
An Efficient External Sorting
Algorithm for Flash Memory

Embedded Devices
by

Tyler Andrew Cossentine

B.Sc., The University of British Columbia, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The College of Graduate Studies

(Interdisciplinary Studies)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

January, 2012

c© Tyler Andrew Cossentine 2012

Abstract

Many embedded systems applications involve storing and querying large
datasets. Existing research in this area has focused on adapting and ap-
plying conventional database algorithms to embedded devices. Algorithms
designed for processing queries on embedded devices must be able to execute
given the small amount of available memory and energy constraints. Sort-
ing is a fundamental algorithm used frequently in databases. Flash memory
has unique performance characteristics. Page writes to flash memory are
much more expensive than reads. In addition, random reads from flash
memory can be performed at nearly the same speed as sequential reads.
External sorting can be optimized for flash memory embedded devices by
favoring page reads over writes. This thesis describes the Flash MinSort
algorithm that, given little memory, takes advantage of fast random reads
and generates an index at runtime to sort a dataset. The algorithm adapts
its performance to the memory available and performs best for data that is
temporally clustered. Experimental results show that Flash MinSort is two
to ten times faster than previous approaches for small memory sizes where
external merge sort is not executable.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

1 Introduction . 1

2 Background . 3
2.1 Relational Databases . 3

2.1.1 Structured Query Language 3
2.1.2 Query Plan . 4
2.1.3 Indexing . 4
2.1.4 Sorting . 5

2.2 Flash Memory . 7
2.3 Embedded Devices . 9

2.3.1 Smart Cards . 9
2.3.2 Wireless Sensor Networks 9

2.4 External Sorting for Flash Memory Devices 13
2.5 Summary . 16

3 Flash MinSort . 18
3.1 Algorithm Description . 18
3.2 Adapting to Memory Limits 22
3.3 Exploiting Direct Byte Reads 25
3.4 Detecting Sorted Regions . 26

4 Algorithm Analysis . 27
4.1 Flash MinSort Performance 27
4.2 Algorithm Comparison . 28

iii

Table of Contents

4.3 Sorting in Data Processing 30

5 Experimental Evaluation . 33
5.1 Raw Device Performance . 33
5.2 Real Data . 34
5.3 Random Data . 36
5.4 Ordered Data . 38
5.5 Berkeley Dataset . 40
5.6 Adapting to Memory Limits 44
5.7 Distinct Sort Key Values . 47
5.8 Solid State Drives . 50

6 Conclusion . 57

Bibliography . 59

iv

List of Tables

2.1 Sorting Parameters . 14
2.2 Existing Sorting Algorithm Performance 16

5.1 Soil Moisture Table Schema 35
5.2 Berkeley Table Schema . 40
5.3 Berkeley Data Distinct Values 40

v

List of Figures

2.1 Parts of a Relation . 3
2.2 Query Plan . 5
2.3 Dense Index . 6
2.4 Sparse Index . 6
2.5 External Merge Sort . 7
2.6 Wireless Sensor Node . 10

3.1 Flash MinSort Example . 19
3.2 Flash MinSort Algorithm . 21
3.3 Dynamic Region Size Example 23
3.4 Dynamic Input Buffering Example 24
3.5 Direct Byte Reads . 25

5.1 Sorting 10,000 Real Data Records (Time) 36
5.2 Sorting 10,000 Real Data Records (Disk I/O) 37
5.3 Sorting 10,000 Random Records (Time) 37
5.4 Sorting 10,000 Random Records (Disk I/O) 38
5.5 Sorting 10,000 Ordered Records (Time) 39
5.6 Sorting 10,000 Ordered Records (Disk I/O) 39
5.7 Sorting on Light Attribute (Time) 41
5.8 Sorting on Light Attribute (Disk I/O) 41
5.9 Sorting on Humidity Attribute (Time) 42
5.10 Sorting on Humidity Attribute (Disk I/O) 42
5.11 Sorting on Temperature Attribute (Time) 43
5.12 Sorting on Temperature Attribute (Disk I/O) 43
5.13 In-place Optimization (Real) 44
5.14 In-place Optimization (Random) 45
5.15 Adaptive Algorithm (Real) 46
5.16 Adaptive Algorithm (Random) 46
5.17 Time (DR = 8) . 47
5.18 Disk I/O (DR = 8) . 48
5.19 Time (DR = 16) . 48

vi

List of Figures

5.20 Disk I/O (DR = 16) . 49
5.21 Time (DR = 32) . 49
5.22 Disk I/O (DR = 32) . 50
5.23 SSD Throughput Benchmark 51
5.24 Real Data - Increasing the Logical Page Size (Time) 53
5.25 Real Data - Increasing the Logical Page Size (I/O) 53
5.26 Random Data - Increasing the Logical Page Size (Time) . . . 54
5.27 Random Data - Increasing the Logical Page Size (I/O) 54
5.28 MinSort - Real Data . 55
5.29 MinSort - Random Data . 55
5.30 MergeSort - Real Data (32KB Page Size) 56
5.31 MergeSort - Real Data (1024KB Page Size) 56
5.32 Real Data Comparison (32KB Page Size) 56

vii

Chapter 1

Introduction

Embedded systems are devices that perform a few simple functions.
Most embedded systems, such as sensor networks, smart cards and certain
handheld devices, are severely computationally constrained. These devices
typically have a low-power microprocessor, limited amount of memory, and
flash-based data storage. In addition, some battery-powered devices, such
as sensor networks, must be deployed for months at a time without being
replaced.

Many embedded systems applications involve storing and querying large
datasets. Existing research in this area has focused on adapting and ap-
plying conventional database algorithms to embedded devices. Algorithms
designed for processing queries on embedded devices must be able to execute
given the small amount of available memory and energy constraints. The
contribution of this thesis is an efficient external sorting algorithm designed
specifically for embedded systems with flash memory storage, called Flash
MinSort.

Depending on the properties of the dataset being sorted, Flash MinSort
has the potential to significantly reduce the amount of time and disk access
operations when compared to existing algorithms designed for low-memory
devices. The performance improvement is achieved by generating and main-
taining an index on the sort key attribute as the dataset is being sorted.
While performing a scan over the dataset, the index enables the algorithm
to read only relevant pages of data using random reads. Unlike traditional
hard disk drives, flash memory can perform sequential and random page
reads with roughly the same latency.

Flash MinSort performs exceptionally well when the sort key values in
the input dataset are temporally clustered. Temporally clustered data can
be found in many embedded systems applications, such as environmental
monitoring with sensor networks. The algorithm also performs well when
given sorted or near-sorted data. The Flash MinSort algorithm is capable
of adapting to the amount of memory available and the size of the dataset.
It gracefully degrades from a one-pass sort as the size of the dataset grows
larger than main memory.

