
COSC 123
Computer Creativity

I/O Streams and Exceptions

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Objectives

 Explain the purpose of exceptions.

 Examine the try-catch-finally statement for handling exceptions.

 Show how to throw exceptions to other methods.

 Identify I/O streams with specific focus on reading and writing
text files and handling I/O exceptions.

Page 3

COSC 123 - Dr. Ramon Lawrence

Exception Handling

 An exception is an error situation that must be handled or the
program will fail.

Exception handling is a mechanism for communicating error
conditions between methods of your program.

 Examples:

Attempting to divide by zero

An array index that is out of bounds

A specified file that could not be found

A requested I/O operation that could not be completed normally

Attempting to follow a null reference

Attempting to execute an operation that violates some kind of
security measure

Page 4

COSC 123 - Dr. Ramon Lawrence

Uncaught Exceptions

 If a program does not handle the exception, it will terminate
abnormally and produce the message that describes the
exception that occurred and where in the code it was produced.

 Example:

The output is the call stack trace that indicates where the
exception occurred.

Page 5

COSC 123 - Dr. Ramon Lawrence

The try-catch Statement

 The try-catch statement identifies a block of statements that
may throw an exception.

 A catch clause defines how a particular kind of exception is
handled. Each catch clause is called an exception handler.

 When the try-catch statement is executed, the statements in
the try block are executed.

 If an exception is thrown at any point during the execution of
the try block, control is immediately transferred to the
appropriate catch handler.

Page 6

COSC 123 - Dr. Ramon Lawrence

try

{

 Scanner sc = new Scanner(System.in);

 System.out.print("Enter your age? ");

 int age = sc.nextInt();

 System.out.println("You are: "+age+" years old!!!");

}

catch (InputMismatchException e)

{ System.out.println("Input was not a number.");

}

Catching Exceptions Example Code

Page 7

COSC 123 - Dr. Ramon Lawrence

The finally Clause

 A try-catch statement can have an optional finally
clause which defines a section of code that is executed no
matter how the try block is exited.

 If no exception is generated, the statements in the finally
clause are executed after the try block is complete.

 If an exception is generated in the try block, control first
transfers to the appropriate catch clause, then to finally
clause.

Page 8

COSC 123 - Dr. Ramon Lawrence

try

{

 Scanner sc = new Scanner(System.in);

 System.out.println("Enter your age?");

 int age = sc.nextInt();

 System.out.println("You are: "+age+" years old!!!");

}

catch (InputMismatchException e)

{ System.out.println("Input was not a number.");

}

finally

{ System.out.println("We always go in here!");

}

Finally Example

Page 9

COSC 123 - Dr. Ramon Lawrence

Throwing Exceptions

 Your method has two ways of handling exceptions:

1) It can handle them inside the method using a try-catch-
finally block.

2) It can throw the exception to the method that called it and
force that method to handle it.

 To throw an exception you must do two things:

1) List the type of exception that is thrown in the method
header.

2) Not catch an exception (do not use try-catch block) or create
a new exception and call throw to pass it to the caller.

 When an exception is thrown, the method exits immediately
similar to a return statement.

Page 10

COSC 123 - Dr. Ramon Lawrence

public class ThrowException

{

 public static void main(String[] args)

 {

 System.out.println("This isn't smart...");

 doSomethingDumb();

 }

 public static int doSomethingDumb()

 throws ArithmeticException

 {

 int num1 = 5, num2 = 0;

 int result = num1/num2; // Divide by zero

 return result;

 }

}

Throwing Exceptions Example Code

Page 11

COSC 123 - Dr. Ramon Lawrence

Checked and Unchecked Exceptions

 Checked exceptions are exceptions that you must tell the
compiler how your code is handling them.

A checked exception must be either caught or thrown.

Checked exceptions are typically exceptions that are not your fault.

e.g. IOException (and all its subclasses)

 Unchecked exceptions are exceptions that the compiler does
not force your program to handle.

An unchecked exception is automatically passed to the caller
method if it is not handled by the method that generated the
exception.

Unchecked exceptions include NumberFormatException,
IllegalArgumentException, and NullPointException.

Exceptions that are a subclass of RuntimeException are unchecked.

Page 12

COSC 123 - Dr. Ramon Lawrence

Exceptions

 Question: TRUE or FALSE: A good programmer can always
avoid exceptions.

