
TEFS: A Flash File System for Use on
Memory Constrained Devices

by

Wade Harvey Penson

B.SC. COMPUTER SCIENCE HONOURS THESIS

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

April 2016

c© Wade Harvey Penson, 2016

Abstract

A file system is used to manage data on storage media. The FAT (File
Allocation Table) file system was originally designed for floppy drives that
were less than 500KB in size, and these drives were not capable of fast ran-
dom reads and writes. FAT has been adapted to work on other types of
storage devices since, and it is still widely used today. It is the standard
file system used by microprocessors and embedded devices with constrained
resources. Micro-controllers, like the Arduino, only officially support the
FAT file system when interacting with a SD card. FAT performs well when
data is read or written sequentially, but when data is read or written ran-
domly, there is an impact on performance for large files on page based flash
devices that cannot utilize caching strategies. Applications that perform
random reading and writing are impacted by this architectural issue. For
example, flash data structures, like a B-Tree, will have poor performance
since random reading is utilized to look up values. TEFS (Tiny Embedded
File System) uses a tree indexing structure to take advantage of the fast
random reads and writes of flash storage and guarantees that the number
of page reads and writes will stay constant as the file size increases when
randomly reading or writing. Experimental results show that TEFS has
significantly better performance than FAT on the Arduino for random I/Os,
and the more efficient TEFS page interface is even slightly faster than FAT
for sequential reading and writing.

ii

Preface

During the time working on my honours research, my conference paper
on TEFS, which is a succinct version of this paper, has been accepted by
CCECE 2016.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Acknowledgements . viii

Chapter 1: Introduction . 1

Chapter 2: Background . 3

Chapter 3: Structure and Operation of TEFS 6
3.1 Information Page . 7
3.2 State Section . 8
3.3 Directory Structure . 8

3.3.1 Hash Algorithm . 9
3.4 Formatting Operation . 9
3.5 Open, Close, and Remove Operations 10
3.6 Read and Write Operations 11
3.7 File Allocation Table Versus TEFS Index Structure 12
3.8 TEFS C File Interface . 13

Chapter 4: Experimental Results 15
4.1 Number of Page Reads and Writes 15

4.1.1 Time Benchmarks . 19
4.2 Library Sizes . 19

iv

TABLE OF CONTENTS

Chapter 5: Analysis of Trade-offs 22

Chapter 6: Conclusion . 24
6.1 Future Improvements . 24
6.2 Summary . 24

Bibliography . 26

v

List of Tables

Table 4.1 Sequentially Write 1000 Pages: 1 to 511 Byte Records
on the Left and 512 Byte Records on the Right 16

Table 4.2 Sequentially Read 1000 Pages 16
Table 4.3 Randomly Read 1000 Bytes From 10MB File With

Staggered Cluster Chain 16
Table 4.4 Create Files . 18
Table 4.5 Open the Last File When There Are N Files 18
Table 4.6 Remove Files . 18
Table 4.7 Sequentially Read 1000 Pages of Data With a Record

Size of 1 Byte . 19
Table 4.8 Time in Milliseconds to Create Files 20
Table 4.9 Time in Milliseconds to Open the Last File When

There Are N Files . 20
Table 4.10 Time in Milliseconds to Delete Files 20
Table 4.11 Library Sizes in Bytes 21

vi

List of Figures

Figure 2.1 Representation of a 500MB File by the FAT32 File
System . 4

Figure 3.1 Representation of a 500MB File by TEFS 6

Figure 4.1 Read or Write 1000 Bytes at Random Locations . . . 17
Figure 4.2 Sequentially Write 1000 Pages With Varying Record

Sizes . 20
Figure 4.3 Read 1000 Bytes at Random Locations 21

vii

Acknowledgements

I would like to thank Ramon Lawrence, my supervisor, for his guidance
and for all of his effort of helping me throughout this project. I would also
like to thank Scott Fazackerley, a PhD student, for helping me with the
initial design of TEFS and for giving me helpful advice throughout. Finally,
I would like to thank NSERC for supporting my research on this project
during the summer of 2015.

viii

Chapter 1

Introduction

Embedded devices typically utilize flash based storage for persistent
data [Mic06]. File systems are used on storage to organize the data such that
the files have associated metadata and are indexed by a name. Devices, like
micro-controllers, that have constrained program storage and constrained
RAM need this file system to utilize the least amount of resources as possi-
ble.

NAND flash devices such as SD, MMC, USB flash drive, and Compact-
Flash have a page-emulation layer (a page is the smallest physical unit of
addressable memory). The next layer above that is a Flash Translation Layer
(FTL) that provides an interface which allows logical pages to be read from
and written to, hides bad erase units, and performs wear-leveling [ZBT09].
These flash storage devices are also known as Memory Technology Devices
(MTD), and in this paper, only this type of storage device will be con-
sidered [Mul14]. File systems such as Ext2 [CTT15] and FAT [Mic00] are
designed to work on these devices. NAND flash devices that do not have
a FTL and have their erase clusters exposed utilize file systems such as
JFFS [Woo01], YAFFS [LP06], NANDFS [ZBT09], and Coffee [TDHV09].
However, these log-structured file systems are too resource intensive, and
the code and structure is too complex for use on memory constrained em-
bedded devices [DNH04]. Coffee is an exception to this, but it assumes that
files are fixed in size. Coffee allows for files to expand beyond the fixed size,
but the whole file must be copied to a different location [TDHV09].