1

Chapter 1. Introduction

An initial version of Flash MinSort was presented in [12]. This thesis
contains a generalized version of Flash MinSort that adapts to the amount of
memory available and the size of the dataset. The previous version assumed
that the size of the dataset was known exactly, which simplified partitioning
when generating the index. The ability to adapt to the size of the dataset
at runtime allows the algorithm to be used in a standard database query
planner. If the algorithm is provided with more memory than the amount
required for the index, it caches subsets of the dataset to reduce the number
of reads from disk. This thesis contains a detailed analysis and experimental
evaluation of Flash MinSort when applied to the area of sensor networks.
Applications of Flash MinSort to traditional database management systems
with solid state drives are also explored.

The organization of this thesis is as follows. Chapter 2 focuses on back-
ground information on relational databases, embedded devices, flash mem-
ory, sensor networks, and sorting algorithms. Chapter 3 contains a detailed
description of the Flash MinSort algorithm and Chapter 4 provides an anal-
ysis of performance. Chapter 5 shows experimental results of Flash MinSort
with comparison to existing algorithms. Chapter 6 discusses the potential
applications of the algorithm and future work.

2

Chapter 2

Background

2.1 Relational Databases

A database management system (DBMS) is a piece of software that
manages and provides an interface to a relational database [18]. A relational
database consists of a collection of relations that store data. A relation is
a table that contains rows, known as tuples. Each column in a relation is
called an attribute. In a given tuple, each attribute contains either a value
or NULL. The cardinality of a relation is the number of rows it contains.
Figure 2.1 shows the different parts of a relation.

3

3

3

3

3

3 1

1

1

1

1

1

133

125

122

143

154

138

2011−04−01 14:35:00

2011−04−01 14:40:00

2011−04−01 14:45:00

2011−04−01 14:50:00

2011−04−01 14:55:00

2011−04−01 15:00:00

timesensorIdnodeId value

Tuples

AttributesSensorReading Relation

Figure 2.1: Parts of a Relation

2.1.1 Structured Query Language

Structured query language (SQL) is a language commonly used to man-
age relational databases [18]. A DBMS executes SQL queries on relations
and returns the resulting tuples. For example, a query such as SELECT
DISTINCT nodeId FROM SensorReading WHERE value > 130
executed against the SensorReading relation will return tuples containing
just a unique nodeId attribute where the value attribute is greater than 130.

3

2.1. Relational Databases

2.1.2 Query Plan

A DBMS parses an SQL query and generates a query plan [18]. A query
plan consists of a tree of database operators necessary to generate the re-
quested output. Operators are implemented as iterators that return a tuple
at a time and can include scan, select, project, sort, and join. The relation
generated by any branch of the query tree can be materialized by main-
taining a copy in memory or writing it to external storage. Materialization
can be used to reduce memory usage or avoid regenerating the same input
relation multiple times.

The scan operator iterates over a dataset on disk, returning a tuple at a
time. The selection operator, represented by σc, returns an input tuple as
output if the boolean expression c evaluates to true. Projection, represented
by Π, returns a new tuple that contains only the specified attributes of an
input tuple. The sort operator sorts a relation in ascending or descending
order on one or more attributes. If the input relation does not fit into
memory, the sort operator requires it to be materialized on disk. The join
operator, represented by on, returns an output tuple that is a combination
of one tuple from each of the input relations if the join predicate evaluates
to true. Typical join algorithms include block-based nested loop join, sort-
merge join, and hash join.

A database operator that is implemented as an iterator returns a tuple at
a time to its parent node in the query tree. A query tree can be right-deep,
left-deep or bushy. A right-deep query tree always has the base relation
as the left join argument. Iterator functionality typically includes the init,
next, close and rescan methods. After the query plan has been constructed,
these functions are called on the root node of the tree to retrieve results.
An example of a query plan executed on the SensorReading relation can be
found in Figure 2.2.

2.1.3 Indexing

An index is a data structure that allows for fast lookup of tuples in a
relation [18]. Indexes are important for databases since many queries only
examine a small subset of a relation. An entry in an index contains a search
key value for an attribute of the relation and a pointer to the location of
the tuple that has that value. Indexes take up less space on disk because
each entry contains a single attribute of the relation. Depending on the
implementation, an index might allow tuples to be retrieved in sorted order.

An index can be dense or sparse. A dense index contains an entry for

4

2.1. Relational Databases

Figure 2.2: Query Plan

every tuple in the relation. Figure 2.3 contains an example of a dense, single-
level index on the SensorReading relation. A sparse index contains entries
for only some of the tuples in a relation. An entry in a sparse index typically
points to a single page of tuples on disk. Figure 2.4 contains an example of a
sparse, single-level index on the SensorReading relation. A sparse index is a
more space efficient choice for a relation that is stored in an ordered format
on disk because it only stores one entry per page of tuples. A dense index
has a search advantage over a sparse index by allowing a query to determine
if a search key exists without accessing the entire relation on disk.

A multi-level index has more than one index level on a relation. With
the exception of the first level, each level of a multi-level index points to the
index below it. Multi-level indexes have a performance advantage because
fewer pages of lower-level indexes need to be read during a search. The first
level of an index can be dense or sparse, but all higher levels of an index
must be sparse. The B+-tree data structure is commonly used for indexes
in a modern DBMS.

2.1.4 Sorting

Sorting is a fundamental algorithm used in databases for ordering results,
joins, grouping, and aggregation. A detailed analysis of sorting algorithms
can be found in [23]. An internal sorting algorithm sorts a dataset using
main memory only. Quicksort, heapsort, selection sort, and insertion sort

5

2.1. Relational Databases

PtrKey

122

125

133

138

143

154

1

1

1

1

1

1

3

3

3

3

3

3 1332011−04−01 14:35:00

2011−04−01 14:40:00

2011−04−01 14:45:00

2011−04−01 14:50:00

2011−04−01 14:55:00

2011−04−01 15:00:00

timenodeId sensorId value

125

122

143

154

138

Index Relation

Figure 2.3: Dense Index

PtrKey

122

138

2011−04−01 14:35:00

2011−04−01 14:45:00

2011−04−01 14:40:00

2011−04−01 15:00:00

2011−04−01 14:55:00

2011−04−01 14:50:00

time

125

122

133

138

154

143

value

3

3

3

3

3

3

nodeId

1

1

1

1

1

1

sensorId

Index Relation

Figure 2.4: Sparse Index

are examples of internal sorting algorithms. When there is not a sufficient
amount of main memory to sort an entire dataset, it is necessary to make
use of external memory, such as a hard drive. General external sorting
algorithms were surveyed in [37].

