
COSC 123
Computer Creativity

Course Review

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Reading Data from the User
The Scanner Class

 The Scanner class reads data entered by the user. Methods:

int nextInt() - reads next integer

double nextDouble() – reads next floating point number

String next() – reads String (up to separator)

String nextLine() – reads entire line as a String

 To use must import java.util.Scanner.

import java.util.Scanner;

public class AddTwoNum
{ public static void main(String[] argv)
 { // Code reads and adds two numbers
 Scanner sc = new Scanner(System.in);
 int num1 = sc.nextInt();
 int num2 = sc.nextInt();
 int result = num1+num2;
 System.out.println(num1+" + "+num2+" = "+result);
 }
}

Page 3

COSC 123 - Dr. Ramon Lawrence

Values, Variables, and Locations

 A value is a data item that is manipulated by the computer.

 A variable is the name that the programmer users to refer to a
location in memory.

 A location has an address in memory and stores a value.

 IMPORTANT: The value at a given location in memory (named
using a variable name) can change using initialization or
assignment.

Page 4

COSC 123 - Dr. Ramon Lawrence

Compile vs. Run-time Errors

 Question: A program is supposed to print the numbers from 1 to
10. It actually prints the numbers from 0 to 9. What type of error
is it?

 A) Compile-time error

 B) Run-time error

Page 5

COSC 123 - Dr. Ramon Lawrence

Variables - Definitions

 Question: Which of the following statements is correct?

 A) The location of a variable may change during the program.

 B) The name of a variable may change during the program.

 C) The value of a variable may change during the program.

Page 6

COSC 123 - Dr. Ramon Lawrence

Assignment

 Question: What are the values of A and B after this code?

 A) A = 6, B = 3

 B) A = 11, B = 56

 C) A = 5, B = 90

int A, B;

A = 6;
B = 3;
A = 3 * B + A / B;
B = A + 5 * 3 * B;

Page 7

COSC 123 - Dr. Ramon Lawrence

Code Output

 Question: What is the output of this code if user enters 3 and 4?

 A) 3 + 4 = 7

 B) 4 + 3 = 7

 C) 3 – 4 = 7

 D) 4 – 3 = 7

public class AddTwoNum
{ public static void main(String[] argv)
 { // Code reads and adds two numbers
 Scanner sc = new Scanner(System.in);
 int num1 = sc.nextInt();
 int num2 = sc.nextInt();
 int result = num1+num2;
 System.out.println(num2+" - "+num1+" = "+result);
 }
}

Page 8

COSC 123 - Dr. Ramon Lawrence

Practice Question

 1) Create a program to ask the user for two numbers, a
operation to perform (+,-,/,*), and then do that operation.

Page 9

COSC 123 - Dr. Ramon Lawrence

Making Decisions

 Decisions are used to allow the program to perform different
actions in certain conditions.

 To make a decision in a program we must do several things:

1) Determine the condition in which to make the decision.

2) Tell the computer what to do if the condition is true or false.

A decision always has a Boolean value or true/false answer.

 The syntax for a decision uses the if statement:

if (age > 19) OR if (age > 19)

 teenager=false; teenager=false;
 else
 teenager=true;

Page 10

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Block Syntax

 Use the block syntax for denoting a multiple statement block.
A block is started with a “{“ and ended with a “}”.

All statements inside the brackets are grouped together.

 Example:

 The dangling else problem occurs when a programmer
mistakes an else clause to belong to a different if statement
than it really does.

Remember, blocks (brackets) determine which statements are
grouped together, not indentation!

if (age > 19)

{ teenager=false;
 hasLicense=true;
 ...
}

Page 11

COSC 123 - Dr. Ramon Lawrence

Nested Conditions and Decisions
Boolean Expressions

 A Boolean expression is a sequence of conditions combined
using AND (&&), OR (||), and NOT (!).

Allows you to test more complex conditions

Group subexpressions using parentheses

 Syntax: (expr1) && (expr2) - expr1 AND expr2

 (expr1) || (expr2) - expr1 OR expr2

 !(expr1) - NOT expr1

 Examples:

 var b;

1) b = (x > 10) && !(x < 50);

2) b = (month == 1) || (month == 2) || (month == 3);
3) if (day == 28 && month == 2)
4) if !(num1 == 1 && num2 == 3)
5) b = ((10 > 5 || 5 > 10) && ((10>5 && 5>10));// False

Page 12

COSC 123 - Dr. Ramon Lawrence

Making Decisions
Switch Statement

 There may be cases where you want to compare a single
integer value against many constant alternatives. Instead of
using many if statements, you can use a switch statement.

