
COSC 123
Computer Creativity

Introduction to Java

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Introduce Java, a general-purpose programming language,
and compare it with Alice

2) Examine the Eclipse development environment for
developing Java programs

3) Execute our first Java program and analyze its basic
contents

4) Learn how to read input, write to the screen, declare and use
variables, and perform basic calculations in Java

Page 3

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Java is a general-purpose, object-oriented language developed
in 1991 by a group led by James Gosling and Patrick Naughton
of Sun Microsystems.

Major advantages of Java:
Can run on almost any type of machine.

Popular language for web and system development.

Good teaching language because many issues such as
memory management are hidden.

Java is an interpreted, rather than compiled, language. This
makes it portable but also affects performance for some
applications.

Page 4

COSC 123 - Dr. Ramon Lawrence

The Java Virtual Machine (JVM)
The Java Virtual Machine (JVM) is a program that executes a
Java program on an individual machine.

After the Java compiler compiles your program:
your program is in Java byte form which is a set of instructions

for the JVM to execute (not the same as machine code)

When you run your program:
the JVM is started by the operating system

the JVM loads your program and begins executing it

each byte in your compiled Java program is either an
instruction or data used by the JVM

the JVM translates instructions in your program to the
appropriate machine code for the machine it is running on

The JVM is effectively a virtual machine in your computer.

Page 5

COSC 123 - Dr. Ramon Lawrence

Java and Alice

6-5

Java and Alice perform the same operations using different syntax.

Operation Alice Java

Assignment Set value =

Arithmetic +, -, *, / +, -, *, /

Remainder IEEERemainder %

Relational <, <=, >, >=, ==, != <, <=, >, >=, ==, !=

Logical Not, both a and b,

either a or b or both

! (not), a && b (and),

a || b (or)

Decisions If/else If/else

Repetition Loop, While for, while

Page 6

COSC 123 - Dr. Ramon Lawrence

Eclipse
It is possible to write Java programs using any text editor and
compile them using the Java compiler.

An integrated development environment makes it easier to
write code, find errors, and run your programs.

We will use the Eclipse environment in this course.
Eclipse is a generic, extensible development environment that

can be used for Java and other languages.

Eclipse makes coding easier with automatic error checking,
code completion, and source debugging.

Eclipse will NOT make it easier to figure out WHAT to write, but
it will make HOW to write it easier.

Page 7

COSC 123 - Dr. Ramon Lawrence

Eclipse Initial Setup
Creating a Workspace and a Project

A workspace is the place where
Eclipse will store all of your projects.
You will be prompted for your

workspace on start up if you have
not selected one.

Create a new workspace on F: with
a directory name workspace.

A project is a group of program files
for some purpose. We will create a
sample project called cosc123.
You will also create projects for
each assignment.
Give the project a name and click

finish. Ignore all options for now.

Create a New Project using
File->New->Java Project

Page 8

COSC 123 - Dr. Ramon Lawrence

Eclipse Main Screen

Execute (run) button

Console (execution)

Source
browser

File being edited

Code editor

Page 9

COSC 123 - Dr. Ramon Lawrence

Eclipse
Perspectives and Views

A perspective is an organization of
views to accomplish a certain task
(debugging, coding, etc.).
 The two perspectives we will use are

Java and Debugging.

Eclipse remembers how you place
the views in each perspective.

A view is a window on the screen
associated with a task.
 The major views are:

Navigator – shows files in project

Console – shows program output

Problems – shows errors in code

You may open, close, and organize
views in each perspective.

Selecting Eclipse views using
Window->Show View

Page 10

COSC 123 - Dr. Ramon Lawrence

Eclipse
Creating a Program File

To create a program code file, select
File->New->File or

File->New->Class and provide a
folder and file name.

The other choice is to right click on a
folder in the navigation view and
select New->File.

Type the file name (should end with
.java) and click Finish.

To edit this file, double click on it, and
it will open in the editor.

Creating a new file using
File->New->File

Page 11

COSC 123 - Dr. Ramon Lawrence

Eclipse
Debugging and Breakpoints

Execute (run) button

Debug
button

Code editor

Console (execution)

Variable viewBreakpoint

Step and Play Buttons

Page 12

COSC 123 - Dr. Ramon Lawrence

Debugging Java Programs
When you write programs, it is very rare that you get the
program correct the first time. There are two types of errors:
1) Compile-time errors - are language syntax or structure

errors detected by the compiler when it compiles your program
A program will not run until all compile-time errors are corrected.

2) Run-time errors - are errors that occur while the program is
running and often result in incorrect results or program crashes.
Run-time errors are harder to detect because they result from a flaw in

your algorithm which is syntactically correct.