A common sorting algorithm used by a DBMS to sort large relations is
external merge-sort [18]. External merge-sort loads chunks of a relation R
into memory M blocks at a time, where M is the size of available memory in
disk blocks. Each chunk of R is sorted in-place using a sort algorithm such
as quicksort and the sorted runs are written out to disk. If the number of
sorted runs is less than or equal to M, they can be merged in one read pass
by loading them into memory a block at a time. More than one read pass
will be necessary if the number of sorted sublists on disk is greater than M.
Figure 2.5 shows an example of sorting the first column of the relation using
external merge-sort. In this example, there is enough available memory
to hold three disk blocks (M = 3) and each tuple in the initial relation
represents an entire block. After the first pass, there are four sorted sublists
stored on disk. After two merge passes, there is a single sorted list stored
on disk.

6

2.2. Flash Memory

External distribution sorts have the potential to perform well when sort-
ing data in external memory and the range of values is known. External
bucket sort partitions the dataset into buckets on disk. Each bucket con-
tains a subset of the range of values in the input data. A page of memory is
required as a cache for each bucket. Once the page becomes full, the values
are written to the bucket on disk. This is much more efficient than writing a
tuple at a time to each bucket. After each pass, the buckets are recursively
sorted with further partitioning. This process continues until the relation is
in sorted order on disk. External radix sort is also a distribution sort that
is commonly used to sort data located in external memory.

Merge
Pass #1

Merge
Pass #2

A

D

G

19

31

24

B

C

E

14

33

16

21D

M

R

3

6

A

D

P

4

7

2

Sorted Runs

A

B

C

D

E

G

19

14

33

31

16

24

A

D

D

M

P

R

4

7

21

3

2

6

A

A

B

C

D

D

D

E

G

M

P

R

4

19

14

33

7

21

31

16

24

3

2

6

Sorted Relation

A

A

24

D

C

B

E

R

D

M

P

D

19

31

33

14

6

21

16

3

2

7

4

G

Initial Relation

Figure 2.5: External Merge Sort

2.2 Flash Memory

Electrically erasable programmable read-only memory (EEPROM) is a
type of non-volatile, byte-erasable memory used in a wide range of devices.
Flash memory is a specific type of EEPROM that is available in higher ca-
pacities and is erasable in large blocks. There are two types of flash memory
in common use, NOR and NAND, that differ in their underlying memory cell

7

2.2. Flash Memory

technology [31]. NOR flash is not as dense or energy-efficient as NAND, but
provides high-speed, random byte-level reads of data [28]. Flash memory is
used in a wide range of areas, such as solid state drives (SSD) and embedded
systems. Flash memory is available in either surface mount or removable
formats, such as Secure Digital (SD) and MultiMediaCard (MMC). Remov-
able flash devices have internal controllers and have higher idle current and
energy consumption [28]. Surface mount flash chips can have a parallel or
serial interface. Serial flash chips are required for sensor nodes that do not
have a large number of general purpose I/O pins available. Current flash
memory chips enable embedded systems to store several gigabytes of data
while using little energy.

Flash memory has unique performance properties. After many erase
cycles, a block of pages will not be able to reliably store the values written
to it. This is known as wear. Many flash devices, such as the controller on
a SSD, implement a wear leveling strategy to ensure that individual pages
do not wear out prematurely. This strategy often includes error detection
and a logical to physical page mapping that ensures that erase cycles are
spread evenly across all blocks. Unlike devices [8] that contain a controller
with a block-level interface, a flash memory chip by itself does not provide
block mapping, wear leveling, and error correction. A flash memory chip
has asymmetric read and write costs, with writes being between 10 to 100
times more costly. Random page reads can be performed at rougly the same
speed as sequential reads. This is considerably different than the hard disk
drives (HDD) used in most modern computers. A HDD contains rotating
magnetic media and has a track seek time and rotational latency penalty
associated with random data access [18].

In flash, writes are more costly due to the requirement that a block must
be erased before one of the pages it contains is written. Depending on the
type of flash memory, a block can consist of one or more pages of data.
Many serial flash devices have one or more internal static random access
memory (SRAM) buffers to store pages. Although the transfer size between
the flash memory and the buffer on a device is in the unit of pages, the
transfer between a SRAM buffer and the processor can be done at the byte
level.

A typical storage solution used in embedded devices is the surface-mount
Atmel DataFlash AT45DB family of serial NOR flash [5]. This is a popular
family of devices due to their simple set of commands, low pin-count serial
peripheral interface (SPI) bus, and SRAM buffers. These devices have a
page-erase architecture and support page-level reads and writes. The inter-
nal SRAM buffers are used to read a page of data or support self-contained

8

2.3. Embedded Devices

read-modify-write operations to flash memory without copying a page of
data from flash to main memory. This family of devices also supports ran-
dom byte-level reads to directly stream a page or any sequential bytes from
the chip to the processor, bypassing all buffering. One chip in this family
is the Atmel AT45DB161D [4], which contains 16-megabits (2MB) of flash
storage. The chip supports erase at the unit size of a page (512B), block
(4KB), sector (128KB), and entire chip (2MB). It has two internal SRAM
page buffers (512B).

2.3 Embedded Devices

2.3.1 Smart Cards

Smart cards are used in a wide range of areas such as banking, television,
and healthcare. Like most embedded devices, they have very little compu-
tational power, memory (4KB SRAM), or data storage (128KB EEPROM).
One study covers the application of database techniques to multi-application
smart cards [7]. The study shows that common database operators can run
on smart cards with very little memory consumption by using extreme right-
deep trees to pipeline execution and avoid recomputing operations in the
query plan.

2.3.2 Wireless Sensor Networks

Sensor networks are used in military, environmental, agricultural and
industrial applications [1, 9]. A typical wireless sensor node contains a
low-power embedded processor, memory/storage, radio transceiver, sensors,
power management and a power source [13, 24, 36]. Sensor memory con-
sists of a small amount of random access memory (SRAM) and a larger
amount of non-volatile memory (EEPROM or flash) for data storage. Sen-
sor nodes can use both internal and external sensor systems to collect data.
Sensors measure environmental properties and typical sensing hardware in-
cludes temperature sensors, light sensors, humidity sensors, accelerometers
and cameras. Communication between sensor nodes is accomplished using
radio frequency modulation techniques [9, 36].