If there is no matching case, the default code is executed.

Execution continues until the break statement. (Remember it!)

Note: You can only use a switch statement if your cases are

integer numbers. (Characters („a‟, „b‟,...,) are also numbers.)

 Syntax:

switch (integer number)

{ case num1: statement break;
 case num2: statement break;
 ...
 default: statement break;
}

Page 13

COSC 123 - Dr. Ramon Lawrence

Making Decisions (3)

 Question: What is the output of this code?

 A) big

 B) small

 C) bigsmall

int num=10;

if (num == 10)
{ System.out.print("big");
 System.out.println("small");
}

Page 14

COSC 123 - Dr. Ramon Lawrence

Making Decisions (4)

 Question: What is the output of this code?

 A) big

 B) small

 C) bigsmall

 D) ten

 E) bigten

int num=10;

if (num >= 8)
 System.out.print("big");
 if (num == 10)
 System.out.print("ten");
else
 System.out.print("small");

Page 15

COSC 123 - Dr. Ramon Lawrence

Switch Statement (2)

 Question: What is the output of this code?

 A) onetwo

 B) two

 C) twothree

 D) other

 E) onetwothreeother

int num=2;

switch (num)

{ case 1: System.out.print("one");

 case 2: System.out.print("two");

 case 3: System.out.print("three"); break;

 default: System.out.print("other");

}

Page 16

COSC 123 - Dr. Ramon Lawrence

Decision Practice Question

 1) Write a program that reads a number N.

If N has 1 digit, print 1 digit.

If N has 2 digits, print 2 digits.

Otherwise if N has 3 or more digits, print 3 or more digits.

Page 17

COSC 123 - Dr. Ramon Lawrence

The For Loop

 The most common type of loop is the for loop. Syntax:

 Explanation:

1) initialization section - is executed once at the start of the loop

2) continuation section - is evaluated before every loop iteration
to check for loop termination

3) next iteration section - is evaluated after every loop iteration
to update the loop counter

 Example:

for (<initialization>; <continuation>; <next iteration>)

{ <statement list>
}

int i;

for (i = 0; i < 5; i++)

{ System.out.println(i); // Prints 0 to 4
}

Page 18

COSC 123 - Dr. Ramon Lawrence

For Loops

 Question: What is the output of this code?

 A) nothing

 B) error

 C) The numbers 0, 1, 2, …, 5

 D) The numbers 0, 1, 2, …, 6

for (i=0; i < 6; i++)

 System.out.print(i);

Page 19

COSC 123 - Dr. Ramon Lawrence

For Loops

 Question: What is the output of this code?

 A) nothing

 B) infinite loop

 C) The numbers 2, 3, 4, …, 19

 D) The numbers 2, 3, 4, …, 20

for (i=2; i < 20; i--)

 System.out.print(i);

Page 20

COSC 123 - Dr. Ramon Lawrence

Loops Practice Question

 1) Write a program that reads a number N and calculate the
sum of the numbers from 1 to N.

 If that is too easy for you, calculate only the sum of the even
numbers from 1 to N!

Page 21

COSC 123 - Dr. Ramon Lawrence

Java Object-Oriented Terminology

 An object is an instance of a class that has its own properties
and methods. Properties and methods define what the object is
and what it can do. Each object has its own area in memory.

 A class is a generic template (blueprint) for creating an object.
All objects of a class have the same methods and properties
(although the property values can be different).

 A property (or instance variable) is an attribute of an object.

 A method is a set of statements that performs an action. A
method works on an implicit object and may have parameters.

 A parameter is data passed into a method for it to use.

Page 22

COSC 123 - Dr. Ramon Lawrence

Access Specifiers
Public and Private

 One of the features of object-oriented programming is that not
all parts of a program have access to all the data and methods.

 Each class, method, and variable needs to have one of the four
access specifiers defined that indicate which other objects
and methods in your program have access to it. Four types:

public – Accessible by all code (everyone, the public)

private – Only accessible by methods in the class.

protected – Only accessible by methods in the class or
classes derived from this class by inheritance.

default – If nothing is specified, assume package access where
all methods in same package can access it.

Page 23

COSC 123 - Dr. Ramon Lawrence

 The BankAccount class is used for describing bank accounts.

The methods defined in the BankAccount class are deposit,
withdraw, and getBalance.

