
COSC 123
Computer Creativity

Graphics and Events

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Key Points
1) Draw shapes, text in various fonts, and colors.

2) Build window applications using JFrame/JPanel and Swing
components.

3) Understand events, event listeners, and event adapters.

4) Write code for handling mouse, keyboard, and window
events.

Page 3

COSC 123 - Dr. Ramon Lawrence

Java Programs
Overview

To this point, all our Java programs have received input and
displayed output in the console (text window).

Types of Java programs:
1) Console applications - text-based applications which

perform input and output using the console

2) Graphical applications - stand-alone Java applications
which have a graphic user interface with components such as
windows, control buttons, menus, and check boxes.

Page 4

COSC 123 - Dr. Ramon Lawrence

Graphical Applications
Overview

A graphical application is a Java program with a graphical
user interface.

A frame window is a window on the screen that has a border
and a title bar.

A frame window is defined in Java using the JFrame class that
is present in the javax.swing package.
The javax.swing package is also called the Swing toolkit.

Page 5

COSC 123 - Dr. Ramon Lawrence

Creating a Frame Windows
To create a frame window:
import javax.swing.JFrame

create our own class (like MyFrame) which extends JFrame

provide a constructor for our MyFrame class

set the size of our frame using the setSize method
usually performed in MyFrame constructor

To use the MyFrame window:
define a mainline which instantiates a MyFrame instance

use the setTitle method to set the frame title (optional)

use the setVisible method to display the frame on the
screen

Page 6

COSC 123 - Dr. Ramon Lawrence

Graphical Applications
Creating a Frame Window

import javax.swing.JFrame;
public class MyFrame extends JFrame
{ public static void main(String[] args)

{ MyFrame frame = new MyFrame();
frame.setTitle("Frame Title");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

public MyFrame()
{ final int DEFAULT_FRAME_WIDTH = 300;

final int DEFAULT_FRAME_HEIGHT = 300;
setSize(DEFAULT_FRAME_WIDTH, DEFAULT_FRAME_HEIGHT);

}
}

Page 7

COSC 123 - Dr. Ramon Lawrence

A “Hello World!” Window
The window displays Hello World!

Question: What does extends mean? Page 8

COSC 123 - Dr. Ramon Lawrence

The Coordinate System
Drawing on the screen is done by specifying coordinates which
refer to a location on the screen.
The origin is the upper-left hand corner of the screen.

The x coordinate gets bigger as we move to the right.

The y coordinate gets bigger as we move down.

Diagram:
(0,0)

y

(80, 10)

(30, 70)

x

Page 9

COSC 123 - Dr. Ramon Lawrence

drawString Method
The drawString method draws a text string on the screen.

Usage:
g.drawString(message, x, y)
x, y co-ordinates are the base point of the message

Example:
g.drawString("Hello World!", 10, 40);

(0,0)
x

y

(10, 40) Hello World!

Page 10

COSC 123 - Dr. Ramon Lawrence

Drawing
To draw shapes on the screen, we use the draw method.

The draw method takes a shape that we create and draws it on
the screen.

Example:
Rectangle box = new Rectangle(10, 10, 20, 30);

g2.draw(box);

Page 11

COSC 123 - Dr. Ramon Lawrence

Drawing Shapes
There are several methods to draw shapes:
1) Ellipse:
 Ellipse2D.Double egg = new Ellipse2D.Double(topx, topy, width, height);

 Ellipse2D.Double egg = new Ellipse2D.Double(5, 10, 15, 20);

2) Rectangle:
Rectangle box = new Rectangle(topx, topy, width, height);

Rectangle box = new Rectangle(10, 10, 20, 30);

3) Line:
Line2D.Double = new Line2D.Double(x1, y1, x2, y2);

4) Point:
Point2D.Double = new Point2D.Double(x,y);

You can also fill a shape with a color using the fill method:
g2.fill(box);

g2.fill(egg); Page 12

COSC 123 - Dr. Ramon Lawrence

Changing Colors
There are 3 basic display colors which are combined to form all
colors displayed on a computer.
Red, green, and blue are used in the RGB color model.