This work presents TEFS, a Tiny Embedded File System, that offers
better performance, a smaller code footprint, and less RAM utilization com-
pared to the industry standard file systems that exist for micro-controllers
with constrained resources. The standard file system used for these devices
is typically FAT [Tec13][MRR14] or a derivative of FAT. TEFS provides
faster random reads and writes compared to the FAT file system for large
files on memory constrained devices.

There is another file system that is in current development for embedded
devices, which is not a derivative of FAT. The file system is called lwext4
and is a port of Ext [Kos16]. There are benefits to this file system compared

1

Chapter 1. Introduction

to TEFS such as caching, journalling and transactions, metadata checksum,
and limited compatibility with existing Ext implementations on Linux and
other environments. This file system will not work the devices that TEFS
is targeting. It requires 8KB of SRAM at minimum and is intended for use
on devices such as the ARM Cortex-M series [Kos16].

TEFS offers two APIs. The first is a page interface, and the second is
a C file interface. The page interface has better performance since it does
not need to map the specified byte location in the file to the corresponding
logical page and byte within that logical page on the device. The C file
interface is convenient for applications that are already adapted to use this
interface as the C file interface is included in a standard library within the
C language.

The paper organization is as follows. In Chapter 2, different types of
flash memory and the FAT file system are introduced. Chapter 3 covers the
design of TEFS, its functionality, and the properties that distinguish it from
FAT. Chapter 4 presents experimental results, and Chapter 5 is a discussion
of the trade-offs of TEFS and FAT. The paper closes with future work and
conclusions in Chapter 6.

2

Chapter 2

Background

Without a file system on the flash device, data is written to addressable
logical or physical pages on the device. For specific applications, this may
be all that is needed. It is the fastest way to read and write data as it does
not have the overhead of the data structures to manage files. This may be
sufficient for fixed size records. Otherwise, in most cases, a file system is
needed.

There are various structures for different parts of a file system. There
needs to be a way to store metadata about a file, and in UNIX termi-
nology this is typically done with a structure called an inode or index
node [ADAD15]. Another part is the directory, and it has entries of file
names and inode address pairs in a structure for lookup. The simplest in-
odes have direct pointers where each pointer points to a data cluster (a
cluster is a sequence of a fixed number of pages). However, this limits the
max file size significantly so a structure like indirect pointers or linked list
is used instead to allow for larger files. FAT takes the linked list approach
whereas TEFS uses indirect pointers.

FAT12, the initial FAT file system, was designed for floppy drives that
were less than 500KB in size [Mic00]. It was later extended by FAT16 and
FAT32 to support larger storage devices. The FAT file system is made up
of a boot record, the File Allocation Table (FAT), the root directory, and
data clusters. The boot record contains information that pertains to the file
system, the storage device, and the partitions. The root directory is a fixed
size for FAT12 and FAT16, but for FAT32 it allows for chained clusters. A
directory entry for a file in FAT stores the metadata for the file and has a
pointer to the first address for the file’s cluster chain in the File Allocation
Table. The File Allocation Table is a single array of addresses shared by all
files, and the size of an address is 12, 16, or 32 bits depending on the version
of FAT file system. The FAT is fixed in size and depends on the size of
the device. Each address in the FAT points to another address in the FAT
to form a linked list (or cluster chain). The location of where the address
is in the FAT determines the location of the corresponding data cluster on
disk. The last address in the cluster chain for a file is set to a large value

3

Chapter 2. Background

to indicate that it is the last data cluster in the file. If an address is 0, the
data cluster is free and can be reserved by a file.

Figure 2.1 shows a file represented by the FAT file system. Ellipses
indicates that there is a series of pointers, clusters, or reserved space on disk
and arrows are pointers to clusters on disk or a pointer to a location in the
FAT. The directory entry for the 500MB file points to the first address in
the chain. The first address points to the second address in the chain and
so on until the last address of the cluster chain. The position of an address
in the chain correlates to the position of the data cluster. For example, the
first address in the cluster chain for the 500MB just happens to be the first
address in the FAT so it correlates to the first data cluster. Since the FAT
is shared by all of the files, the addresses for a file’s cluster chain in the FAT
may not be adjacent to one another depending on the write pattern of data
for the files. This may require more page reads in the FAT to reach the
target data cluster in a file.

Figure 2.1: Representation of a 500MB File by the FAT32 File System

The directory structure of Ext3 and Ext4 uses a H-Tree which is a tree
structure that uses the hash of a file name as keys [Phi01]. The tree structure
makes the lookup of files quite fast. Other file systems such as UFS use a B-
Tree or a variation of a B-Tree for the directory structure [Phi01]. The issue
with using a data structure like these is that they are complex structures that
consume a significant amount of code space [Phi01]. An improved version
of the linear search, as seen in FAT, is used for the directory of TEFS to
minimize the code size.

NAND flash devices are page addressable and not byte addressable [FL11].
This requires that a complete page be read or written even if only a single
byte is to be read from or written to that page. The implication of this is

4

Chapter 2. Background

that if data in an existing page is to be modified, the complete page must
be read into memory followed by the complete page being written back to
the device. There are NOR flash devices that are capable of byte reads and
writes [FL11], which may be utilized to reduce page buffering in memory.
This allows for faster reading and writing and smaller RAM utilization.