Over the past decade, sensor networks have been successfully deployed
in a wide range of areas. In [22], a 64 node network designed for struc-
tural health monitoring was deployed on the Golden Gate Bridge. Sensor
networks have potential in military applications for battlefield monitoring
and intrusion detection. In [11], a 144 node network was deployed to track

9

2.3. Embedded Devices

Figure 2.6: Wireless Sensor Node

targets and perform surveillance in a large outdoor field. Sensor networks
have also been deployed in environmental and agricultural areas. An early
application of sensor networks was habitat monitoring [27]. In [16], a sensor
network and adaptive irrigation controller was shown to reduce turfgrass
water consumption. In [6], a network of 65 sensor nodes was deployed over
a period of six months in a vineyard. Depending on the application, sen-
sor nodes can be statically positioned or mobile. In [39], sensor nodes with
ECH2O capacitance-based sensors and cameras were statically positioned to
measure soil moisture and grass coverage in a field. This research also in-
volved attaching sensor nodes with GPS and accelerometer sensors to cattle
to collect data on herd behavior.

In basic applications, sensor nodes request data from sensors and trans-
mit it across the network to a common collection point known as the sink
[1, 24]. Sensor nodes can act as a source of information or they can help
route data towards the sink in multihop networks. Depending on the appli-
cation, there are several common network topologies and routing protocols
that can be implemented [24]. In order to analyze sensor data, track ob-
jects, perform spatial querying or perform geographic routing, the absolute
or relative position of individual sensor nodes must be known. Sensor node
locations can be pre-configured or the network can use one of the many
localization algorithms designed for wireless sensor networks [24].

10

2.3. Embedded Devices

Energy Consumption

In most applications, sensor networks must be able to survive long-term
deployments without user intervention. Sensor node replacement is usually
not a cost-effective option since “the cost of physically deploying the sen-
sor nodes often outweighs the cost of the nodes themselves” [34]. Labor
costs for sensor network deployment are relatively high when the network
is composed of thousands of nodes or deployed over rugged and remote
terrain. Many applications require sensor networks to remain operational
for several months or years [24]. Since sensor nodes are battery powered,
they are extremely energy constrained and require low-power components
combined with energy efficient algorithms. In [35], the authors provide a
power-analysis detailing the energy usage of the individual components of
common sensor node platforms. Their research shows that the wireless radio
uses a large share of the power used by all components and communication
must be managed effectively to increase network lifetime.

There are several areas of research that focus on improvements to hard-
ware and software with the goal of increasing sensor network lifetime. Sensor
nodes use low-power components and can employ dynamic voltage scaling
(DVS) or dynamic power management (DPM) to reduce energy usage [29].
Another hardware-based area of research involves harvesting environmental
energy, specifically by developing sensor platforms that can take advantage
of solar cells [32, 34, 39]. In [39], the Fleck-3 sensor node platform was com-
bined with small solar panels for a network of statically positioned sensor
nodes. Initial experimental results using the Fleck-3 platform show that
solar panels can generate more than enough energy to sustain sensor nodes
indefinitely under ideal conditions.

In addition to continuing improvements to the energy efficiency of sensor
node hardware, advanced routing and data collection algorithms are neces-
sary to increase sensor network lifetime. To increase lifetime, “most protocol
designs in wireless sensor networks are designed explicitly with energy effi-
ciency as the primary goal” [24]. Research on multihop routing protocols
shows that transmitting data over many small hops can potentially use less
energy than a single long-distance broadcast [1, 36]. Another key area of
research is in energy-aware routing protocols [21]. Sensor networks used
for data collection may have nodes store and process data locally, or im-
mediately send it back to the sink node. One recent study examined the
tradeoff between local data storage and communication [28]. More specifi-
cally, the research compared the energy costs of low-power parallel NAND
flash memory to radio communication. The study concluded that the energy

11

2.3. Embedded Devices

costs of storage are two orders of magnitude less than for communication.
Another study showed that the energy required to transmit 1Kb a distance
of 100 meters equals 3 million instruction executions on a processor with
100MIPS/W power [33]. Since the cost of communication is high in wire-
less sensor networks, local data storage and in-network query processing has
the potential to significantly reduce traffic volume and power consumption
[1, 33].

Query Processing

Query processing on sensor nodes has been studied, including the issues
of local data processing and in-network aggregation [1]. Query processing
systems provide a generic, high-level query interface that is not application
specific and greatly simplifies the task of retrieving data from the sensor
network. Recent research has focused on modeling sensor networks as a dis-
tributed database system supporting SQL-like query languages [14, 17, 19].
In a distributed database system, a query is issued to the sensor network at
the sink node and propagates throughout the network. Each node processes
the query locally and only relevant tuples are returned. A sensor network
database reduces data transmission and increases network lifetime.

One sensor network query processing system, called TinyDB, implements
a distributed stream database on a sensor network [26]. A stream database
enables the user to query a real-time stream of data rather than data lo-
cated in persistent storage. TinyDB provides the user with a declarative,
SQL-like query language and supports selection, projection, aggregation and
grouping. Queries are executed on a virtual sensors table and can include
information such as query duration and sample intervals. The sensors table
is considered to be virtual because sensor data is not materialized in persis-
tent storage. A typical query would be SELECT nodeId, temp FROM
sensors, SAMPLE PERIOD 1s FOR 10s. When a sensor node receives
a query, it generates an optimal query plan and starts collecting data from
its attached sensors. Sensor data is collected once per sample interval and
each tuple passes through the query plan. If a tuple of sensor data is an
answer to the query, it is transmitted to the sink node over the multihop sen-
sor network using a tree-based routing protocol. TinyDB supports partial
aggregation, which further reduces the amount of data that is transmitted
[19]. Partial aggregation pushes aggregation computations down the tree
and uses values at intermediate nodes to compute the final result. Complex
queries that involve the sort and join operators are only possible by materi-
alizing a data stream on one of the nodes in the network. Queries allow the

12

2.4. External Sorting for Flash Memory Devices

user to set the sample rate and time period, desired network lifetime, and
can include a stopping event or trigger.

Stream database systems for sensor networks have a limited ability to
execute complex queries locally. Another limitation of stream databases is
that storing data locally rather than streaming it allows for a much higher
sensor sample rate without transmitting any tuples across the network while
using the same amount of energy. Stream databases are not appropriate
for applications that involve periodic connectivity where the sink is not
always reachable. The ability to query data stored locally is very important
for applications where the entire dataset is needed for analysis. In these
applications, it might be necessary to query more detailed historical data
around an event of interest.

In [15], a database system, called StonesDB, was designed to query his-
torical sensor data stored locally at each node. StonesDB is a two-tier
database system consisting of sensor nodes at the lower tier and more pow-
erful proxy nodes at the higher tier. Sensor nodes store data locally in flash
and send metadata to their associated proxy node. Proxy nodes cache meta-
data and query results locally. A query is sent to all proxy nodes and each
proxy node attempts to answer the query using cached data. If the proxy
node cannot answer the query, it is forwarded to the individual sensor nodes.
Each sensor node implements a low-power DBMS that processes queries and
returns relevant tuples. This system uses several strategies to reduce energy
usage by minimizing the number of erase and write operations in flash. One
strategy is to physically partition each data stream in flash and generate a
separate index for each partition. Another strategy is to write an index once
by holding it in main memory until a partition has been filled.