The current balance in the account is private, so it can only
be changed by calling the methods.

public class BankAccount

{
 private double balance;

 public void deposit(double amount)
 { balance = balance + amount; }

 public void withdraw(double amount)
 { balance = balance - amount; }

 public double getBalance()
 { return balance; }
}

Class Example
BankAccount Class

Page 24

COSC 123 - Dr. Ramon Lawrence

Class Practice Questions

 1) Write the setBalance method for the BankAccount class.

 2) Add an instance variable called name for the name of the
owner of the BankAccount. Add get/set methods for this
instance variable.

 3) Add a default constructor (no parameters) and an
overloaded constructor that accepts balance and name as
parameters.

Page 25

COSC 123 - Dr. Ramon Lawrence

Creating and Using Objects

 A class is just a blue-print for creating objects.

By itself, a class performs no work or stores no data.

 For a class to be useful, we must create objects of the class.

Each object created is called an object instance.

 To create an object, we use the new method.

 When an object is created using the new method:

Java allocates space for the object in memory.

The constructor for the object is called to initialize its contents.

Java returns a pointer to where the object is stored in memory
which we will call an object reference.

Page 26

COSC 123 - Dr. Ramon Lawrence

Objects and Object References

 Question: How many object references are in this code?

 A) 1

 B) 2

 C) 3

 D) 4

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount();
myAcct = savings;
checking = new BankAccount();

Page 27

COSC 123 - Dr. Ramon Lawrence

Objects and Object References

 Question: How much money is in the account referenced by the
myAcct2 object reference?

 A) unknown

 B) 50

 C) 100

 D) undefined

BankAccount savings, checking;
BankAccount myAcct, myAcct2;

savings = new BankAccount(50);
myAcct = savings;
savings = null;
checking = new BankAccount(100);
savings = checking;
myAcct2 = myAcct;

Page 28

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Scope of Variable Types

 The scope of variables depends directly on their type:

1) Instance variables - are created when an object instance is
created using the new method. Instance variables are defined
as long as there is at least one reference to the object in your
program which is still in scope.

2) Static variables - are created when the class they are defined
in is first loaded and are defined until the class is unloaded.

This means static variables are around for the duration of your program.

3) Local variables - are created when the program enters the
block in which they are defined and destroyed when the program
exits that block.

A variable defined in brackets (“{“,”}”) is accessible anywhere within the
block including nested blocks.

4) Parameter variables - are created when a method is first
called and are destroyed when a method returns.

Page 29

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions

 With this code explain the lifetime and scope of all variables.

public class VariableScope

{ public static void main(String[] args)
 { double amount = 25;
 BankAccount acct = new BankAccount(200);
 for (int i=1; i <= 3; i++)
 acct.deposit(amount);
 System.out.println(acct.getBalance()); // 125.0
 }

 private void doNothing(double a)
 { int i = 5; return; }

 public static final int MYNUM = 25;
}

Page 30

COSC 123 - Dr. Ramon Lawrence

Variable Scope
Practice Questions (2)

class BankAccount
{ public void deposit(double amount)
 { if (amount <= balance)
 { double newBalance = balance - amount;
 balance = newBalance;
 }
 double balance = 50;
 }
 public double getBalance()
 { return balance; }

 public BankAccount(double b)
 { balance = b; lastAccountNum++;
 accountNum = lastAccountNum;
 }

 private double balance;
 private int accountNum;
 private static int lastAccountNum = 0;
}

Page 31

COSC 123 - Dr. Ramon Lawrence

Inheritance Overview

 Inheritance is a mechanism for enhancing and extending
existing, working classes.

In real life, you inherit some of the properties from your parents when you
are born. However, you also have unique properties specific to you.

In Java, a class that extends another class inherits some of its properties
(methods, instance variables) and can also define properties of its own.

 Extends is the key word used to indicate when one class is
related to another by inheritance.

 Syntax: class subclass extends superclass

The superclass is the existing, parent class.

The subclass is the new class which contains the functionality of
the superclass plus new variables and methods.

Page 32

COSC 123 - Dr. Ramon Lawrence

Inheritance Question

 1) Create a CheckingAccount class which inherits from
BankAccount. The CheckingAccount class:

inherits getBalance() from BankAccount

overrides deposit() and withdraw() from BankAccount,
so it can keep track of the number of transactions
(transactionCount)

defines a method deductFees() which withdraws $1 for each
transaction (transactionCount) then resets the # of
transactions

Page 33

COSC 123 - Dr. Ramon Lawrence

Arrays

 An array is a collection of data items of the same type.

 An array reference is denoted using the open and close square
brackets “[]” during declaration.

You can have an array of any data type including the base types (int,
double, String) and object-types (BankAccount).