Any color can be defined by specifying what percentage of red,
blue, and green is in the color.

The class for colors in Java is called Color.
import java.awt.Color;

Color orange = new Color(1.0F, 0.8F, 0.0F);

Changing what color your text or shapes is drawn in:
g.setColor(orange);

There are also static colors predefined in Java:
Color.black, Color.red, Color.white, Color.orange,

etc.

Page 13

COSC 123 - Dr. Ramon Lawrence

Changing Fonts
The drawString method uses a default font if none is given.

A font consists of:
a font face name (Serif, SansSerif, Monospaced, Dialog, etc.)
a style (Font.PLAIN, Font.BOLD, Font.ITALIC, etc.)

a font size (specified in points: 1 inch = 72 points)

The font class in Java is called Font:
import java.awt.Font;

Font bigFont = new Font("Serif", Font.BOLD, 36);

Set the current font:
g.setFont(bigFont);

Then use drawString:
g.drawString("Hello World!", 50, 100);

Page 14

COSC 123 - Dr. Ramon Lawrence

Drawing Fonts

Page 15

COSC 123 - Dr. Ramon Lawrence

Car Drawing Example

Page 16

COSC 123 - Dr. Ramon Lawrence

Exercises
1) Draw three circles of different colors.

2) Draw a "better" looking car.

Page 17

COSC 123 - Dr. Ramon Lawrence

Adding Components to a Frame
Content is added to the frame on the content pane.
One common component to add is a JPanel that allows you to
draw graphics.
A container is a component that can hold other components.

There are five regions of a JFrame where you can place
components:
North, West, Center, East, South

Example:

Container contentPane = getContentPane();
MyPanel panel = new MyPanel();
contentPane.add(panel, "Center");

Page 18

COSC 123 - Dr. Ramon Lawrence

Java Swing Components
The Java Swing package contains the user interface
components that we will use in our graphical applications.
Component Import Package
JButton javax.swing.JButton

ButtonGroup javax.swing.ButtonGroup

Check box javax.swing.JCheckBox

Combo box javax.swing.JComboBox

JFrame javax.swing.JFrame

JLabel javax.swing.JLabel

JPanel javax.swing.JPanel

Radio button javax.swing.JRadioButton

Text field javax.swing.JTextField

Page 19

COSC 123 - Dr. Ramon Lawrence

GUI Example

Page 20

COSC 123 - Dr. Ramon Lawrence

GUI Example (2)

Page 21

COSC 123 - Dr. Ramon Lawrence

GUI Example (3)

Page 22

COSC 123 - Dr. Ramon Lawrence

GUI Components
JLabel

The JLabel class is used to display a label (or text) on the
screen that cannot be edited by the user.

A label can be aligned by using:
Center - SwingConstants.CENTER

Right - SwingConstants.RIGHT

Left - SwingConstants.LEFT

JLabel myLabel = new JLabel("My Label",
SwingConstants.RIGHT);

Page 23

COSC 123 - Dr. Ramon Lawrence

GUI Components
JTextField and JTextArea
JTextField allows us to read in a single line of text.
JTextArea allows us to handle multiple lines of text.

With a JTextField, you may give the # of characters:

With a JTextArea, you can give the # of rows/cols:

JTextField txtField = new JTextField(5); // 5 chars.

JTextArea txtArea = new JTextArea(5,40);//5 rows, 40 cols

Page 24

COSC 123 - Dr. Ramon Lawrence

GUI Components
JTextField and JTextArea Methods

Some useful methods for text fields:

JTextField txtField = new JTextField();

txtField.setText("Hello World!"); // Set the field text
txtField.setEditable(false); // Do not allow field edits
txtField.setFont(hugeFont); // Change the field font
txtField.getText(); // Get current field text

Page 25

COSC 123 - Dr. Ramon Lawrence

GUI Components
JRadioButton Overview

The JRadioButton class allows the user to select from
disjoint inputs (i.e. the user can select only one out of a list).