Page 13

COSC 123 - Dr. Ramon Lawrence

Demonstration Exercise
Running HelloWorld in Eclipse

1) Start Eclipse.
2) Create your workspace on F:.

3) Create a new project called COSC123.

4) Download or type in the file HelloWorld.java.

5) Run the program.

Page 14

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Overview

To program in Java you must follow a set of rules for specifying
your commands. This set of rules is called a syntax.

Important general rules of Java syntax:
Java is case-sensitive.
Main() is not the same as main() or MAIN().

Java accepts free-form layout.
Spaces and line breaks are not important except to separate words.

You can have as many words as you want on each line or spread them
across multiple lines.

However, you should be consistent and follow the programming
guidelines given for assignments.
 It will be easier for you to program and easier for the marker to mark.

Page 15

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program

To create this program:
Create a file called HelloWorld.java in an Eclipse project

and type in the code.

To compile and run this program:
Press the start button (green arrow) in Eclipse.

If the code is correct, the program will run, otherwise it will show
errors that you must fix first.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 16

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis

The first line of code:
says you want to create a class called HelloWorld
HelloWorld is the name you have chosen for your class.

 Class names normally begin with a capital letter.

A class is a blue-print for an object.
 An object is something that we store or modify in our program.

In this case, class HelloWorld is the name of our entire program.
 Notice that we saved the program as HelloWorld.java (this is important!)

the “public” keyword means the class is usable by the public

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 17

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis (2)

The “{“ and “}” characters are used to group commands.
The first pair of brackets shows what is in class HelloWorld.
In this case, the method main() is part of the HelloWorld class.

The second pair of brackets indicates what is contained in the
method called main().
The statement System.out.println("Hello World!"); is part of

the main() method.

You must ensure that your brackets are properly matched.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 18

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis (3)

The second line of code:
defines a method called main()

A method is a set of commands that tells Java what to do.
Every method must be inside a class in Java.

 The main() method is in the HelloWorld class.

The main() method is the first method executed in your program.
 The main() method must be in your program for it to work.

 Memorize the syntax for this method. You will not understand it until later in
the course.

The statements inside the brackets are the commands
executed when the method is run.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 19

COSC 123 - Dr. Ramon Lawrence

Introduction to Java
Your First Java Program - Analysis (4)

The third line of code:
contains a statement executed when the main() method is run

This command calls a built-in method called println().
The println() method is in the System.out class.

The method is called with a parameter: "Hello World!".
The parameter to this method is what you want to print.

The parameter is contained in quotes (“”) because it is text.

Note that each statement ends with a semi-colon (“;”).

The brackets (“{“,”}”) denote the start and end of the method.

public class HelloWorld
{ public static void main(String[] argv)

{ System.out.println("Hello World!");
}

}

Page 20

COSC 123 - Dr. Ramon Lawrence

Output Text to the Screen
System.out.println

The println method prints output to the screen.
The println method accepts one String variable as output.

You can use the + (concatenation) to build an output string that consists of
many parts.

The System.out.print method does not advance to the next line.

Example:

public class ThreeplusFour
{ public static void main(String[] args)

{ System.out.println("3 + 4 is: ");
System.out.println(3+4);
System.out.println("6 + 9 is: "+(6+9));

}
}

Question: What is the output of this program? Why?

Page 21

COSC 123 - Dr. Ramon Lawrence

Reading Data from the User
The Scanner Class

The Scanner class reads data entered by the user. Methods:
int nextInt() – reads next integer

double nextDouble() – reads next floating point number

String next() – reads String (up to separator)

String nextLine() – reads entire line as a String

To use must import java.util.Scanner.
import java.util.Scanner;
public class AddTwoNum
{ public static void main(String[] argv)

{ // Code reads and adds two numbers
Scanner sc = new Scanner(System.in);
int num1 = sc.nextInt();
int num2 = sc.nextInt();
int result = num1+num2;
System.out.println(num1+" + "+num2+" = "+result);

}
} Page 22

COSC 123 - Dr. Ramon Lawrence

The Java API
The Java API
(Application
Programming Interface)
defines all the built-in
class and methods in
Java that you can use.

We are using the Java
6 API at:
http://java.sun.com/java
se/6/docs/api/

Page 23

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Create a program to ask the user for two numbers, subtract
them, and write out the answer.

2) Create a program to ask for a first name then a last name.
Output the full name in the form: lastname, firstname.

Page 24

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations
A value is a data item that is manipulated by the computer.

A variable is the name that the programmer users to refer to a
location in memory.

A location has an address in memory and stores a value.

IMPORTANT: The value at a given location in memory (named
using a variable name) can change using initialization or
assignment.

Page 25

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations
Example

We want to store a number that represents the total order value.

Step #1: Declare the variable by giving it a name and a type.