Examples:

 Similar to an object, when you declare an array you are
creating a reference to an array. Until you actually create the
space for the array using new, no array exists in memory.

String[] strings = new String[10];

int[] myArray;
String[] strings;
BankAccount[] accounts;

Page 34

COSC 123 - Dr. Ramon Lawrence

Arrays

 Question: What is the size of this array?

 A) error

 B) 10

 C) 9

 D) 11

int[] myArray = new int[10];

Page 35

COSC 123 - Dr. Ramon Lawrence

Arrays

 Question: What are the contents of this array?

 A) error

 B) 0, 1, 2, 3

 C) 1, 2, 3, 4

 D) 4, 0, 3, 2

int[] myArray = new int[4];

myArray[0] = 1;

myArray[3] = 2;

myArray[2] = 3;

myArray[0] = 4;

Page 36

COSC 123 - Dr. Ramon Lawrence

ArrayLists

 An ArrayList implements a resizable array of objects.

Base types such as int are not objects. Use wrapper class Integer.

 Create an ArrayList by:

 Add element to an ArrayList by:

 Remove element from an ArrayList by:

ArrayList names = new ArrayList(); // Size 10 (default)

ArrayList accounts = new ArrayList(5); // Size of 5

names.add("Joe"); // Add to end of list

names.add(2,"Steve"); // Add at index 2 and shift down

names.remove(2); // Remove index 2 and shift up

Page 37

COSC 123 - Dr. Ramon Lawrence

ArrayLists (2)

 Get number of items in list by:

 Get element at an index from an ArrayList by:

 Set element at an index in an ArrayList by:

 A simple way to traverse an ArrayList is using a for loop:

int count = names.size();

String n = names.get(2); // Get item at index 2

names.set(2,"Fred"); // Put Fred at index 2

for (int i=0; i < names.size(); i++)

{ String s = (String) names.get(i);

 System.out.println(s);

}

Page 38

COSC 123 - Dr. Ramon Lawrence

ArrayList

 Question: What is the value of st?

 A) Fred

 B) Joe

 C) Steve

 D) error

ArrayList a = new ArrayList();

a.add("Fred");

a.add(1,"Joe");

a.add(1,"Steve");

a.remove(0);

String st = (String) a.get(0);

Page 39

COSC 123 - Dr. Ramon Lawrence

ArrayList Practice Question

 1) Write a method that takes an ArrayList as a parameter
and returns an ArrayList with all the items in reverse order.

 For example, if the list was {Joe, Fred, Smith} then after
reverse the list is {Smith, Fred, Joe}.

Page 40

COSC 123 - Dr. Ramon Lawrence

The Coordinate System

 Drawing on the screen is done by specifying coordinates which
refer to a location on the screen.

The origin is the upper-left hand corner of the screen.

The x coordinate gets bigger as we move to the right.

The y coordinate gets bigger as we move down.

 Diagram:

(0,0)

y

(80, 10)

(30, 70)

x

Page 41

COSC 123 - Dr. Ramon Lawrence

Drawing Methods

1) Ellipse:

 Ellipse2D.Double egg = new Ellipse2D.Double(topx, topy, width, height);

 Ellipse2D.Double egg = new Ellipse2D.Double(5, 10, 15, 20);

2) Rectangle:

Rectangle box = new Rectangle(topx, topy, width, height);

Rectangle box = new Rectangle(10, 10, 20, 30);

3) Line:

Line2D.Double = new Line2D.Double(x1,y1, x2, y2);

4) Point:

Point2D.Double = new Point2D.Double(x,y);

 You can also fill a shape with a color using the fill method:

g2.fill(box);

g2.fill(egg);

Page 42

COSC 123 - Dr. Ramon Lawrence

Drawing Methods (2)

Change colors:

g2.setColor(Color.orange);

Draw a string

g2.drawString("Hello", 50, 100); // message, x, y

Page 43

COSC 123 - Dr. Ramon Lawrence

Java Swing Components

 The Java Swing package contains the user interface
components that we will use in our graphical applications.

Component

JButton

ButtonGroup

Check box

Combo box

JFrame

JLabel

JPanel

Radio button

Text field

JMenuBar

JMenu

JMenuItem

Page 44

COSC 123 - Dr. Ramon Lawrence

Coordinates

 Question: Select from the coordinates below the pair that best
describes this point's location. Assume box is 100 by 100.

 A) (10,80)

 B) (80,10)

 C) (10,20)

 D) (20,10)

Page 45

COSC 123 - Dr. Ramon Lawrence

Events and Event Handling Overview

 An event is a notification to your program that something has
occurred.

