System.out.println("small");
}

Page 15

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Nested If Statement

 We nest if statements for more complicated decisions.

Verify that you use blocks appropriately to group your code!

 Example:

if (age > 16)

{ if (sex == "male")
 { System.out.println("Watch out!");
 }
 else
 { System.out.println("Great driver!");
 }
}
else
{ System.out.println("Sorry! Too young to drive.");
}

Page 16

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Nested If Statement Example

public class NestedIf

{ public static void main(String[] args)
 { double salary, tax;
 String married;
 Scanner sc = new Scanner(System.in);

 System.out.print("Enter M=married, S=single: ");
 married=sc.next();
 System.out.print("Enter your salary: ");
 salary=sc.nextDouble();

 if (married.equals("S"))
 { // Single person
 if (salary > 50000)
 tax = salary*0.5;
 else if (salary > 35000)
 tax = salary*0.45;
 else
 tax = salary*0.30;
 } // End if single person

Page 17

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Nested If Statement Example

 else if (married.equals("M"))
 { // Married person
 if (salary > 50000)
 tax = salary*0.4;
 else if (salary > 35000)
 tax = salary*0.35;
 else
 tax = salary*0.20;
 } // End if married person
 else // Invalid input
 tax = -1;

 if (tax != -1)
 { System.out.println("Salary: "+salary);
 System.out.println("Tax: "+tax);
 }
 else
 System.out.println("Invalid input!");
 }
}

Page 18

COSC 123 - Dr. Ramon Lawrence

Nested Conditions and Decisions
Dangling Else Problem

 The dangling else problem occurs when a programmer
mistakes an else clause to belong to a different if statement
than it really does.

Remember, blocks (brackets) determine which statements are
grouped together, not indentation!

 Example:

 Incorrect Correct

if (country == "US")) if (country == "US")

 if (state == "HI")) { if (state == "HI")

 shipping = 10.00; shipping = 10.00;

else // Belongs to 2nd if! }

 shipping = 20.00; // Wrong! else

 shipping = 20.00;

Page 19

COSC 123 - Dr. Ramon Lawrence

Nested Conditions and Decisions
Boolean Expressions

 A Boolean expression is a sequence of conditions combined
using AND (&&), OR (||), and NOT (!).

Allows you to test more complex conditions

Group subexpressions using parentheses

 Syntax: (expr1) && (expr2) - expr1 AND expr2

 (expr1) || (expr2) - expr1 OR expr2

 !(expr1) - NOT expr1

 Examples:

 var b;

1) b = (x > 10) && !(x < 50);

2) b = (month == 1) || (month == 2) || (month == 3);
3) if (day == 28 && month == 2)
4) if !(num1 == 1 && num2 == 3)
5) b = ((10 > 5 || 5 > 10) && ((10>5 && 5>10));// False

Page 20

COSC 123 - Dr. Ramon Lawrence

Boolean Expressions

 Question: Is result true or false?

 A) true

 B) false

int x = 10, y = 20;
int result = (x > 10) || (y < 20);
System.out.println(result);

Page 21

COSC 123 - Dr. Ramon Lawrence

Boolean Expressions (2)

 Question: Is result true or false?

 A) true

 B) false

int x = 10, y = 20;
int result = !(x != 10) && (y == 20);
System.out.println(result);

Page 22

COSC 123 - Dr. Ramon Lawrence

Boolean Expressions (3)

 Question: Is result true or false?

 A) true

 B) false

int x = 10, y = 20;
int result = (x >= y) || (y <= x);
System.out.println(result);

Page 23

COSC 123 - Dr. Ramon Lawrence

Making Decisions (4)

 Question: What is the output of this code?

 A) big

 B) small

 C) bigsmall

 D) ten

 E) bigten

int num=12;

if (num >= 8)
 System.out.print("big");
 if (num == 10)
 System.out.print("ten");
else
 System.out.print("small");

Page 24

COSC 123 - Dr. Ramon Lawrence

Making Decisions (5)
Boolean Expressions

 Question: What is the output of this code?

 A) bigx

 B) bigy

 C) bigxnot equal

 D) bigxbigynot equal

 E) bigxbigy

int x = 10, y = 20;

if (x >= 5)
{ System.out.print("bigx");
 if (y >= 10)
 System.out.print("bigy");
}
else if (x == 10 || y == 15)
 if (x < y && x != y)
 System.out.print("not equal");

Page 25

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Switch Statement

 There may be cases where you want to compare a single
integer value against many constant alternatives. Instead of
using many if statements, you can use a switch statement.