The computer allocates space for the variable in memory (at
some memory address). Every time we give the name total,
the computer knows what data item we mean.

The base types we will use are: int, double, and char.

int total;

Variable Name Lookup Table

Name Location Type
total 16 number

Memory

16 ????????
20
24
28

Page 26

COSC 123 - Dr. Ramon Lawrence

Step #2: Initialize the variable to have a starting value
If you do not initialize your variable to a starting value when you

first declare it, the value of the variable is initialized to 0 (for
numbers).

Example:

Values, Variables, and Locations
Example (2)

total = 1;

Variable Name Lookup Table

Name Location Type
total 16 number

Memory

16 ????????
20
24
28

1

Page 27

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations
Example (3)

Step #3: Value stored in location can be changed throughout the
program to whatever we want using assignment ("=" symbol).

total = total * 5 + 20;

Variable Name Lookup Table

Name Location Type
total 16 number

Memory

16 1
20
24
28

25

Page 28

COSC 123 - Dr. Ramon Lawrence

Variable Rules
Variables are also called identifiers. An identifier is a name that
begins with a letter or underscore and cannot contain spaces.
Every variable in a program must be declared before it is used.

Variable names ARE case-sensitive. Numbers are allowed (but
not at the start). Only other symbol allowed is underscore ('_');

Beware of declaring two variables with the same name.

Use meaningful variable names.

Reserved words cannot be used for variable names.

A constant is a variable which cannot change in your program.
We use the keyword final to indicate a constant.

You can declare multiple variables in the same statement:

int total = 0, count = 5;

final double PST = 0.07; // Constant

Page 29

COSC 123 - Dr. Ramon Lawrence

The Assignment Statement
An assignment statement changes the value of a variable.

The variable on the left-hand side of the = is assigned the value from the
right-hand side.

The value may be changed to a constant, to the result of an expression, or
to be the same as another variable.

The values of any variables used in the expression are always their values
before the start of the execution of the assignment.

Examples:
int A, B;

A = 5;
B = 10;
A = 10 + 6 / 2;
B = A;
A = 2*B + A – 5;

Question: What are the values of A and B? Page 30

COSC 123 - Dr. Ramon Lawrence

Expressions
An expression is a sequence of operands and operators that
yield a result. An expression contains:
operands - the data items being manipulated in the calculation
e.g. 5, “Hello, World”, myDouble

operators - the operations performed on the operands
e.g. +, -, /, *, % (modulus - remainder after integer division)

An operator can be:
unary - applies to only one operand
e.g. d = - 3.5; // “-” is a unary operator, 3.5 is the operand

binary - applies to two operands
e.g d = e * 5.0; // “*” is binary operator, e and 5.0 are operands

Page 31

COSC 123 - Dr. Ramon Lawrence

Expressions - Operator Precedence
Each operator has its own priority similar to their priority in
regular math expressions:
1) Any expression in parentheses is evaluated first starting with

the inner most nesting of parentheses.

2) Unary + and unary - have the next highest priorities.

3) Multiplication and division (*, /, %) are next.

4) Addition and subtraction (+,-) are then evaluated.

Page 32

COSC 123 - Dr. Ramon Lawrence

Strings
Strings are sequences of characters inside double quotes.

Example:

Strings are objects. Objects have methods.

The concatenation operator is used to combine two strings
into a single string. The notation is a plus sign '+'.

String personName = "Ramon Lawrence";
personName = "Joe Smith";

Question: What is the difference between these two statements?

String firstName = "Ramon", lastName = "Lawrence";
String fullName = firstName+lastName;

Page 33

COSC 123 - Dr. Ramon Lawrence

General Syntax Rules: Comments
Comments are used by the programmer to document and
explain the code. Comments are ignored by the computer.

There are two choices for commenting:
1) One line comment: put “//” before the comment and any

characters to the end of line are ignored by the computer.
2) Multiple line comment: put “/*” at the start of the comment

and “*/” at the end of the comment. The computer ignores
everything between the start and end comment indicators.

Example:
/* This is a multiple line

comment.
With many lines. */

// Single line comment
// Single line comment again
d = 5.0; // Comment after code Page 34

COSC 123 - Dr. Ramon Lawrence

Declaration/Initialization Example
public class TestInit
{ public static void main(String[] args)

{ final double d = 5.0; // d is a constant = 5
double e; // Declare double var. e
int j; // Declare int var. j
String s; // Declare string var. s

System.out.println(d); // Prints 5.0
System.out.println(j); // Would not compile!
j = 25;
System.out.println(j); // Prints 25
s="Test";
System.out.println(s); // Prints Test
e=d;
System.out.println(e); // Prints 5.0;
e=d+20000.5; // Note: No commas
System.out.println(e); // Prints 20005.5;

}
}

Page 35

COSC 123 - Dr. Ramon Lawrence

Importing Classes
Java provides many classes organized into packages.