Computers typically have a significant amount of Random Access Mem-
ory (RAM). Depending on the amount of RAM, file cluster chains, directory
entries, or the whole FAT and directory could be cached [Mic00]. However,
a subset of embedded devices and micro-controllers have a limited amount
of RAM [FL11] and are not capable of caching the complete index for a file
in memory. TEFS was designed to perform well on these devices.

5

Chapter 3

Structure and Operation of
TEFS

TEFS provides an interface for opening, closing, and removing a file;
reading and writing records to and from pages; and formatting the storage
device. The layout of TEFS consists of three essential parts. The first part
of the file system is the information section. It is located at logical page
0 and contains information about the storage device and other information
provided by the user when formatting. The second section is the cluster state
section. It is a bit vector where each bit indicates the status of a cluster on
the storage device. The last part of the file system contains the tree index
structure for each file. Each file consists of a single root index cluster, child
index clusters, and data clusters. Figure 3.1 demonstrates this. For smaller
files, the root contains a sequence of addresses that point directly to data
clusters. Larger files have a root index cluster that points to child index
clusters and the child index clusters point to data clusters. The directory
structure is contained within two files. The first file contains hashes for file
names and the second contains the metadata pertaining to each file.

Figure 3.1: Representation of a 500MB File by TEFS

6

3.1. Information Page

3.1 Information Page

This page is created on format and its contents are static with the ex-
ception of the sizes for the files used for the directory structure. It contains
the values needed for the operation of the file system. Here are all of the
fields with a description of each:

Byte 0 to 3: Check flag

This flag 0xFCFCFCFC is used to verify that the storage device
has been formatted.

Byte 4 to 7: Number of pages2

The number of pages that the storage device has.

Byte 8: Physical page size1,2,3

The size of a page in bytes.

Byte 9: Cluster size1,2,3

The size of a cluster in terms of pages (not bytes).

Byte 10: Address size1

The size of an address in bytes. The address is the physical
location of a page on the storage device. It is either 2 or 4 bytes.

Byte 11: Hash value size2,3

The size of a hash in bytes. The size can be either 2 or 4 bytes.

Byte 12 to 13: Metadata entry size2,3

The size of each metadata entry associated with a file. This
includes the size of the file name.

Byte 14 to 15: Max file name size2

This is the max size of a file name for each file and it is fixed. It
must be less than (metadata entry size - 10) bytes.

Byte 16 to 19: State section size

The number of pages that the state section is comprised of.

7

3.2. State Section

Byte 20 to 29: File information for the hash entries file

Bytes 20 to 25 is the size of the file and bytes 26 to 29 is the
address of the root index cluster.

Byte 30 to 39: File information for the metadata file

Bytes 30 to 35 is the size of the file and bytes 36 to 39 is the
address of the root index cluster.

3.2 State Section

A bit in the state section indicate the status of a cluster. A bit with
the value of 1 indicates that a cluster is free and a bit with the value of
0 indicates that a cluster is in use. The location of a bit correlates to the
location of a cluster on the storage device. The first free bit is always the
next cluster to be allocated. The size of this bit vector is determined by the
number of clusters that the storage device has.

3.3 Directory Structure

The directory manages the metadata for files along with the structure for
looking up files. TEFS only supports a single directory - the root directory.
The first file that is part of the directory structure contains hashes of the file
names. The second file that makes of the directory is the file that contains
the metadata for files. The location of a hash in the hash file corresponds
to the location of the metadata entry in the metadata file. For example, if
it is the 9th hash in the array of hashes in the hash file, that corresponds
the the 9th metadata entry in the metadata file. A metadata entry for a file
contains the following fields:

Byte 0: Status flag

The status indicates if the file exists or has been deleted.

Byte 1 to 4: File size - end of file page

1The value is stored as the exponent where the base is 2. For example, if the value is
8 (23), the value 3 is stored.

2This is a value that is specified by the user during formatting.
3The value must be a power of two.

8

3.4. Formatting Operation

The last page in the file.

Byte 5 to 6: File size - byte in end of file page

To have the file size in bytes instead of just pages, the byte within
the last page of the file is also stored.

Byte 7 to 10: Root index cluster address

The is the pointer to the root index cluster of the file.

Byte 11 to N: File name and user metadata

Contains the name of the file padded until the max file size is
reached. The remaining is optional user metadata.

3.3.1 Hash Algorithm

The algorithm used for hashing is the DJB2a hashing algorithm [Las16].
The distribution of the hashes are poor compared to a hashing algorithm
such as Murmur2 or Murmur3 but collisions are rare [Boy12]. Since ran-
domness is irrelevant to the purpose of the hashes in the directory structure,
DJB2a was chosen because the code size is much smaller than most hash
functions and it is fast [Boy12]. A hash can be either 2 or 4 bytes. The
DJB2a algorithm is designed to return a 4 byte hash so a modification had
to be implemented to be able to return a 2 byte hash; the remainder of the
4 byte hash is divided by a large prime number just less than 216.

3.4 Formatting Operation

The format function is currently only available on device. The function
required the user to specify the fields as shown in Section 3.1.

Any device less than 2TB (assuming that the page size is 512 bytes or
greater) is compatible with TEFS since a 4 byte integer stores the page
addresses (232-1 pages are allowed). On format, depending on the number
of pages that the device has, the size of an address is set to either 2 or 4
bytes automatically. That is, if the storage device has less than 216 pages,
the size of an address is 2 bytes, otherwise the size of an address is 4 bytes.

The size of a hash can be set to either 2 or 4 bytes. A hash size of two
bytes is beneficial if only a small number of files will be created. This speeds
up the lookup for files in the directory since less page reads are needed.

