
COSC 123
Computer Creativity

Java Lists and Arrays

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 123 - Dr. Ramon Lawrence

Objectives
1) Create and use arrays of base types and objects.

2) Create and use ArrayList.

3) Understand the role of generic types to catch and prevent
errors.

Page 3

COSC 123 - Dr. Ramon Lawrence

Arrays Overview
Suppose you need many variables in your program.

You could either create a separate name for each variable:
double d1, d2, d3, d4, d5;

Or you could create an array that has multiple spots (indexes):
double[] myArray = new double[5];

myArray[0] = 5;

myArray[4] = 3;

0 1 2 3 4

5 3

d1 d2 d3 d4 d5

Indexes
A spot

(location) Page 4

COSC 123 - Dr. Ramon Lawrence

Arrays
An array is a collection of data items of the same type.

An array reference is denoted using the open and close square
brackets “[]” during declaration.

You can have an array of any data type including the base types (int,
double, String) and object-types (BankAccount).

Examples:

Similar to an object, when you declare an array you are
creating a reference to an array. Until you actually create the
space for the array using new, no array exists in memory.
String[] strings = new String[10];

int[] myArray;
String[] strings;
BankAccount[] accounts;

Page 5

COSC 123 - Dr. Ramon Lawrence

Array Indexing
When creating an array using new, the number in square
brackets is the number of elements in the array:
double[] values = new double[20]; // 20 items

Note the first element of the array has index 0 instead of 1.
In the previous example, the first index is 0 and the last is 19.

When an array is created, its values are initialized to defaults:
 0 for numbers, false for boolean, null for object references

To access or set a value in an array, use its subscript:
values[0] = 10; // Sets first element to 10

values[19] = values[0]; // Sets last element same as 1st
Page 6

COSC 123 - Dr. Ramon Lawrence

Array Details
Java performs automatic bound checking whenever an array
element is referenced.
If the index is in the valid range, the reference is carried out.

If the index is not valid, an exception,
ArrayIndexOutOfBoundsException, is thrown.

To get the length of an array in your program:
int[] numbers = new int[25];

int size = numbers.length; // Returns 25

You can initialize an array with values when you first declare it:
int[] primes = {2, 3, 5, 7, 11};

 new is not used with an initializer list. Initializers can only be used during declaration.

Page 7

COSC 123 - Dr. Ramon Lawrence

array reference
0
1
2
3
4

Arrays in Memory Diagram
Base Types

An array of base types stores the values in the slots in the
array. Example:

numbers

int[] numbers = new int[5];
numbers[0] = 10;
numbers[1] = 40;
numbers[2] = numbers[0]+10;

10
40
20
0
0

the array

array indices

Page 8

COSC 123 - Dr. Ramon Lawrence

array reference
0
1
2
3
4

Arrays of Objects
An object array is an array of object references. Example:

names

String[] names = new String[5];
names[0] = "Joe";
names[1] = "Steve";
names[4] = "Fred";

null
null

Joe

Steve

Fred

When allocating an object array, Java does not also allocate space for each
object in the array. Each object reference is initialized to null.

You must create a new object for each object reference.

Page 9

COSC 123 - Dr. Ramon Lawrence

Arrays as Parameters and References
An array can be passed as a parameter to a method and
returned from a method.
The values of the array can be changed but not the array

reference itself. This is similar to how objects work.

Since an array is just a reference, it is possible to change which
array a reference points to using assignment:
int[] array1 = new int[10];

int[] array2 = new int[20];

array2 = array1; // array2 now references array1

Page 10

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Create an int array with name myArray with 20 elements.

2) Set the value of the 1st element to 10.

3) Set the value of the last element to 1.

4) Create an array that has 10 elements. Put the numbers from
1 to 10 in the array.

5) How do you know how many elements are in an array?

Page 11

COSC 123 - Dr. Ramon Lawrence

Arrays
Question: What is the size of this array?

A) error

B) 10

C) 9

D) 11

int[] myArray = new int[10];

Page 12

COSC 123 - Dr. Ramon Lawrence

Arrays
Question: What are the contents of this array?

A) error

B) 0, 1, 2, 3

C) 1, 2, 3, 4
D) 4, 3, 2, 1

int[] myArray = new int[4];

myArray[3] = 1;
myArray[2] = 2;
myArray[1] = 3;
myArray[0] = 4;

Page 13

COSC 123 - Dr. Ramon Lawrence

Java Collections
A collection is an object that serves as a repository for other
objects. A collection provides methods to add, remove, and
manage the elements it contains.