To use a class, you must import it. The import syntax is:

The Math class contains methods such as square root or
rounding.

import packageName.ClassName;
import java.lang.Math; // Import Math class

// java.lang is package
import java.lang.*; // Import all classes in package

int num = Math.round(3.5); // Returns 4

Page 36

COSC 123 - Dr. Ramon Lawrence

Math Operations
Import & Math Function Example
import java.lang.Math;

public class TestMath
{ public static void main(String[] args)

{ double d = 5.0,e=1.5,f;
int j = 25,k;

f = -d*e;
System.out.println(f); // Prints -7.5
f = Math.pow(d,2);
System.out.println(f); // Prints 25.0
k = (int) Math.sqrt(j);
System.out.println(k); // Prints 5
System.out.println(Math.sqrt(j)); // Prints 5.0
d=d*e+j+Math.exp(j);
System.out.println(d); // Prints 7.2E10
System.out.println(k); // Prints 1
System.out.println(Math.round(e));// Prints 2

}
}

Page 37

COSC 123 - Dr. Ramon Lawrence

Compile vs. Run-time Errors
Question: A program is supposed to print the numbers from 1 to
10. It actually prints the numbers from 0 to 9. What type of error
is it?

A) Compile-time error

B) Run-time error

Page 38

COSC 123 - Dr. Ramon Lawrence

Variables – Basic Terminology
Question: Of the following three terms, what is most like a box?

A) value

B) variable

C) location

Page 39

COSC 123 - Dr. Ramon Lawrence

Variables - Definitions
Question: Which of the following statements is correct?

A) The location of a variable may change during the program.

B) The name of a variable may change during the program.

C) The value of a variable may change during the program.

Page 40

COSC 123 - Dr. Ramon Lawrence

Variables – Correct Variable Name
Question: Which of the following is a valid Java variable?

A) aBCde123

B) 123test

C) t_e_s_t!

Page 41

COSC 123 - Dr. Ramon Lawrence

Assignment
Question: What are the values of A and B after this code?

A) A = 6, B = 36

B) A = 4, B = 26

C) A = 6, B = 66

int A, B;

A = 2;
B = 4;
A = B + B / A;
B = A * 5 + 3 * 2;

Page 42

COSC 123 - Dr. Ramon Lawrence

String Concatentation
Question: What is the value of result after this code?

A) "Joe Smith"

B) "JoeSmith"

String st1="Joe", st2="Smith";

String result = st1 + st2;

Page 43

COSC 123 - Dr. Ramon Lawrence

String Concatentation (2)
Question: What is the result after this code?

A) 579

B) "579"

C) "123456"

String st1="123", st2="456";

String result = st1 + st2;

Page 44

COSC 123 - Dr. Ramon Lawrence

Code Output
Question: What is the output of this code if user enters 3 and 4?

A) 3 + 4 = 7

B) 4 + 3 = 7

C) 4 + + + 3 + = + 7

D) Code has errors and will not compile.

public class AddTwoNum
{ public static void main(String[] argv)

{ // Code reads and adds two numbers
Scanner sc = new Scanner(System.in);
int num1 = sc.nextInt();
int num2 = sc.nextInt();
int result = num1+num2;
System.out.println(num2+" + "+num1+" = "+result);

}
}

Page 45

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Write a Java program that prompts for a number and outputs
the square root of that number.

2) Write a program to read three numbers and then print their
sum.

Page 46

COSC 123 - Dr. Ramon Lawrence

Conclusion
Java is a general-purpose language for building programs. Its
performs similar operations as Alice but with different syntax.

Eclipse is a development environment for Java programs.
Eclipse is used to write, debug, and run programs.

A Java program consists of statements separated by semi-
colons. Variable declaration statements require a variable
name and type. A string is an example of an object.

Input can be retrieved using the Scanner class and data
printed using System.out.println().

Classes are imported into the program when required.

Page 47

COSC 123 - Dr. Ramon Lawrence

Objectives
Key terms:
JVM, Eclipse, IDE

variable, value, location, assignment

Java skills:
Create a workspace and project in Eclipse.

Create and run Java programs using Eclipse.

Basic debugging and breakpoints

Java syntax: statements, variables, expressions, comments
Output using System.out.println

Input using and Scanner class

Using the Java API for reference

Strings and concatenation

Importing classes from packages Page 48

COSC 123 - Dr. Ramon Lawrence

Detailed Objectives
Comparison of Java and Alice syntax for operations.

Eclipse definitions: workspace, project, perspective, view

Compile vs. run-time errors and debugging

Declaring variables and assigning values to variables

Using the Eclipse IDE

Output and input of data

Definitions: declare, assignment, identifier, constant, expression