9

3.5. Open, Close, and Remove Operations

The user also specifies the metadata entry size for files as well as the
max size of the file names that will be stored in the metadata. The remain-
ing space in the metadata entry can be used by the user to store custom
metadata such as timestamps.

The remaining fields are the cluster size and page size. They are specified
just like with FAT.

It is important to note that most fields must be a power of two since the
file system was optimized around the values being a power of two.

The format function stores these user defined values in the information
page. Based on the size of the device, page size, and cluster size, the size
of the state section is determined and created. Lastly, the two files for the
directory structure are created.

3.5 Open, Close, and Remove Operations

When opening or removing a file, the file name passed into the open
function is hashed. The hash entries file is scanned linearly for the same
hash. If the hash is found, the file name in the metadata entry that corre-
sponds to the position of the hash is checked against the file name passed
into the open function. The file is found if the file names match and then
the file is opened or removed. If the hashes matched and the file names did
not match, the rest of the hashes are scanned and this goes on until the file
is found or the end of the hash entries file is reached.

For creating a file, it is similar to opening a file. The user passes in the
file name to the open function and the open function will create the file if
the file is not found. If the user does not wish to create a file on open,
they can check if the file exists using the exists function which checks the
directory for the file. When creating the file, the first deleted hash entry is
kept in memory if found during scanning the hashes and if it is a new file
being created (no other files exist with the same name), the hash for the
new file will be inserted into that spot and the corresponding metadata in
the metadata file is created. Otherwise, the hash is appended to the the end
of the hash entries file and the corresponding metadata is appended to the
end of the metadata file.

When creating a file, there are a few things that have to be done. The
status in the metadata entry is set to in-use, the end of file page is set to
0, the byte in the end of file page is set to 0, the root index cluster address
is written to the entry, and the file name and metadata is also written to
the entry. Before the root index cluster address is written, the root index

10

3.6. Read and Write Operations

cluster has to be reserved in the state section. After it is reserved, the first
data cluster is reserved and the address of the data cluster is written to the
first byte in the root index cluster.

If the file already exists and is opened, the end of file page and the end of
file byte within that page is loaded into memory along with the root index
cluster address. If the file has child index clusters, the address of the first
child index cluster address is read from the root index cluster into memory.
Finally, the first data cluster address is read into memory from the root
index cluster or the first child index cluster if the child index cluster exists.

When removing a file, the file is first found in the directory otherwise an
error is returned. The hash entry is marked as deleted and the status in the
metadata entry is also marked as deleted. Next, all of the index and data
clusters in the file have to be released. This can be a long process for large
files.

3.6 Read and Write Operations

On creation, a file only requires a root index cluster. As data is appended
to the file, new data clusters are reserved and their addresses are added to
the root index cluster. When the root index cluster is filled up, it becomes
the first child index cluster and a new root index is reserved. When a new
child index clusters is needed, a new cluster is reserved and its address is
added to the root index cluster. The clusters do not need to be pre-erased
when being reserved because the end of the file is kept track of so garbage
data is overwritten.

When reading or writing to a file, the data cluster address is found in
either the root index cluster or a child index cluster. In either case, the
correct location for reading or writing is calculated directly based on the
file offset location. TEFS will also detect if the page being read or written
is the same as the previous read/write request to prevent unnecessary page
reads. Page data is inserted into a page buffer in memory and is not flushed
until a different page is read, the file is closed, or a flush forced.

The file size is written to the device when a flush or close occurs. It is
optional to write the file size out after a new page is being written out in
the file or any new data has been appended to the file. The size of a file
is tracked in the file’s directory entry by keeping track of the last page and
last byte within the page. The max file size is limited by

c3

a2
(3.1)

11

3.7. File Allocation Table Versus TEFS Index Structure

bytes where c is the cluster size in bytes and a is the address size in bytes.
Using equation 3.1, a device that has a page size of 512 bytes, 4 byte ad-
dresses, and a cluster size of 32KiB has a max file size of 2TiB.

3.7 File Allocation Table Versus TEFS Index
Structure

For random reads and writes, the FAT file system requires traversing a
linked list of data cluster addresses to find the cluster for a specified location
in a file. In the case where the addresses of a cluster chain are in sequential
order, the number of page reads is⌈

n

(pa)c

⌉
(3.2)

where n is the location, in bytes, to read or write to in a file, and p is
the page size in bytes. The worst case is when there are multiple files and
fragmentation occurs in a way that causes each cluster address for a file to
be on a different page in the FAT. In this case, the number of page reads is⌈n

c

⌉
(3.3)

when the FAT is not cached in memory.
Suppose there is a 10MB file stored on a device with the FAT file system,

the device does not cache the FAT, the size of a cluster is 32768 bytes, the
size of a page is 512 bytes, the address size is 4 bytes, and the file location
pointer is at the beginning of the file. If the last byte is to be read from the
file, the best case is 3 page reads and the worst case is 306 page reads.

TEFS will always guarantee at most 2 index page reads for a read or
a write to any location in a file because a page in the root index may be
read and then a page in the child index may be read (if there are any child
indexes) before finding the data cluster. In Figure 2.1, the cluster chain
requires at least 120 page reads to traverse to the end of the file, but in
Figure 3.1 only 2 page reads are needed. The number of page reads for FAT
will increase as a file grows in size.