 A) TRUE

 B) FALSE

Page 13

COSC 123 - Dr. Ramon Lawrence

Exceptions

 Question: TRUE or FALSE: An uncaught exception may be
passed through several methods before the program crashes.

 A) TRUE

 B) FALSE

Page 14

COSC 123 - Dr. Ramon Lawrence

Exceptions

 Question: What does this code output if the user enters "32"?

 A) nothing

 B) 32

 C) Input was not a number.

 D) 32 HELLO!

try
{ Scanner sc = new Scanner(System.in);
 System.out.print("Enter a number: ");
 int num = sc.nextInt();
 System.out.print(num+" ");
}
catch (InputMismatchException e)
{ System.out.print("Input was not a number. ");
}
finally
{ System.out.print("HELLO!");
}

Page 15

COSC 123 - Dr. Ramon Lawrence

Exceptions

 Question: What does this code output if the user enters "abc"?

 A) abc

 B) Input was not a number.

 C) abc HELLO!

 D) Input was not a number. HELLO!

try
{ Scanner sc = new Scanner(System.in);
 System.out.print("Enter a number: ");
 int num = sc.nextInt();
 System.out.print(num+" ");
}
catch (InputMismatchException e)
{ System.out.print("Input was not a number. ");
}
finally
{ System.out.print("HELLO!");
}

Page 16

COSC 123 - Dr. Ramon Lawrence

Java File Input/Output

 A stream is an ordered sequence of bytes.

 A stream may be either an input stream or an output stream.

 An input stream is a stream from which information is read.

 An output stream is a stream to which information is written.

 Streams may generate exceptions such as IOException.

 The System class contains three object reference variables:

Page 17

COSC 123 - Dr. Ramon Lawrence

Reading and Writing Text Files

 A file is opened as a stream for reading or writing.

 Programmers need to know the contents of the file and how to
translate it to a usable form.

 If for some reason there is a problem finding or opening a file,
the attempt to create a File object will throw an IOException.

To put a backslash ("\") in a filename string, you must enter each
backslash TWICE as backslash is an escape character.

e.g. File in = new File("c:\\homework\\input.dat");

 Output file streams should be explicitly closed or they may not
correctly retain the data written to them.

Page 18

COSC 123 - Dr. Ramon Lawrence

Scanner sc = null;

try

{ sc = new Scanner(new File("MyFile.txt"));

 while (sc.hasNextLine())

 { String st = sc.nextLine();

 System.out.println(st);

 }

}

catch (FileNotFoundException e)

{ System.out.println("Did not find input file: "+e);

}

finally

{ if (sc != null)

 sc.close();

}

Note: The Scanner class handles some exceptions for you.

Read Text File with Scanner

Page 19

COSC 123 - Dr. Ramon Lawrence

PrintWriter out = null;

try

{

 out = new PrintWriter("output.txt");

 // Write the numbers 1 to 10 in the file

 for (int i=1; i <=10; i++)

 out.println(i);

}

catch (FileNotFoundException e)

{ System.out.println("Could not create output file: "+e);

}

finally

{ if (out != null)

 out.close();

}

Write Text File with PrintWriter

Page 20

COSC 123 - Dr. Ramon Lawrence

Streams and Exceptions
Practice Question

 1) Write a program that prompts the user for a filename then
opens the text file and counts the number of lines in the file.

Page 21

COSC 123 - Dr. Ramon Lawrence

Conclusions

 An exception is an error situation that must be handled or the
program will fail.

Exception handling is a mechanism for communicating error
conditions between methods of your program.

 There are two ways for handling exceptions:

1) Instead method using a try-catch-finally block.

2) By throwing it to the caller method.

Checked exceptions must always be handled.

 A stream is a sequential sequence of bytes which can be used
for input or output. Files are streams as is System.out.

 Reading from text files can be done using Scanner class
similar to reading from System.in.

 Writing to text files is done using the PrintWriter class.
Make sure to close all files!

Page 22

COSC 123 - Dr. Ramon Lawrence

Objectives

 Key terms:

exceptions and exception handling

 Java skills:

exception handling using try-catch-finally statement

uncaught exceptions and the call stack trace

throwing exceptions (throws in method header)

checked vs. unchecked exception

streams and the standard I/O streams in the System class

Reading from a text file using Scanner

Writing to a text file using PrintWriter