If there is no matching case, the default code is executed.

Execution continues until the break statement. (Remember it!)

Note: You can only use a switch statement if your cases are

integer numbers. (Characters („a‟, „b‟,...,) are also numbers.)

 Syntax:

switch (integer number)

{ case num1: statement break;
 case num2: statement break;
 ...
 default: statement break;
}

Page 26

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Switch Statement Example

public class TestSwitch

{ public static void main(String[] args)
 { int num;
 Scanner sc = new Scanner(System.in);

 System.out.println("Enter a day number: ");
 num=sc.nextInt();
 switch (num)
 { case 1: System.out.println("Sunday"); break;
 case 2: System.out.println("Monday"); break;
 case 3: System.out.println("Tuesday"); break;
 case 4: System.out.println("Wednesday"); break;
 case 5: System.out.println("Thursday"); break;
 case 6: System.out.println("Friday"); break;
 case 7: System.out.println("Saturday"); break;
 default: { System.out.println("Invalid day!");
 System.out.println("Valid #’s 1-7!");
 } break;
 }
 }

}

Page 27

COSC 123 - Dr. Ramon Lawrence

Switch Statement

 Question: What is the output of this code?

 A) one

 B) two

 C) three

 D) other

int num=2;

switch (num)

{ case 1: System.out.print("one"); break;

 case 2: System.out.print("two"); break;

 case 3: System.out.print("three"); break;

 default: System.out.print("other"); break;

}

Page 28

COSC 123 - Dr. Ramon Lawrence

Switch Statement (2)

 Question: What is the output of this code?

 A) one

 B) onetwo

 C) onetwothree

 D) other

 E) onetwothreeother

int num=1;

switch (num)

{ case 1: System.out.print("one");

 case 2: System.out.print("two");

 case 3: System.out.print("three"); break;

 default: System.out.print("other");

}

Page 29

COSC 123 - Dr. Ramon Lawrence

Decision Practice Questions

 1) Write a program that reads an integer N.

If N < 0, print “Negative number”, if N = 0, print “Zero”, If N > 0,
print “Positive Number”.

 2) Write a program that reads in a number for 1 to 5 and prints
the English word for the number. For example, 1 is “one”.

 3) Write a program to read in your name and age and print
them. Your program should print “Not a teenager” if your age is
greater than 19 or less than 13, otherwise print “Still a
teenager”.

Page 30

COSC 123 - Dr. Ramon Lawrence

Iteration and Looping
Overview

 A computer does simple operations extremely quickly.

 If all programs consisted of simple statements and decisions as
we have seen so far, then we would never be able to write
enough code to use a computer effectively.

 To make a computer do a set of statements multiple times we
program looping structures.

 A loop repeats a set of statements multiple times until some
condition is satisfied.

Each time a loop is executed is called an iteration.

Page 31

COSC 123 - Dr. Ramon Lawrence

The While Loop

 The most basic looping structure is the while loop.

 A while loop continually executes a set of statements while a
condition is true.

 Syntax:

 Example:

while (<condition>)

{ <statements>
}

int j=0;

while (j <= 5)
{ j=j+1;
 System.out.println(j);
}

Page 32

COSC 123 - Dr. Ramon Lawrence

The ++ and -- Operators

 It is very common to subtract 1 or add 1 from the current value
of an integer variable.

 There are two operators which abbreviate these operations:

++ - add one to the current integer variable

-- - subtract one from the current integer variable

 Example:

int j=0;

j++; // j = 1; Equivalent to j = j + 1;

j--; // j = 0; Equivalent to j = j - 1;

Page 33

COSC 123 - Dr. Ramon Lawrence

The For Loop

 The most common type of loop is the for loop. Syntax:

 Explanation:

1) initialization section - is executed once at the start of the loop

2) continuation section - is evaluated before every loop iteration
to check for loop termination

3) next iteration section - is evaluated after every loop iteration
to update the loop counter

for (<initialization>; <continuation>; <next iteration>)

{ <statement list>
}

Page 34

COSC 123 - Dr. Ramon Lawrence

Iteration & Looping
The For Loop

 Although Java will allow almost any code in the three sections,
there is a typical usage:

 Example:

for (i = start; i < end; i++)

{ statement
}

int i;

for (i = 0; i < 5; i++)

{ System.out.println(i); // Prints 0 to 4
}

Page 35

COSC 123 - Dr. Ramon Lawrence

Java Rules for Loops

 The iteration variable is a normal variable that must be
declared, but it has the special role of controlling the iteration.

i, j, and k are the most common choices due to convention and
because they are short.