The underlying data structure used to implement the collection
is independent of the operations the collection provides.

Java Collections API classes defines collection interfaces such
as Set, List, SortedSet, Queue, and BlockingQueue.

List collection has two linear data structure implementations:
ArrayList - resizable-array implementation of the List interface.

LinkedList - linked list implementation of the List interface.

Page 14

COSC 123 - Dr. Ramon Lawrence

ArrayLists
An ArrayList implements a resizable array of objects.

Base types such as int are not objects. Use wrapper class Integer.

Create an ArrayList by:

Add element to an ArrayList by:

Remove element from an ArrayList by:

ArrayList names = new ArrayList(); // Size 10 (default)
ArrayList accounts = new ArrayList(5); // Size of 5

names.add("Joe"); // Add to end of list
names.add(2,"Steve"); // Add at index 2 and shift up

names.remove(2); // Remove index 2 and shift down

Page 15

COSC 123 - Dr. Ramon Lawrence

ArrayLists (2)
Get number of items in list by:

Get element at an index from an ArrayList by:

Set element at an index in an ArrayList by:

int count = names.size();

String n = names.get(2); // Get item at index 2

names.set(2,"Fred"); // Put Fred at index 2

Page 16

COSC 123 - Dr. Ramon Lawrence

Traversing an ArrayList
A simple way to traverse an ArrayList is using a for loop:

for (int i=0; i < names.size(); i++)
{ String s = (String) names.get(i);

System.out.println(s);
}

Page 17

COSC 123 - Dr. Ramon Lawrence

Traversing an ArrayList
Iterators

All collections also have iterators which are special classes
designed to allow you to traverse through the collection.

Using an iterator with an ArrayList:

Iterator it = names.iterator();
while (it.hasNext())
{ String s = (String) it.next();

System.out.println(s);
}

Page 18

COSC 123 - Dr. Ramon Lawrence

Generic Types
Collections store any type of object as all objects are a subclass
of Object. It is better to precisely specify what objects are in a
collection so that the compiler can check for errors.

All collections support generic (or parameterized) types to
indicate what type is stored in the collection.

Examples:

// ArrayList can ONLY store strings

ArrayList<String> myNames = new ArrayList<String>(5);

// This ArrayList can only store BankAccount objects
ArrayList<BankAccount> accounts

= new ArrayList<BankAccount>();

Page 19

COSC 123 - Dr. Ramon Lawrence

ArrayList Example
import java.util.ArrayList;

public class TestArrayList
{ public static void main(String[] args)

{ ArrayList a = new ArrayList();
BankAccount b1, b = new BankAccount(100);
SavingsAccount s1, s = new SavingsAccount(5,50);

a.add(b); // Add bank account b to list
a.add(0,s); // Add s to front of list
b1 = (BankAccount) a.get(1);
s1 = (SavingsAccount) a.get(0);
System.out.println(b1.getBalance());
System.out.println(s1.getBalance());

a.remove(0); // Remove s from list
System.out.println(a.size()); // Prints 1

}
} Page 20

COSC 123 - Dr. Ramon Lawrence

ArrayList
Question: What is the value of st?

A) Fred

B) Joe

C) Steve
D) error

ArrayList a = new ArrayList();
a.add("Fred");
a.add(0,"Joe");
a.add("Steve");
a.remove(1);
String st = (String) a.get(1);

Page 21

COSC 123 - Dr. Ramon Lawrence

Practice Questions
1) Write a method reverse that returns a new array that
contains the reverse sequence of numbers.
Example:
1 4 9 19 9 7 4 9 11 becomes 11 9 4 7 9 19 9 4 1

2) Write a method that reads in strings using Scanner and
stores them in an ArrayList until "STOP" is entered. Print
out the list after you finish reading.

Page 22

COSC 123 - Dr. Ramon Lawrence

Conclusion
Arrays are a data structure for storing multiple items using the
same name.
An array has a fixed size and is indexed from 0 to size-1.

An array can store both base types or object references.

A collection is an object that stores other objects and provides
methods for adding, removing, and retrieving objects.
An ArrayList is a linear collection.
ArrayList has methods for adding, removing, getting, and

setting values.
ArrayList can be traversed using a loop or an iterator.

A generic type ensures the collection only stores the proper
objects.

Page 23

COSC 123 - Dr. Ramon Lawrence

Objectives
Java skills:
Creating an array

Array indexing and bounds checking

Arrays of base types and objects

Arrays as parameters
Copying arrays and System.arraycopy

Two-dimensional arrays
ArrayList – create, add, remove, get, set, traversing

Iterators