TEFS has been adapted to work on NOR Serial Dataflash [Ade15] that
can read bytes directly. This allows for faster traversing of the indexes for
both FAT and TEFS. The number of byte reads required for FAT will be⌈n

c
a
⌉

(3.4)

12

3.8. TEFS C File Interface

to find the address for the data cluster. As for TEFS, it will be at most 2a
byte reads.

3.8 TEFS C File Interface

The C file interface makes it easy for existing applications to work with
TEFS. Also, the user does not have to be concerned with page boundaries
as the interface takes care of it. As a note, only a subset of the C interface
is implemented. There are functions such as getc or ferror that are not
implemented. All of the functions are prefixed with a “t ” to avoid conflicts
with the functions defined in stdio.h. Here are the implemented functions
with the corresponding C function definition below each:

int8_t t_fclose(T_FILE *fp);
int fclose(FILE *fp);

int8_t t_feof(T_FILE *fp);
int feof(FILE *fp);

int8_t t_fflush(T_FILE *fp);
int fflush(FILE *fp);

int8_t t_fgetpos(T_FILE *fp, fpos_t *pos);
int fgetpos FILE *fp, fpos_t *pos);

T_FILE *t_fopen(char *file_name, char *mode);
FILE *fopen(const char *file_name, const char *mode);

size_t t_fread(void *ptr, size_t size, size_t count, T_FILE *fp);
size_t fread(void *ptr, size_t size, size_t count, FILE *fp);

int8_t t_fseek(T_FILE *fp, uint32_t offset, int8_t whence);
int fseek(FILE *fp, long int offset, int whence);

int8_t t_fsetpos(T_FILE *fp, fpos_t *pos);
int fsetpos(FILE *fp, const fpos_t *pos);

uint32_t t_ftell(T_FILE *fp);
long int ftell(FILE *fp);

size_t t_fwrite(void *ptr, size_t size, size_t count, T_FILE *fp);
size_t fwrite(const void *ptr, size_t size, size_t count, FILE *fp

);

int8_t t_remove(char *file_name);
int remove(const char *file_name);

13

3.8. TEFS C File Interface

void t_rewind(T_FILE *fp);
void rewind(FILE *fp);

14

Chapter 4

Experimental Results

Experiments were done on an Arduino Uno [Ard16] with a 16GB UHS I
Sandisk Micro SD card. The Arduino Uno is an 8-bit micro-controller with
2KB of RAM and 32KB of code space. The comparison was done between
the TEFS page interface, the TEFS C file interface, and two popular FAT
libraries - the Arduino SdFat library [Bil16] and FatFs [Cha11]. The page
size for the card was 512 bytes, and the cluster sizes were set to 64 pages
(32KiB). The results were an average of 5 runs with the exception of the file
create, open, and remove benchmarks for FAT. Each of these benchmarks
required formatting between them so it would be too time consuming to
repeat the benchmarks 5 times.

The results can vary depending on the size of a cluster but 64 pages is
the default size on Windows when formatting a drive with FAT so it is the
cluster size used in the tests. It is important to note that different SD cards
cause different results based on their class and other factors. Even if the
same card is used between benchmarks, the results for time might be slightly
different because of the card’s FTL. The first set of benchmarks considers
the number of page reads and writes to avoid this issue; the page reads and
writes are a large factor in the time that a file operation takes. The second
set of benchmarks is the time it took to complete them in milliseconds.

4.1 Number of Page Reads and Writes

The first set of tests measured the number of page reads and writes to
the storage device. The TEFS C file interface calls the underlying TEFS
page interface; therefore, the number of reads and writes are the same for
these two interfaces.

Table 4.1 shows the number of page reads and writes when 1000 pages
of data were written out to a file at different record sizes. The results were
different for 1 to 511 byte records and 512 byte records because when the
record size was 512 bytes, the pages did not have to be buffered first since
the record size was the same as the size of a page. TEFS required more

15

4.1. Number of Page Reads and Writes

page reads and writes, as shown in Table 4.1, for sequential writing since it
maintains the cluster state bit vector.

Table 4.1: Sequentially Write 1000 Pages: 1 to 511 Byte Records on the
Left and 512 Byte Records on the Right
File
System

Page
Reads

Page
Writes

TEFS 31 1030

Arduino
SdFat

17 1017

FatFs 17 1019

File
System

Page
Reads

Page
Writes

TEFS 31 1030

Arduino
SdFat

2 1003

FatFs 2 1005

Table 4.2 shows the number of page reads required when sequentially
reading 1000 pages of data. There were 16 page reads required to get the
addresses for the data clusters for Arduino SdFat since there were 16 data
clusters. This is similar for TEFS and FatFs, but they cache the first data
cluster address on file open so TEFS would have 17 (due to the root index
cluster) and FatFs would have 16. Only 1 byte records were used since
Arduino SdFat only supports single byte reads at a time.

Table 4.3 demonstrates having a staggered cluster chain such that each
address in the cluster chain is on a different page in the FAT for a file
10MB in size. When traversing the cluster chain, a page is read for each
data cluster address. Figure 4.1 demonstrates the architectural issue of FAT
when files grow in size. Once a file gets larger than 1MB, many page reads
are needed to traverse to the correct data cluster in the file. TEFS levels off
at 1 page read for the file sizes shown. Larger files may require 2 page reads
as there are more child index clusters.