 The starting point of the iteration can begin anywhere, including
negative numbers.

 The continuation/termination test must be an expression that
results in a Boolean value. It should involve the iteration
variable to avoid an infinite loop.

 The next iteration can have any statements, although usually
only use the step size to change iteration variable.

The step size can be positive or negative and does not always
have to be 1.

Page 36

COSC 123 - Dr. Ramon Lawrence

Common Problems – Infinite Loops

 Infinite loops are caused by an incorrect loop condition or not
updating values within the loop so that the loop condition will
eventually be false.

 Examples:

int i;

for (i=0; i < 10; i--) // Should have been i++

{ System.out.println(i); // Infinite loop: 0,-1,-2,..
}

i = 0;
while (i < 10)
{ System.out.println(i); // Infinite loop: 0,0,0,..
} // Forgot to change i in loop

Page 37

COSC 123 - Dr. Ramon Lawrence

Common Problems – Using Brackets

 A one statement loop does not need brackets, but we will
always use brackets. Otherwise problems may occur:

 Do not put a semi-colon at the end of the loop:

int i;

for (i=0; i <= 10; i++); // Causes empty loop

{ System.out.println(i); // Prints 11
}

int i=0;

while (i <= 10)
 System.out.println(i); // Prints 0 (infinite loop)
 i++; // Does not get here…
// Forgot brackets { and } - i++ not in loop!

Page 38

COSC 123 - Dr. Ramon Lawrence

Common Problems – Off-by-one Error

 The most common error is to be "off-by-one". This occurs
when you stop the loop one iteration too early or too late.

 Example:

This loop was supposed to print 0 to 10, but it does not.

for (i=0; i < 10; i++)

 document.write(i); // Prints 0..9 not 0..10

Question: How can we fix this code to print 0 to 10?

Page 39

COSC 123 - Dr. Ramon Lawrence

Common Problems – Iteration Variable

 Scope Issues: It is possible to declare a variable in a for loop
but that variable goes out of scope (disappears) after the loop
is completed.

int i;

for (i=0; i <= 10; i++)
{ System.out.println(i); // Prints 0..10
 ...
}
System.out.println(i); // Prints 11

Other approach:

for (int i=0; i <= 10; i++)// Declare i in for loop
{ System.out.println(i); // Prints 0..10
 ...
}
System.out.println(i); // Not allowed - i does
 // not exist outside loop

Page 40

COSC 123 - Dr. Ramon Lawrence

For Loops

 Question: What is the output of this code?

 A) nothing

 B) error

 C) 11

 D) The numbers 0, 1, 2, …, 10

int i;

for (i=0; i <= 10; i++);

 System.out.print(i);

Page 41

COSC 123 - Dr. Ramon Lawrence

For Loops

 Question: What is the output of this code?

 A) nothing

 B) error

 C) The numbers 0, 1, 2, …, 9

 D) The numbers 0, 1, 2, …, 10

int i;

for (i=0; i < 10; i++)

 System.out.print(i);

Page 42

COSC 123 - Dr. Ramon Lawrence

For Loops

 Question: What is the output of this code?

 A) nothing

 B) infinite loop

 C) The numbers 2, 3, 4, …, 9

 D) The numbers 2, 3, 4, …, 10

int i;

for (i=2; i < 10; i--)

 System.out.print(i);

Page 43

COSC 123 - Dr. Ramon Lawrence

The do..while Loop

 The last looping structure called a do..while loop. The
do..while loop is similar to the while loop except that the loop
condition is tested at the bottom of the loop instead of the top.

This structure is useful when you know a loop must be
executed at least once, but you do not know how many times.

 Syntax:

 Example:

do

{ statement
} while (condition);

do

{ num = num / 2;
} while (num >= 0);

Page 44

COSC 123 - Dr. Ramon Lawrence

Loop Nesting

 Similar to decisions statements such as if and switch, it is
possible to nest for, while, and do..while loops.

Note that the loops do not all have to be of the same type.

i.e. You can have a for loop as an outer loop, and a while loop as an
inner loop.

 Be very careful to include correct brackets when nesting loops.

It is a good idea to always include brackets in your code to
make your code more readable and prevent mistakes.