The ButtonGroup class allows the programmer to specify
which buttons are grouped with each other.

You can select buttons or determine if buttons are selected by:

JRadioButton smallButton = new JRadioButton("Small");
JRadioButton mediumButton = new JRadioButton("Medium");
JRadioButton largeButton = new JRadioButton("Large");

ButtonGroup sizeGroup = new ButtonGroup();
sizeGroup.add(smallButton);
sizeGroup.add(mediumButton);
sizeGroup.add(largeButton);

smallButton.setSelected(true);
if (smallButton.isSelected()) return "Small"; Page 26

COSC 123 - Dr. Ramon Lawrence

GUI Components
JCheckBox Overview

The JCheckBox class allows the user to select yes/no valued
inputs (i.e. true or false).

Note: Do not place check boxes inside a button group because
they are not mutually exclusive.

JCheckBox boldCheckBox = new JCheckBox("Bold");

Page 27

COSC 123 - Dr. Ramon Lawrence

GUI Components
JComboBox Overview

The JComboBox class allows the user to select from a large list
of disjoint inputs where radio buttons are too awkward.
A JComboBox allows you to select an item from the list.

If the list is editable, you can type in your own selection that
may not already be in the list.

You can get the selected item in the list by:

Note that JComboBox, JCheckBox, and JRadioButton all
generate action events that should be detected using an action
listener.

JComboBox itemCombo = new JComboBox();
itemCombo.addItem("Item 1");
itemCombo.addItem("Item 2");

String st = (String) itemCombo.getSelectedItem();

Page 28

COSC 123 - Dr. Ramon Lawrence

GUI Components
JButton Overview

The JButton class allows you to put a button on your frame.

When creating a button, it can have just text, just a picture, or a
picture and text.

leftButton = new JButton("left");
leftButton = new JButton(new ImageIcon("left.gif"));
leftButton = new JButton("left",newImageIcon("left.gif"));

Page 29

COSC 123 - Dr. Ramon Lawrence

Coordinates
Question: Select from the coordinates below the pair that best
describes this point's location. Assume box is 100 by 100.

A) (10,80)

B) (80,10)

C) (10,20)

D) (20,10)

Page 30

COSC 123 - Dr. Ramon Lawrence

Components
Question: What is the best component to use if the user can
select yes/no to multiple items independently?

A) JRadioButton

B) JComboBox

C) JCheckBox

D) JButton

Page 31

COSC 123 - Dr. Ramon Lawrence

Components
Question: What is the best component to use if the user must
pick only one item from 50 possible choices?

A) JRadioButton

B) JComboBox

C) JCheckBox

D) JButton

Page 32

COSC 123 - Dr. Ramon Lawrence

Events and Event Handling
GUI Programming Philosophy

In graphical applications, the programmer must react instead
of dictate the events that occur in a program.

As a programmer, you design a graphical user interface with
windows, buttons, and components that the user can interact
with. You do not know the order or the sequence of events the
user will generate, but you must be able to react to them.

Page 33

COSC 123 - Dr. Ramon Lawrence

Events and Event Handling Overview
An event is a notification to your program that something has
occurred.
For graphical events (mouse click, data entry), the Java window

manager notifies your program that an event occurred.
There are different kinds of events such as keyboard events, mouse

click events, mouse movement events, etc.

An event handler or listener is part of your program that is
responsible for "listening" for event notifications and handling
them properly.
An event listener often only listens for certain types of events.

An event source is the user interface component that
generated the event.
A button, a window, and scrollbars are all event sources.

Page 34

COSC 123 - Dr. Ramon Lawrence

Event Handling Overview

Event
Occurs

Event
Object Created

Program notified
of event

No event
listener Event listener

Event
Ignored/Discarded

Listener/program
processes event

Program waits for
next event

Page 35

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example
Handling mouse click events requires three classes:
1) The event class - that stores information about the event.
For mouse clicks, this class is MouseEvent.