Energy-efficient algorithms for database operators will increase the life
of a sensor network. In addition to reducing execution time, energy efficient
algorithms typically focus on reducing the number of I/O operations in per-
sistent storage. These algorithms must be able to execute with very limited
amounts of memory. There have been customized algorithms developed to
improve operator performance on flash embedded devices for sorting (next
section), joins and grouping [2].

2.4 External Sorting for Flash Memory Devices

There have been several algorithms proposed for sorting on flash memory
[2, 3, 30] which are designed to do more reads instead of writes due to the
asymmetric costs. These algorithms are summarized below including per-

13

2.4. External Sorting for Flash Memory Devices

formance formulas. For this discussion, we will assume sorting in ascending
order.

For sorting a table of records, we use T to denote the number of tuples
(records) in the table and P as the number of pages. LP is the size of
a page in bytes (depends on the flash device) and LT is the tuple size in
bytes (depends on the data). We will assume that tuples are stored in an
unspanned layout, meaning that they do not cross page boundaries on disk.
The number of tuples per page is NT = bLP

LT
c, or for simplicity NT = T

P .
The amount of memory available to the sort operator in bytes is M . The
size of the attribute(s) sorted, called the sort key size, is LK . The number of
distinct values for the sort key is D. We denote the number of regions as R,
and the number of pages in a region as NP . A summary of these parameters
is in Table 2.1.

Table 2.1: Sorting Parameters

Notation Definition

T number of tuples in table to sort
P number of pages in table
NT number of tuples per page = T/P
LP page size in bytes
LT tuple size in bytes
M sort memory size in bytes
LK sort key size in bytes
D number of distinct values for sort key
LI integer size in bytes
NP number of pages in a region
R number of regions

The most memory efficient algorithm is the one key scan algorithm [2]
that performs a read of the table for each distinct sort key value. The
algorithm works by storing two key values, current and split: current is the
key value that is being output in this scan and split tracks the next lowest key
value after current and is updated while doing the scan. All records with the
current value are output in order in the current scan. The algorithm needs
an initial scan to determine the values of current and split. The algorithm
performs D+ 1 scans, regardless of the data size, with each pass performing
P page I/Os. The major advantage is the memory consumed is only 2LK .
One key scan takes advantage of additional memory by buffering tuples of
the relation into a current array. Each scan of the relation fills the current

14

2.4. External Sorting for Flash Memory Devices

array with tuples that have the next smallest sort key values. When the
current array overflows, tuples with the largest sort key value are discarded
to eliminate the need to track the highest tuple number output for a given
sort key value. The value of next is set to the largest sort key value of the
tuples in current.

The heap sort algorithm, called FAST(1) [30], uses a binary heap of size
N tuples to store the smallest N tuples during each scan. Another value,
last, is maintained which stores the largest sort key output so far. The
number of scans is d TN e regardless of the data. One complication is handling
duplicate sort key values. The solution [30] is to remember both the last
value and the integer record number of the last tuple output. During a scan,
a tuple is only considered if its key is greater than last or its key is equal
to last and the record number has not already been output. Duplicates also
complicate the heap structure as each record must store its record number as
well as the sort key to allow for the heap to maintain the order of duplicates,
which occupies LI ∗N space. This space overhead can be avoided by using
a sorted array as a data structure, but insertions are then O(N) instead of
O(logN). One page buffer is used as an input buffer. Despite using more
memory, this algorithm may be slower than one key scan if the number of
distinct sort key values is small.

External merge sort performs one read pass to construct sorted sublists
of size M , which are written to external storage. The merge phase buffers
one page from each of the sublists and merges the tuples to produce a new
sorted sublist. On each merge pass, b MLP

c−1 sublists are merged so multiple
merge passes may be required. External merge sort and its extensions have
two basic issues. First, writing is more expensive than reading, so multiple
read scans are often faster than read/write passes. The larger issue is that
executing sort-merge efficiently requires numerous page buffers in memory.
At a minimum, three pages (1,536B) of memory must be available to the
operator. Two pages are used to buffer one page from both of the sublists
being merged and another is used to buffer the output. With so few pages,
it is common for the algorithm to require many passes which reduces its
efficiency. Even three pages may be too much memory for some applications
on small sensor nodes. External merge sort becomes more practical as M
and P increase.

FAST [30] is a generalized external merge sort algorithm that uses FAST(1)
to allow multiple passes and larger data files. FAST uses FAST(1) to perform
multiple scans of a subset of the input rather than building more sublists.
Thus, instead of sorting up to b MLP

c pages in a single pass like external merge

15

2.5. Summary

sort, the sublist size can be up to Q pages, where b MLP
c ≤ Q ≤ P . The value

of Q is determined at runtime based on the amount of available main mem-
ory, input file size and read-to-write ratio of the flash storage device. The
algorithm uses a heap data structure to allow it to merge Q sublists in each
pass instead of b MLP

c − 1.
FSort [3] is a variation of external merge sort with the same merge step

but uses replacement selection for run generation. Replacement selection
generates runs of approximate size 2M . The rest of the external merge sort
algorithm performance is unchanged.

A summary of algorithm performance is in Table 2.2. The algorithm
costs assume that the sort output is not counted. All of the merge sort
variants (external merge sort, FAST, and FSort) also perform writes as well
as reads. None of the algorithms explicitly adapt to the data distribution
in the table. The cost to sort a sorted table is the same as the cost to
sort a random table. It is common in sensor networks that the sensor data
exhibits spatial and temporal clustering that can be exploited. None of the
algorithms dominates the others as performance depends on the relative
sizes of the sort parameters.

Table 2.2: Existing Sorting Algorithm Performance

Algorithm Memory Scans Read Scans Write Scans Stable
one key 2 ∗ LK S = D + 1 S 0 Yes

FAST(1) M S = T⌊
M−LP
LT +LI

⌋ S 0 No

merge sort M S = dlogb M
LP
c−1

(dP∗LP
M
e)e S + 1 S Yes

FAST M S = dlogQdPQ ee S + 1 S No

FSort M S = dlogb M
LP
c−1

(dP∗LP
2∗M e)e S + 1 S Yes

2.5 Summary

Embedded devices are used in a wide range of areas and are often re-
source constrained in terms of energy and processing power. These devices
contain a low-power microcontroller, small amount of RAM, and flash mem-
ory for persistent data storage. Many applications require data to be stored
and processed locally. Some devices, such as smart cards, must provide ad-
vanced querying and security functionality. Other battery-powered devices,
such as wireless sensor networks, require energy-efficient data collection and
processing strategies to be considered cost-effective.