Page 45

COSC 123 - Dr. Ramon Lawrence

Nested For/While Loop Example

// Prints N x N matrix until N = -1

public class NestedForWhile

{ public static void main(String[] args)
 { int i, j, num;
 Scanner sc = new Scanner(System.in);

 System.out.print(“Enter a matrix size: “);
 num=sc.nextInt();
 while (num != -1)
 {
 for (i=1; i <= num; i++)
 { for (j=1; j <= num; j++)
 System.out.print(j+" "); // No brackets!
 System.out.println();
 }
 System.out.print(“Enter a matrix size: “);
 num=console.readInt();
 }
 }
}

Page 46

COSC 123 - Dr. Ramon Lawrence

Advanced Topic: Break Statement

 What happens if you want to exit a loop before the end?

You can use the break statement to immediately exit the
current loop block.

Note: The break statement exits the current loop. If you have a nested
loop, you will need multiple break statements to get out of all loops.

 Example:

while (true)
{ System.out.print(“Enter a matrix size: “);
 num=console.readInt();
 if (num == -1)
 break;
 ...
}
// After break - execution starts here

Page 47

COSC 123 - Dr. Ramon Lawrence

Advanced Topic: Continue Statement

 What happens if you want to quickly skip back to the start of
the loop (end the current iteration) while in the middle of the
loop statements?

You can use the continue statement to immediately stop the
current loop iteration and start the next one.

Note: This is rarely used.

 Example:

for (i=0; i < 5; i++) // After continue, start i=3
{ if (i == 2)
 continue; // For some reason we don’t like 2!
 System.out.println(i);
}

// Question: What is the better way to do this?

Page 48

COSC 123 - Dr. Ramon Lawrence

Looping Review

 A loop structure makes the computer repeat a set of statements
multiple times.

for loop is used when you know exactly how many iterations to
perform

while loop is used when you keep repeating the loop until a
condition is no longer true

a do..while loop is used when a loop has to be performed at least
once

 When constructing your loop structure make sure that:

you have the correct brackets to group your statements

you do not add additional semi-colons that are unneeded

make sure your loop terminates (no infinite loop)

 Remember the operators ++ and -- as short-hand notation.

Page 49

COSC 123 - Dr. Ramon Lawrence

Continue Statement

 Question: How many numbers are printed?

 A) 0

 B) 4

 C) 5

 D) 9

for (int i=2; i < 10; i++)

{ if (i % 2 == 0)
 continue;
 System.out.print(i);
}

Page 50

COSC 123 - Dr. Ramon Lawrence

Break Statement

 Question: How many numbers are printed?

 A) 9

 B) 5

 C) 4

 D) 3

for (int i=2; i < 10; i++)

{ if (i > 4)
 break;
 System.out.print(i);
}

Page 51

COSC 123 - Dr. Ramon Lawrence

Practice Questions: Iteration

 1) How many times does each loop execute:

 2) Write a program to print the numbers from 1 to N.

a) Modify your program to only print the even numbers.

 3) Write a method that builds and prints an integer matrix of the
form: (where N is given).

1 1 1 … 1

2 2 2 … 2

…

N N N … N

a) for(j=0; j <= 10; j--)

b) for(j=0; j <= 10; j++)

c) for(j=0; j < 10; j++)

d) for(j=-10; j <= 10; j++)

e) for(j=0; j <= 20; j=j+2)

Page 52

COSC 123 - Dr. Ramon Lawrence

Conclusion

 A decision is performed by evaluating a Boolean condition with
an if/else statement.

 A loop allows the repetition of a set of statements multiple
times until some condition is satisfied.

We will primarily use for loops that have 3 components:

initialization - setup iteration variable start point

continuation - use iteration variable to check if should stop

next iteration - increment/decrement iteration variable

 Decision and loops can be nested.

Page 53

COSC 123 - Dr. Ramon Lawrence

Objectives

 Java skills:

Make decisions using if/else statement.

Use Boolean variables to represent true/false.

Use relational operators in conditions.

Comparing Strings and Objects using equals and compareTo.

Build complex conditions using AND, OR, and NOT.

Switch statement

Iteration using three loop constructs:

while statement

for statement

do…while statement

Break and continue statements

Nesting of if/else and iteration statements

Page 54

COSC 123 - Dr. Ramon Lawrence

Detailed Objectives

Write decisions using the if/else statement.

Define: Boolean, condition

List and use the comparison operators.

Explain the dangling else problem.

Construct and evaluate Boolean expressions using AND, OR,
and NOT.

Explain why cannot use == with Strings/Objects.

Define: loop, iteration

Explain the difference between the while and for loops.

Explain what ++ and -- operators do.

Be able to use a for loop structure to solve problems.

Be aware and avoid common loop problems.

Define: infinite loop