The MouseEvent class has methods getX() and getY() that indicate
the position of the mouse at the time the event was generated.

Each event class has the method Object getSource() that returns
the source of the event.

2) The listener class - allows your program to detect events.
Building your own listener class requires implementing a pre-
defined interface.
For mouse clicks, the interface is MouseListener. MouseAdapter is

a class that implements the MouseListener interface.

3) The event source - is the component in your GUI that
generated the event.

Page 36

COSC 123 - Dr. Ramon Lawrence

MouseListener Interface
The MouseListener interface must be implemented by your
class that handles mouse events. It has the methods:

To add a listener, use the method:
addMouseListener(listener_name);

public interface MouseListener
{ void mouseClicked(MouseEvent event);

// Called when the mouse has been clicked on component
void mouseEntered(MouseEvent event);
// Called when the mouse enters a component
void mouseExited(MouseEvent event);
// Called when the mouse exits a component
void mousePressed(MouseEvent event);
// Called when a mouse button pressed on a component
void mouseReleased(MouseEvent event);
// Called when mouse button released on a component

}

Page 37

COSC 123 - Dr. Ramon Lawrence

Mouse Event Example Code

Page 38

COSC 123 - Dr. Ramon Lawrence

Event Listeners and Inner Classes
Typically, your event listener class will perform some function
based on the user input.
This function often involves accessing the private variables of

the Frame class you defined.

However, if the listener class is implemented outside of the
Frame class, it has no more access rights to the private
instance variables of that class then any other class.

The solution to this problem is to use inner classes.

An inner class is a class that is defined inside another class.
The methods of the inner class have access to the private

variables of the outer class.
The inner class is typically defined as private.

An inner class object remembers the object that created it.

Page 39

COSC 123 - Dr. Ramon Lawrence

Egg Draw Example Code

Draws an ellipse where
the user clicks.

 The mouse listener is
an inner class.

 Every time the user
clicks the mouse, the
listener repositions
the ellipse and calls
repaint to redraw.

Page 40

COSC 123 - Dr. Ramon Lawrence

WindowListener Interface
The WindowListener interface must be implemented by your
frame class to handle its events. It has the methods:

Most programs only care about the window closed event.
That is where System.exit(0) is typically placed.

There is also a WindowAdapter class that can be extended
instead of implementing all interface methods.

public interface WindowListener
{ void windowOpened(WindowEvent e);

void windowClosed(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);
void windowIconified(WindowEvent e);
void windowDeiconfied(WindowEvent e);
void windowClosing(WindowEvent e);

}

Page 41

COSC 123 - Dr. Ramon Lawrence

Frame Window Event Example
Note the use of
WindowAdapter as we only
care about the window
closing event.

Page 42

COSC 123 - Dr. Ramon Lawrence

Action Listeners
GUI components like buttons, text fields, combo boxes, and
check boxes all generate action events.

The ActionListener interface has a single method:

An action event is generated when you click on the control or
press Enter for text fields.

public interface ActionListener
{ public void actionPerformed(ActionEvent event);
}

Page 43

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example
In this example, we will create a JFrame with
a JPanel and a JTextField and ask the
user for the number of ellipses ("eggs") to
draw on the screen.

Notes:
1) The JPanel component paints itself in the
paintComponent method. This method
MUST call super.paintComponent as the
first line.
Note that this is different than the paint

method in applets.

2) When the user changes the value in the
text field, you must call repaint to get the
JPanel to repaint itself.

Page 44

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example Code

Page 45

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example Code (2)

Page 46

COSC 123 - Dr. Ramon Lawrence

Eggs.Java Example Code (3)

Page 47

COSC 123 - Dr. Ramon Lawrence

JButton and ActionListener
When a button is clicked, it sends an action event that must be
captured using an action listener.