Existing research on data management and query processing strate-

16

2.5. Summary

gies for embedded devices tends to focus on the application of traditional
database algorithms and techniques. Sorting is a key operation used in
databases for ordering results, joins, grouping, and aggregation. Current
approaches to sorting relations on embedded devices, even those designed
specifically for flash memory, do not adapt to data distributions, clustering
or handle very small memory efficiently.

17

Chapter 3

Flash MinSort

3.1 Algorithm Description

The core idea of the Flash MinSort algorithm is that random page reads
can replace sequential scans to reduce the amount of disk I/O needed to sort
a relation. This algorithm is specifically designed for data stored in flash
memory, where random reads have roughly the same cost as sequential reads.
All previous algorithms perform sequential scans of the input relation. In a
given pass, these algorithms read pages and tuples that are not needed.

Flash MinSort takes advantage of low-cost random reads by building a
simple dynamic index (minimum index) that stores the smallest sort key
value for each region of the input relation. The index is implemented as an
array and it is searched by performing a linear scan. A region represents
one or more adjacent pages of data in flash memory and the sort key is the
attribute that the relation is being sorted on. Instead of reading the entire
relation during each pass, the algorithm only reads the pages of regions that
contain the current sort key value being sent to output. Once all pages in
a region have been read, its index value is updated with the next smallest
sort key value that was encountered. This process repeats until the entire
relation has been output in sorted order.

In the ideal case, each region consists of a single page of data. The
amount of space required to store an index value for each page is LK ∗ P ,
which may be larger than the amount of available memory (M). Thus, we
group adjacent pages into regions by computing the maximum number of
sort key values that can be stored in memory. The algorithm is adaptable
to the amount of memory available and the minimum amount of memory
required is 4LK + LI for two regions. With two regions, only two sort key
values must be stored by the index.

Flash MinSort keeps track of the current sort key value being output and
the next smallest sort key value encountered while searching a region. It also
records the location of the next tuple to be accessed in a region (nextIdx).
After finding a tuple that has a sort key value equal to current and sending
it to output, the algorithm continues its scan through the pages and tuples

18

3.1. Algorithm Description

of the region. If it encounters another tuple with a sort key value equal to
current, it stops and sets nextIdx to that location. When the next tuple
is requested, the search continues with the tuple located at nextIdx. This
algorithm guarantees that tuples with the same sort key value are output in
the same order that they appear in the input relation.

As the algorithm is scanning a region for tuples with a sort key value
equal to current, it is simultaneously keeping track of the next smallest
sort key value encountered. Once the end of the region has been reached,
the minimum index value of the region is set to the value of next. Since a
region is always scanned from the beginning, all tuples are considered when
determining the next minimum index value.

Figure 3.1 contains an example with T = 48, P = 12, NT = 4, LK =
LI = 4, LT = 20, D = 9, DR = 2.3 and M = 60 bytes. The first two passes
over the minimum index are shown. Each region represents a single page of
tuples and a tuple represented by a sort key value with a rectangle around
it is sent to output. A sort key value inside of a circle is used to determine
the next smallest value in the region being scanned.

Location Key

4

4 5

Keys

9 9 9 9

9 8 9 9

8 8 7 7

6 6 6 5

4 4 3 2

2 1 2 1

1 1 1 1

2 3 4 5

6 7 8 9

9 8 9 8

8 9 9 9

1 9 9 1

2

3

4

5

6

7

8

9

10

11

12

1

Page# = 1Current

1 11 1

Next =

8

Scan Page #8

Next = 9

1 199

Scan Page #1

Next = 2

12 21

Scan Page #7

First Pass

Pg. 1 − Tuple 4

Pg. 7 − Tuple 2

Pg. 7 − Tuple 4

Pg. 8 − Tuple 1

Pg. 8 − Tuple 2

Pg. 8 − Tuple 3

Pg. 8 − Tuple 4

Pg. 6 − Tuple 4

Pg. 7 − Tuple 1

Pg. 7 − Tuple 3

Pg. 9 − Tuple 1

Pg. 1 − Tuple 1

.

..

. .
..
.

1

2

1

1

1

1

1

1

2

2

2

1

Output

3 3 2

Next = 3

Scan Page #6

Next =

8

2 1 12

Scan Page #7

Next = 3

2 3

Scan Page #9

Current = 2

Second Pass

Current = 3

Third Pass

.

..

.

Dataset

9

8

7

5

1

1

2

8

8

6

1

2

8

2

3

3

9

8

Min Index

Figure 3.1: Flash MinSort Example

19

3.1. Algorithm Description

To initialize the minimum index, Flash MinSort reads the entire relation
to determine the smallest sort key value in each region. The first pass begins
by performing a linear scan on the index. It encounters region 1, which has
a minimum value equal to current. Page 1 is loaded into memory and the
algorithm searches for a tuple with a sort key value equal to 1. The first tuple
in the page is sent to output. The algorithm continues searching the tuples
in the page, updating the next minimum value of the region as it encounters
sort key values greater than current. At the second tuple, the minimum
value of the region is updated to 9. When the algorithm encounters another
tuple with a sort key value equal to current at tuple 4, it sets nextIdx to
4. When the next tuple is requested, page 1 is currently in memory and
the algorithm jumps directly to tuple 4 to send it to output. The minimum
index value of region 1 is set to 9.

The algorithm continues to perform a linear scan through the index until
it encounters region 7. Page 7 is loaded into memory and it is searched in
the same manner as page 1. The process of scanning the index and searching
pages continues until all tuples with a sort key value equal to current have
been sent to output. A pass over the index is performed for each distinct
sort key value.

Pseudocode for Flash MinSort is shown in Figure 3.2. The first three
lines calculate the number of regions and the number of pages per region.
These values depend on the amount of memory (M) and the number of
pages that store the relation. Each iteration of the while loop proceeds in
three stages. In stage one, the next region to be searched is determined by
scanning the index until a region is found that has a minimum value equal to
current. This stage is skipped if the algorithm is in the middle of scanning
a region (nextIdx > 0).

The second stage searches the region for a tuple with a sort key value
equal to current. If nextIdx is 0, the search begins from the start of the
region; otherwise, the search left off at the next tuple to be sent to output.
While the search proceeds, the next smallest value for the region is updated.
At the end of this stage, the next smallest tuple in the relation has been sent
to output. The final stage updates the minimum index value of the region.
This value is either the next tuple (if any) for sorted regions, or it requires
all remaining tuples in the region to be read. This search terminates early
if another tuple with sort key value equal to current is found in the region.
In that case, nextIdx is set to that tuple’s location.