For graphical events (mouse click, data entry), the Java window
manager notifies your program that an event occurred.

There are different kinds of events such as keyboard events, mouse
click events, mouse movement events, etc.

 An event handler or listener is part of your program that is
responsible for "listening" for event notifications and handling
them properly.

An event listener often only listens for certain types of events.

 An event source is the user interface component that
generated the event.

A button, a window, and scrollbars are all event sources.

Page 46

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example

 Handling mouse click events requires three classes:

1) The event class - that stores information about the event.

For mouse clicks, this class is MouseEvent.

The MouseEvent class has methods getX() and getY() that indicate
the position of the mouse at the time the event was generated.

2) The listener class - allows your program to detect events.
Building your own listener class requires implementing a pre-
defined interface.

For mouse clicks, the listener interface is MouseListener.

An event listener is a class that implements all methods of an event
interface.

An event adapter extends a class and only requires you implement
method for the events that you are interested in.

3) The event source - is the component in your GUI that
generated the event.

Page 47

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example Code

Page 48

COSC 123 - Dr. Ramon Lawrence

Exception Handling

 An exception is an error situation that must be handled or the
program will fail. Exception handling is how your program
deals with exceptions when they occur.

 Two ways of handling exceptions:

1) Handle them inside the method using a try-catch-
finally block.

2) Throw the exception to the method that called it and force
that method to handle it.

 Two types of exceptions:

Checked exceptions are exceptions that you must tell the
compiler how your code is handling them. (e.g. IOException)

A checked exception must be either caught or thrown.

Unchecked exceptions are exceptions that the compiler does
not force your program to handle.

Page 49

COSC 123 - Dr. Ramon Lawrence

The try-catch-finally Statement

 The try-catch-finally statement identifies a block of
statements that may throw an exception and provides code to
handle exceptions if they occur.

 Three components:

try block - has statements to execute that may cause
exceptions. Each statement is executed one at a time. If an
exception occurs, jump out of try block to a catch clause. If no
exception, go to finally clause (if it exists).

catch block – handles a particular kind of exception and has
code that performs the desired action if it occurs. Only one
catch clause is every executed and are not executed if an
exception does not occur.

finally block – code that is always executed regardless if all
statements completed successfully or an exception occurred

Page 50

COSC 123 - Dr. Ramon Lawrence

Exceptions

 Question: TRUE or FALSE: An uncaught exception may be
passed through several methods before the program crashes.

 A) TRUE

 B) FALSE

Page 51

COSC 123 - Dr. Ramon Lawrence

Exceptions

 Question: What does this code output if the user enters "32"?

 A) nothing

 B) 32

 C) Input was not a number.

 D) 32 HELLO!

try
{ Scanner sc = new Scanner(System.in);
 System.out.print("Enter a number: ");
 int num = sc.nextInt();
 System.out.print(num+" ");
}
catch (InputMismatchException e)
{ System.out.print("Input was not a number. ");
}
finally
{ System.out.print("HELLO!");
}

Page 52

COSC 123 - Dr. Ramon Lawrence

Scanner sc = null;

try

{ sc = new Scanner(new File("MyFile.txt"));

 while (sc.hasNextLine())

 { String st = sc.nextLine();

 System.out.println(st);

 }

}

catch (FileNotFoundException e)

{ System.out.println("Did not find input file: "+e); }

finally

{ if (sc != null)

 sc.close();

}

Note: The Scanner class handles some exceptions for you

and makes it easier to read numbers and other types that

are not Strings. It should be the one used.

Read Text File with Scanner

Page 53

COSC 123 - Dr. Ramon Lawrence

Streams and Exceptions
Practice Question

 1) Write a program that opens up the file "test.txt" that contains
numbers and computes a sum where every odd number is
added and every even number is subtracted.

Page 54

COSC 123 - Dr. Ramon Lawrence

Putting it all together...

 Computer programming is the art and science of solving
problems on the computer.

As you have seen, there are many different ways to approach
and solve the same problem.

Each technique may have different benefits and performance.

 Computer science is about learning how to make the correct
and most efficient decisions on how to solve problems.

Anyone can program on a computer, but computer scientists know why
they are programming a solution and what they are doing.

 The most exciting aspect of programming is the satisfaction of
building a program to solve a problem.

Whether it is a simple algorithm or a program that runs a
nuclear power plant.

You do not quite have the skills or experience to solve the large
problems, but you can solve smaller problems and appreciate the
difficulty inherent in solving the larger ones.