Table 4.2: Sequentially Read 1000
Pages
File System Page Reads

TEFS 1015

Arduino
SdFat

1016

FatFs 1015

Table 4.3: Randomly Read 1000
Bytes From 10MB File With Stag-
gered Cluster Chain
File System Page Reads

TEFS 1999

Arduino
SdFat

96069

FatFs 96069

16

4.1. Number of Page Reads and Writes

Figure 4.1: Read or Write 1000 Bytes at Random Locations

When opening, creating, or removing a file, TEFS reads and writes more
pages than FAT. This is due to the root index cluster that has to be created
and the index clusters that have to be traversed. These numbers can be
seen in Tables 4.4, 4.5, and 4.6 for a single file.

TEFS Version 1 is TEFS with the old directory structure. It was a fixed
sized directory that just did linear search on the directory entries. The sizes
of the directory entries were 32 bytes. TEFS Version 2 has the current di-
rectory structure as explained earlier. In Tables 4.4, 4.5, and 4.6, the benefit
of the new directory structure is that there are far less page reads as seen
for 100 and 1000 files. There are slightly more page writes for creating and
removing files because the hash entries and metadata files require clusters
to be reserved and the file size is saved to the metadata entries of these two
files periodically. The effect of the extra page reads and writes for creating
or removing a file in TEFS makes creating or removing many files less effi-
cient than FAT despite the improvements in the new directory structure of
TEFS. Opening a file in TEFS starts to become more efficient than FAT as
more files are in the directory due to less page reads when finding a file.

17

4.1. Number of Page Reads and Writes

Table 4.4: Create Files
Page
Reads

Page
Writes

File
System

1
File

10
Files

100
Files

1000
Files

1
File

10
Files

100
Files

1000
Files

TEFS
Version 1

7 52 766 35754 6 51 501 5001

TEFS
Version 2

9 63 597 9350 6 60 600 6000

Arduino
SdFat

0 0 71 6359 1 2 6 189

Table 4.5: Open the Last File When There Are N Files
Page
Reads

File
System

1 File 10 Files 100 Files 1000
Files

TEFS
Version 1

2 2 8 64

TEFS
Version 2

3 3 3 10

Arduino
SdFat

0 0 1 12

Table 4.6: Remove Files
Page
Reads

Page
Writes

File
System

1
File

10
Files

100
Files

1000
Files

1
File

10
Files

100
Files

1000
Files

TEFS
Version 1

4 31 648 34736 3 30 300 3000

TEFS
Version 2

7 70 700 10416 4 40 400 4000

Arduino
SdFat

0 0 71 6359 1 2 20 200

18

4.2. Library Sizes

4.1.1 Time Benchmarks

The TEFS implementation is optimized to use bit shifts and bit masks
instead of modulo and division operations. It also reduces the number of
function calls as much as possible. This makes TEFS more CPU efficient
which is important on embedded devices. Figure 4.2 and Table 4.7 show that
sequential read and write times for TEFS are 10% to 20% faster than FAT
implementations even though the page reads and writes were slightly more
for TEFS. Figure 4.2 shows that FatFs takes more time to write records
that are larger in size compared to Arduino SdFat. It also shows TEFS
takes less time, for all record sizes, when writing as compared to Arduino
SdFat. Figure 4.3 shows the times for reading 1000 bytes at random locations
for different file sizes. The same property of the tree index structure is
prominent as displayed by the times.

Table 4.7: Sequentially Read 1000 Pages of Data With a Record Size of 1
Byte
File System Time (ms)

TEFS 13118

TEFS C file interface 17918

Arduino SdFat 19110

FatFs 18672

The times creating and removing files in Tables 4.8, 4.9, and 4.10 match
the trends seen with the number of page input and output operation.

4.2 Library Sizes

The library sizes and memory usage of the file systems include the size
of the file system and the code to communicate with the SD card. The text
size for TEFS is marginally less than the FAT implementations (Table 4.11).
Part of this is due to the simplification of features like the single directory.
Slightly more SRAM is used since the metadata for the hash entries files
and the metadata file are stored in memory. Also, slightly more memory is
used by each file since they store pointers to the root index, child index, and
data clusters to speed up multiple reads and writes in the same location of
the file.

19

4.2. Library Sizes

Figure 4.2: Sequentially Write 1000 Pages With Varying Record Sizes

Table 4.8: Time in Milliseconds to Create Files
File System 1 File 10 Files 100 Files 1000 Files

TEFS Version 1 25 203 4052 93180

TEFS Version 2 29 251 2561 44703

Arduino SdFat 1 7 273 20058

Table 4.9: Time in Milliseconds to Open the Last File When There Are N
Files
File System 1 File 10 Files 100 Files 1000 Files

TEFS Version 1 3 4 16 145

TEFS Version 2 5 5 8 44

Arduino SdFat 0 0 4 38

Table 4.10: Time in Milliseconds to Delete Files
File System 1 File 10 Files 100 Files 1000 Files

TEFS Version 1 18 120 2263 75760

TEFS Version 2 20 211 2251 40123

Arduino SdFat 0 6 264 19353

20

4.2. Library Sizes

Figure 4.3: Read 1000 Bytes at Random Locations

Table 4.11: Library Sizes in Bytes
File System Text Size Dynamic

Memory
Memory per
File

TEFS 10364 647 34

TEFS C file interface 12260 683 41

Arduino SdFat 14752 608 27

FatFs 14879 584 36

21

Chapter 5

Analysis of Trade-offs

The architectural advantage of TEFS over FAT is representing the index
structure as a tree rather than a linked list of entries. Using a tree guar-
antees a small constant number of index page reads to find data in the file.
This consistency is very important for embedded devices. From an imple-
mentation perspective, TEFS is optimized to minimize CPU usage, so even
though it has a slight increase in page I/Os for sequential reads/writes, its
time performance is better.