20

3.1. Algorithm Description

procedure FlashMinSort()

numPagesPerRegion = dnumPages∗LK

M−2∗LK−LI
e

numRegions = d numPages
numPagesPerRegione

Scan input and update min array with smallest value in each region
nextIdx = 0;
while (data to sort)

// Find region with smallest value
if (nextIdx == 0)

i = location of smallest value in min array
current = min[i];
next = maxvalue;

end if

// Find current minimum in region
startIndex = nextIdx;
Scan region i starting at startIndex looking for current
During scan update next if (key > current AND key < next)
Output tuple with key current at location loc to sorted output

// Update minimum in region
if (sorted region)

current = r.key of next tuple or maxvalue if none
nextIdx is 0 if next key 6= current, or next index otherwise

else
nextIdx = 0;
for each tuple r in region i after loc

if (r.key == current)
nextIdx = location of tuple in region
break;

end if
if (r.key > current AND r.key < next)

next = r.key;
end for
if (nextIdx == 0)

min[i] = next;
end if

end while
end procedure

Figure 3.2: Flash MinSort Algorithm

21

3.2. Adapting to Memory Limits

3.2 Adapting to Memory Limits

The base version of the algorithm in Figure 3.2 does not adapt to the
input relation size. The number of regions was calculated statically based
on a known relation size. In a real system, the size of the input relation is
an estimate and the operator must adapt to poor estimates. Further, if the
input was smaller than expected, perhaps small enough to perform a one-
pass sort, Flash MinSort would perform needless I/Os as it would allocate
more regions than required. To resolve this issue, we demonstrate in this
section how the number of regions can be dynamically adjusted as the input
relation is processed. This allows Flash MinSort to gracefully degrade from
one-pass sort by increasing the number and size of the regions as required.

First, consider the case where the amount of memory available (M) is
less than a full page. The algorithm will use this memory to store the
minimum value in each region. The challenge is that without knowing the
exact size of the input relation, we do not know how many pages are in a
region during initialization. The solution to this problem is to dynamically
build the minimum index by merging regions once the memory limit has
been reached. The basic idea is that we start with the assumption that
the index will consist of one page per region. We perform a linear scan
through the relation and fill the index with the minimum value for each page
encountered. Once the index is full, we merge adjacent regions. We continue
to scan through the relation, but now each region represents two pages of
data. This process repeats until the entire relation has been scanned. If
the iterator does not see page boundaries, it treats each tuple as a region
and has the issue of potentially crossing page boundaries when traversing a
given region.

Consider the example in Figure 3.1. In this example, M=32 bytes and
the number of pages (P=12) is unknown to the algorithm. With this amount
of memory, a maximum of five regions (20B) can be stored in the index since
twelve bytes are used by other variables in the algorithm. Figure 3.3 shows
how the algorithm builds the index by merging adjacent regions. The first
five page pages are read and their minimum sort key values are inserted into
the index. Once the sixth page is read, there is no space to store that region
in the index, so adjacent regions in the index are merged. Each entry in the
minimum index represents two adjacent pages. The next entry in the index
(1) represents pages seven and eight. The following entry (2) represents
pages nine and ten. Once page eleven is read, adjacent regions are merged
and each region now represents four adjacent pages. After reading all input,
the number of regions is three and each region represents four pages.

22

3.2. Adapting to Memory Limits

9 9 9 9

9 8 9 9

8 8 7 7

6 6 6 5

4 4 3 2

2 1 2 1

1 1 1 1

2 3 4 5

6 7 8 9

9 8 9 8

8 9 9 9

1 9 9 1

Keys

2

3

4

5

6

7

8

9

10

11

12

1

Page#
1−5

6

7−10

11−12

Dataset Pages Read

8 7 591

271

7 2 211

1 21

Min Index

Figure 3.3: Dynamic Region Size Example

If the amount of memory available is larger than a page, there is potential
for further optimization. More specifically, it may be possible to perform a
one-pass sort if the entire input relation fits into memory. The goal is to
gracefully degrade from one-pass sort to building the index and increasing
the number of pages per region as required. The memory provided to the
algorithm is treated as a large byte array. It is shared by the minimum index,
allocated from the start of the array, and a cache of input pages/tuples. If
the minimum index becomes full during the initial scan, memory is returned
to the operator by discarding cached pages. Once all cache pages have been
discarded, the minimum index is merged when it becomes full.

The algorithm begins by caching pages, or tuples (depending on the
operator below), in memory. If the entire relation fits into available memory,
an in-place sort is performed. If the buffer becomes full while performing
the initialization pass, the first page is released. This page is assigned to
the minimum index and the first entry in the index stores the smallest sort
key value of the page that was just released. The minimum sort key value
of each page located in the cache is added to the index. At this point, the
buffer consists of the minimum index, containing the smallest sort key value
of each page encountered so far, and one or more cached data pages. As each
page is read, the minimum sort key value is determined. A newly read page

23

3.2. Adapting to Memory Limits

is cached by overwriting the page with the largest minimum sort key value.
Potentially, all of the buffer will contain the minimum index and there is
still is not enough memory to store an index value for each page. At this
point, the previous algorithm that produces regions representing multiple
pages by merging adjacent regions is used.

Data

9 9 9 9

9 8 9 9

1 9 9 1

8 8 7 7

6 6 6 5

Page#

1

2

3

4

5

Pages 1−5

Data

5 2 1 1

1 9 8 7

2 _ _ _

2 1 2 1

2 3 4 5

Page#

min

min

min

7

9

Page 9

Data

4 4 3 2

2 1 2 1

1 1 1 1

5 2 1 1

1 9 8 7

Page#

min

min

6

7

8

Page 8

Data

1 9 8 7

4 4 3 2

5 2 1 _

2 1 2 1

6 6 6 5

Page#

min

min

6

7

5

Page 7

6 6 6 5

8 8 7 7

4 4 3 2

5 2 _ _

1 9 8 7

DataPage#

min

min

6

4

5

Page 6

2 6 _ _

5 2 1 1

1 9 8 7

2 1 2 1

6 7 8 9

Data

min

min

min

7

10

Page#

Page 10
Data

1 9 8 7

5 2 1 1

2 6 8 _

2 1 2 1

9 8 9 8

Page#

min

min

min

7

11

Page 11
Page#

min

min

min

7

12

Data

1 9 8 7

5 2 1 1

2 6 8 8

2 1 2 1

8 9 9 9

Page 12

Figure 3.4: Dynamic Input Buffering Example

Figure 3.4 shows an example of the algorithm using our running example.
There are five pages of memory are available. In the diagram, the Page#
column shows what page is in that buffer slot (either an input page number
or min to indicate the page is used by the minimum index), and the Data
column shows the actual data in that page.