You may either create one action listener for all buttons (which
uses the event.getSource method to determine the button
pressed) or create a separate listener for each button.

leftButton = new JButton("left");
ActionListener listener = new ButtonListener();
leftButton.addActionListener(listener);

Page 48

COSC 123 - Dr. Ramon Lawrence

public class MyFrame
{ public MyFrame()

{ ...
upButton = new JButton("Up");
ActionListener listener = new UpListener();
upButton.addActionListener(listener);
...

}
...
private JButton upButton;
...
private class UpListener implements ActionListener
{ public void actionPerformed(ActionEvent event)

{ // performs action when up button is clicked
}

}
}

One Button Action Listener

Page 49

COSC 123 - Dr. Ramon Lawrence

public class MyFrame
{ public MyFrame()

{ ...
upButton = new JButton("Up");
downButton = new JButton("Down");
leftButton = new JButton("Left");
rightButton = new JButton("Right");
ActionListener listener = new DirectionListener();
upButton.addActionListener(listener);
downButton.addActionListener(listener);
leftButton.addActionListener(listener);
rightButton.addActionListener(listener);
// create a Panel containing all buttons and add
// to content pane

}
private JButton upButton, downButton, leftButton;
private JButton rightButton;

Multiple Button Action Listener

Page 50

COSC 123 - Dr. Ramon Lawrence

...
private class DirectionListener implements

ActionListener
{ public void actionPerformed(ActionEvent event)

{ // performs action when any button is clicked
Object source = event.getSource();
if (source == upButton)
// Perform up action
else if (source == downButton)
// Perform down action
else if (source == leftButton)
// Perform left action
else if (source == rightButton)
// Perform right action

}
}

Multiple Button Action Listener (2)

Page 51

COSC 123 - Dr. Ramon Lawrence

Listeners and Adapters
Question: Which one is a true statement?

A) To handle mouse events, create a class that extends
MouseListener.

B) To handle mouse events, create a class that implements
MouseAdapter.

C) To handle mouse events, create a class that extends
MouseAdapter.

D) You must implement all event methods when your class
extends MouseAdapter.

Page 52

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Create a program that displays the string "Hello world" at the
location where the user clicks the mouse.
Notes:
When the user clicks a mouse, move the location of "Hello World!".
Use MouseAdapter and inner classes.

2) Create a program that opens up a window with "1" as the
title. Then,
If the user clicks on the window, a new window is opened with

value of "2".

If the user clicks on either open window, a new window is
opened with value of "3". This may repeat for any # of windows.

When a window is closed, all other windows stay open.

When the last window is closed, the program quits.

Page 53

COSC 123 - Dr. Ramon Lawrence

Menus Overview
Menus allow the user to select options without using buttons
and fields.
A menu is located at the top of the frame in a menu bar.

A menu is a collection of menu items and more menus.
You add menu items and submenus with the add method.

When a menu item is selected, it generates an action event.
Thus, each menu item should have a listener defined.

Page 54

COSC 123 - Dr. Ramon Lawrence

Menus Example
In this example, we will create a menu that
allows us to move a rectangle around the
window based on user selections.

Page 55

COSC 123 - Dr. Ramon Lawrence

Menus Example Code
This is the basic setup for
creating a frame.

Note the JMenuItem
instance variables, one for
each menu item.

Page 56

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (2)
Still in the constructor, this code
begins by creating a JMenuBar
and setting it as the frame's
menu bar.

Then, the file menu is created
with two items: new and exit.
Note that an ActionListener
is added for each menu item,
and it is the same listener object.

Later we will see how the
listener determines what menu
item was selected.

The next code creates the edit
menu. Note that the move menu
is a submenu of the edit menu.

Page 57

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (3)
The top of the code finishes
the edit menu by adding the
randomize menu item.

The MenuListener is the
class that is used to respond
to menu action events.

Note that the getSource
method is used to determine
the menu item selected which
is then compared with all the
menu items created.

Once the appropriate menu
item is found, the correct
method is called to perform
the menu action.

Page 58

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (4)
A standard class extending
WindowAdapter is used to
detect when the window is
closed and to terminate the
application.

RectanglePanel is the
panel where the rectangle is
drawn.