There are a few trade-offs for using TEFS compared to FAT. TEFS has
a larger index overhead for each file. For small files, the root index cluster
(32 KiB using the same cluster size as before) will be relatively empty. In
comparison, this file would be represented by a single address entry in FAT.
For example, if the size of a cluster is 32KiB, that would incur nearly a
64KiB overhead for a file because of the root index cluster and data cluster.
For FAT, the overhead would be nearly 32KiB for the data cluster. If there
are a large number of small files, more space is used by TEFS than FAT. The
index overhead also leads to more reads and write when creating, opening,
or removing files. However, seeking to the end of a large file with TEFS
only takes at most 2 page reads as compared to FAT where it must seek
the linked list to get the end of the file. In the case when opening existing
files in append mode, it takes more page reads to do this for FAT. Also,
TEFS is comparable on open times when there are lots of files because
of the improved directory structure. Otherwise, if applications create and
remove files frequently, this takes more time for TEFS and is something
to consider when choosing TEFS. In summary, FAT performs better when
the are few files, smaller files, and files are created and removed frequently.
TEFS, however, performs better when there are more files, larger files, and
files are opened and closed often but not created and removed as often.

FAT has the option to have multiple File Allocation Tables and this al-
lows for some redundancy. Currently, TEFS has no method of redundancy
to be able to recover from corrupted data or to prevent further data corrup-
tion. TEFS does allow file sizes to be written out often which is something
that is not implemented in Arduino SdFat. Without this, the device could

22

Chapter 5. Analysis of Trade-offs

crash and there could be data that is in the file but the size of the file does
not reflect this data. To the file system, this means that the data does not
exist and has not been written.

A disadvantage of FAT is that the largest file size allowed for FAT32 is
4GB. The reason for this is that the file size is stored as a four byte unsigned
integer in the directory entry and thus can only represent 232−1 bytes. The
limit for the max file size in TEFS is determined by the size of the clusters
and pages. If the files need to be larger, the cluster size can be changed to
allow for this. Both FAT and TEFS allow the size of the storage device to
be in the terabyte range. For TEFS it is 2TB when the page size is 512
bytes and it is likely the same for FAT implementations.

TEFS has many options when formatting. It allows for the size of meta-
data in a directory entry to be as large as the size of a page as long as the size
of the metadata entries are a power of 2. The file names can be (the size of
the metadata - 10) bytes. FAT can support long file names and FatFs is an
implementation that does but Arduino SdFat cannot. It only supports 8.3
(11 character) file names. TEFS also allows for custom metadata specified
by the user.

FAT32 needs a storage device that is 32MB or larger. TEFS adapts to
any size of storage as long as it has enough pages for the information page,
state section, and index clusters. The page size also has to be at least 64
bytes in size.

FAT supports multiple directories but the directory TEFS only has a
root directory and, therefore, folders are not allowed. The intention is that
files on device can be organized by name and folders are not necessary for
most intended applications. This was a trade-off to decrease the code size
and the extra files needed for storing the extra directories.

Finally, due to FAT being ubiquitous, it is supported in the Microsoft
Windows, Mac OS X, and Linux operating systems. TEFS currently does
not support these platforms.

23

Chapter 6

Conclusion

6.1 Future Improvements

Further improvements can be made to TEFS to include additional fea-
tures. FAT provides some redundancy with the multiple file allocation tables
but TEFS does not have any method for redundancy. A way to prevent cor-
ruption of data is to have multiple information blocks that are the same and
keep checksums of the critical data needed for the file system to make sure
that the data is correct.

Both Arduino SdFat and TEFS support one buffer. FatFs allows for
multiple buffers so for larger devices, this could be beneficial in speeding up
some operations of the file system and would be a good future addition.

The TEFS C file interface does not have every feature of the regular C
file operation set. Adding the rest would allow for wider audience to support
TEFS.

Some of these improvements might defeat the purpose of having a tiny
file system as they would increase the code size. However, they could be
made optional at compile time and therefore be beneficial for devices with
more memory but also be adapted to work on memory constrained devices.

Future work that does not add to the code size includes supporting read-
ing and writing to the storage device on common operating systems. This
would be beneficial for the user since they could easily get the data from
the storage device as there is no easy way to do that currently. Another
improvement would be to make a formatter script available on major op-
eration systems as the only way to format a storage device is to use it the
formatter on the micro-controller.

6.2 Summary

TEFS demonstrates that file systems with a linked list index structure,
such as FAT, for micro-controllers with constrained resources are not efficient
when randomly reading or writing to large files. TEFS implementation is

24

6.2. Summary

optimized for these types of devices to reduce the number of CPU cycles as
this affects the time to read and write. It is a small, efficient file system that
is faster than popular FAT library implementations designed for embedded
devices and significantly better when randomly reading or writing in larger
files.

As for an application of TEFS, TEFS will be used as the underlying file
system for the LittleD relational database [DL14] and IonDB key-value store
[FHD+15] for embedded systems. This key-value store has different data-
structures that write to persistent storage and for some of these structures,
there is a benefit of having fast random reads and writes.

25

Bibliography

[ADAD15] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Oper-
ating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.91
edition, May 2015. → pages 3

[Ade15] Adesto Technologies. DataFlash [online]. Dec 2015. → pages 12

[Ard16] Arduino. Arduino UNO & Genuino UNO [online]. 2016. →
pages 15

[Bil16] Bill Greiman and SparkFun Electronics. SD Library for Arduino
[online]. 2016. → pages 15

[Boy12] Boyd, Ian. Which hashing algorithm is best for uniqueness and
speed? [online]. 2012. → pages 9

[Cha11] ChaN. FatFs - Generic FAT File System Module, 2011. → pages
15

[CTT15] Rmy Card, Theodore Ts’o, and Stephen Tweedie. Design and
Implementation of the Second Extended Filesystem [online]. Nov
2015. → pages 1

[DL14] Graeme Douglas and Ramon Lawrence. LittleD: a SQL database
for sensor nodes and embedded applications. In Symposium on
Applied Computing, pages 827–832, 2014. → pages 25

[DNH04] Hui Dai, Michael Neufeld, and Richard Han. ELF: An Efficient
Log-structured Flash File System for Micro Sensor Nodes. In
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, SenSys ’04, pages 176–187. ACM,
2004. → pages 1

[FHD+15] Scott Fazackerley, Eric Huang, Graeme Douglas, Raffi Kudlac,
and Ramon Lawrence. Key-value store implementations for Ar-
duino microcontrollers. In IEEE 28th Canadian Conference on

26

http://www.adestotech.com/products/data-flash/
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://github.com/arduino/Arduino/tree/master/libraries/SD
http://programmers.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
http://programmers.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
http://e2fsprogs.sourceforge.net/ext2intro.html
http://e2fsprogs.sourceforge.net/ext2intro.html
http://doi.acm.org/10.1145/2554850.2554891
http://doi.acm.org/10.1145/2554850.2554891
http://dx.doi.org/10.1109/CCECE.2015.7129178
http://dx.doi.org/10.1109/CCECE.2015.7129178

Bibliography

Electrical and Computer Engineering, pages 158–164, 2015. →
pages 25

[FL11] S. Fazackerley and R. Lawrence. A flash resident file system for
embedded sensor networks. In IEEE 24th Canadian Conference
on Electrical and Computer Engineering, pages 1400–1405, May
2011. → pages 4, 5

[Kos16] Kostka, Grzegorz. lwext4 [online]. 2016. → pages 1, 2

[Las16] Lassonde School of Engineering. Hash Functions [online]. 2016.
→ pages 9

[LP06] Seung-Ho Lim and Kyu-Ho Park. An efficient NAND flash file
system for flash memory storage. IEEE Transactions on Com-
puters, 55(7):906–912, July 2006. → pages 1

[Mic00] Microsoft Corporation. Microsoft EFI FAT32 File System Spec-
ification. Whitepaper, Dec 2000. → pages 1, 3, 5

[Mic06] Micron Technology Inc. NAND Flash 101: An Introduction to
NAND Flash and How to Design It In to Your Next Product.
Technical report, Micron Technology Inc., 2006. → pages 1

[MRR14] Keshava Munegowda, GT Raju, and Veera Manikandan Raju.
Directory Compaction Techniques for Space Optimizations in
ExFAT and FAT File Systems for Embedded Storage Devices.
2014. → pages 1

[Mul14] MultiMedia LLC. Using the Memory Technology Device (MTD)
[online]. 2014. → pages 1

[Phi01] Daniel Phillips. A directory index for ext2. In Annual Linux
Showcase & Conference, 2001. → pages 4

[TDHV09] Nicolas Tsiftes, Adam Dunkels, Zhitao He, and Thiemo Voigt.
Enabling large-scale storage in sensor networks with the coffee
file system. In Proceedings of the 2009 International Conference
on Information Processing in Sensor Networks, pages 349–360.
IEEE Computer Society, 2009. → pages 1

[Tec13] Technical Committee: SD Card Association. SD Specifications
Part 1: Physical Layer Simplified Specification. Technical Re-
port 4.10, SD Group, 2013. → pages 1

27

https://github.com/gkostka/lwext4
http://www.cse.yorku.ca/~oz/hash.html
https://msdn.microsoft.com/en-us/windows/hardware/gg463080.aspx
https://msdn.microsoft.com/en-us/windows/hardware/gg463080.aspx
http://www.stlinux.com/howto/Flash/MTD

Bibliography

[Woo01] David Woodhouse. The Journalling Flash File System. In Pro-
ceeding of Ottawa Linux Symposium, volume 200, 2001. → pages
1

[ZBT09] Aviad Zuck, Ohad Barzilay, and Sivan Toledo. NANDFS: A
Flexible Flash File System for RAM-constrained Systems. In
Proceedings of the Seventh ACM International Conference on
Embedded Software, EMSOFT ’09, pages 285–294, New York,
NY, USA, 2009. ACM. → pages 1

28

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	2 Background
	3 Structure and Operation of TEFS
	3.1 Information Page
	3.2 State Section
	3.3 Directory Structure
	3.3.1 Hash Algorithm

	3.4 Formatting Operation
	3.5 Open, Close, and Remove Operations
	3.6 Read and Write Operations
	3.7 File Allocation Table Versus TEFS Index Structure
	3.8 TEFS C File Interface

	4 Experimental Results
	4.1 Number of Page Reads and Writes
	4.1.1 Time Benchmarks

	4.2 Library Sizes

	5 Analysis of Trade-offs
	6 Conclusion
	6.1 Future Improvements
	6.2 Summary

	Bibliography