The rectangle has a fixed
size and starts off at (0,0).

The reset method is called
when the new menu item is
selected. It places the
rectangle back at (0,0) and
calls repaint to make sure
the panel is redrawn to reflect
the changes.

Page 59

COSC 123 - Dr. Ramon Lawrence

Menus Example Code (5)
The randomize method
places the rectangle at a
random location in the
window and redraws the
panel.

The moveRectangle
method moves the rectangle
an amount left/right (dx) or
up/down (dy) from its current
location.

Page 60

COSC 123 - Dr. Ramon Lawrence

Exercise
Create an application that has a File menu and an edit menu.
The file menu should have an exit item that closes the

application.

The edit menu should have two subitems:
shape – has submenu of rectangle, square, and circle

color – has submenu of red, green, blue, yellow

When the use selects a shape and color, remember the shape
and color. Default is rectangle and red.

When the user clicks on a place on the screen, draw that shape
in that color.

Page 61

COSC 123 - Dr. Ramon Lawrence

Timer
A timer can be used to create events at set times. A timer
generates ActionEvents.

Creating a timer:

Starting and stopping a timer:

Timer timer = new Timer(1000, listener);
// The timer fires every 1000 ms (1 second).
// The listener class is called every time.

timer.start();
timer.stop();

Page 62

COSC 123 - Dr. Ramon Lawrence

Timer Example Code
This draws a
random picture
every 4 seconds.

This is the
listener for the
timer which just
calls repaint.

Note the creation
and starting of the
timer.

Page 63

COSC 123 - Dr. Ramon Lawrence

Keyboard Events
A keyboard event occurs when a keyboard key is pressed.

Key events allow a program to respond immediately as the
user presses keys.

A listener responds when any key is pressed, then decides
what to do based on the specific key pressed.

Keyboard events:
public void keyPressed(KeyEvent evt);
public void keyReleased(KeyEvent evt);
public void keyTyped(KeyEvent evt);

Page 64

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code

This allows the user
to move a square
and change its color
by pressing keys.

Note that the panel
is setup to listen for
keyboard, mouse,
and focus events.

Page 65

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (2)

The constructor
for the panel
adds listeners
for the events.

The
paintComponent
method draws
the panel. It
also draws the
rectangle.

Page 66

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (3)

If the panel
gains or loses
focus, repaint is
called to update
the graphics on
the panel.

Page 67

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (4)

The keyTyped
method detects
when a user
types a key and
changes the
color of the
square
accordingly.

Page 68

COSC 123 - Dr. Ramon Lawrence

Keyboard Example Code (5)
The

keyPressed
method detects
when a key is
pressed and
moves the
square.

Page 69

COSC 123 - Dr. Ramon Lawrence

Graphical User Interfaces
Conclusion

Buttons, text fields, check boxes, combo boxes, and menus are
all components in the Java Swing package that can be used to
developed a GUI for your application.

Components generate events (usually action events) to indicate
when they have been clicked on or accessed by the user.
We handle the events using listeners and adapters.

The important thing about Swing is not memorizing the
components and their methods, but understanding how the
components work and generate events.
Focus on event handling and the concept of using components,

not on the definition of the components!

Page 70

COSC 123 - Dr. Ramon Lawrence

Objectives
Definitions: event, event handler/listener, event source

Java skills:
Create applets and place on web pages.

Use the Java coordinate system.

Draw basic shapes, change colors and fonts.
Window applications using JFrame and JPanel.

Java Swing components: JButton, JCheckBox, JComboBox,
JLabel, JPanel, JRadioButton, JTextField, JTextArea

Event listeners versus event adapters
Mouse events: MouseListener, MouseAdapter

Window events: WindowListener, WindowAdapter

ActionListener and use with JButton

Page 71

COSC 123 - Dr. Ramon Lawrence

Objectives (2)
Java skills (cont.):
Using inner classes.
Menus: JMenu, JMenuItem, JMenuBar

Timer and timer events

Keyboard events: KeyListener