The first five pages are directly read into the buffer. Before reading page
6, a cached page must be released. Since the algorithm cannot do a one-pass
sort, it determines the smallest sort key value of each page and builds the
minimum index. The minimum index occupies all of the first page and the
first element of the second page. Since page 3 has the largest index value,
it is released and page 6 is loaded into that location. An entry for page 6
is added to the index. Now that page 4 has the largest index value, it is
released from the cache and page 7 is loaded into that location. An entry
for page 7 is added to the index. This process continues and page 8 replaces
page 5 in the cache. Loading page 9 requires a new page to be allocated to
the minimum index, and page 7 is released (its index value is the same as
page 8 and it is first in the minimum index). Pages 10 to 12 are read and
their minimum sort key values are added to the index.

24

3.3. Exploiting Direct Byte Reads

After reading the entire relation, three pages are used to store the min-
imum index and two pages are used to cache input. As the sort proceeds,
those two pages will store the most recently read pages. A cached page is
selected for release if it has the largest index value of all the pages in the
cache.

Note that for most datasets the minimum index will consume a small
amount of memory relative to the data page size. In the example, the
assumption is that each page can only store four integers and that tuples in
the input page consist only of the sort key. In practice, the sort key is often
a small number of bytes relative to the tuple size, and tens of tuples could
be stored on a page. Hence, a minimum index page would be used to index
more than four regions.

3.3 Exploiting Direct Byte Reads

One possible optimization to the Flash MinSort algorithm is that it does
not need to read entire pages when scanning a region. An entire tuple only
needs to be read when it is being sent to output. Otherwise, only the sort
key is read to determine the next smallest value in the region. This has
the potential to dramatically reduce the amount of I/O performed and the
amount of data sent over the bus from flash memory to the processor. If a
flash storage device supports direct byte addressable reads and the sort key
offsets can be easily calculated, searching for the minimum key in the region
does not require reading entire pages.

Figure 3.5 gives an example of direct byte reads. In this example, a page
contains 512 bytes and each tuple is 16 bytes wide. Each page contains
exactly 32 tuples. The highlighted value attribute is 4 bytes wide and it is
used as the sort key. Since tuples are fixed in size and do not span multiple
pages, the offset of the value attribute in every tuple can be calculated. If
the storage device is directly byte addressable, only 128 bytes need to be
read to examine all sort keys in a page. If it is not byte addressable, all 512
bytes must be read.

Page #1

Tuple #2

nodeId sensorId time value

Tuple #1

nodeId sensorId time value

0x00 0x10 0x20

Figure 3.5: Direct Byte Reads

25

3.4. Detecting Sorted Regions

3.4 Detecting Sorted Regions

An optimization for sorted regions allows the algorithm to avoid scan-
ning the entire block for the next minimum. Detecting sorted regions is an
optimization that can be done during the initial scan that determines the
minimum values in the regions and requires at least one bit of space per
region.

26

Chapter 4

Algorithm Analysis

This chapter compares the theoretical performance of Flash MinSort
with existing algorithms to determine classes of inputs where each algorithm
dominates.

4.1 Flash MinSort Performance

The performance of Flash MinSort is especially good for data sets that
are ordered, partially ordered, or exhibit data clustering. If a region consists
of only one page, then in the worst case a page I/O must be performed for
each tuple for a total of P +T page I/Os. It is possible that the entire page
must be scanned to find the next minimum value resulting in T+T ∗NT tuple
I/Os. If a region consists of multiple pages, then in the worst case a whole
region must be read for every tuple output (and a minimum calculated).
Then the number of page I/Os is P + T ∗NP and the number of tuple I/Os
is T + T ∗NP ∗NT .

In the best case, which occurs when the relation is sorted, the number
of page I/Os is 2 ∗ P (first pass to determine if each page is sorted and to
calculate minimums and a second pass that reads pages and tuples sequen-
tially). The number of tuple I/Os is 2 ∗ T . If the relation is reverse sorted,
the page I/Os are P +T ∗NP as it reads each page once and the tuple I/Os
are T +T ∗NP ∗NT as it must search the entire region for the next minimum
every time.

On average for random, unsorted data the performance depends on the
average number of distinct values per region, DR. The algorithm scans a
region for each distinct value it contains. Each scan reads all tuples and
pages in a region. Average page I/Os is: P + R ∗DR ∗NP = P ∗ (1 +DR)
and average tuple I/Os is: T + R ∗DR ∗NP ∗NT = T ∗ (1 + DR). With a
sorted region, the algorithm does not scan the region for each distinct value
as long as it does not leave the region and return. If the algorithm leaves
a region, it must start the scan from the beginning again since it does not
remember its last location. A binary search can be used instead of a linear
search from the beginning for a sorted region. We have also investigated the

27

4.2. Algorithm Comparison

performance of storing both the minimum value and the offset in the region
to avoid scanning the region, but the results did not show an improvement
as additional memory is consumed that is better used to reduce the region
size.

Considering only byte I/Os, the amount transferred in the worst case is
T ∗LK +T ∗LT +T ∗NP ∗NT ∗LK , the average case is T ∗LK +T ∗LT +R∗
DR ∗NP ∗NT ∗LK , and the best case is T ∗LK + T ∗LT . The term T ∗LK

is the cost to perform the initial scan and compute the minimums for each
region. This scan does not need to read the entire tuple (or pages), but only
the key values. The second term, T ∗LT , is the cost to read and output each
tuple in the file in its correct sorted order. The last term varies depending
on the number of region scans. Each region scan costs NP ∗NT ∗LK as the
key for each tuple in the region is read. In the best case, a region is scanned
only once and tuples are never revisited. In the worst case, each tuple will
trigger a region scan, and on average the number of region scans is R ∗DR.

In the example in Figure 3.1, the number of page reads is 39, tuple reads
is 148, and bytes read is 1444. In comparison, one key sort performs 10
passes reading all pages for a total of 120 page I/Os, 480 tuple I/Os, and
9600 bytes. The FAST(1) heap sort is able to only store 3 records in the
heap (ignoring all other overheads of the algorithm) and performs 16 passes
for a total of 192 page I/Os, 768 tuple I/Os, and 15,360 bytes. One key
sort reads three times more pages and over six times more bytes than Flash
MinSort, and heap sort reads almost five times more pages and over ten
times more bytes. This data exhibits a typical continuous function common
for sensor readings.

In the worst case with a random data set with all distinct sort key values,
Flash MinSort has costs of 60 page I/Os, 240 tuple I/Os, and 4800 bytes
which is still considerably better than the other two algorithms. The direct
read version of Flash Minsort would only read 1920 bytes.

4.2 Algorithm Comparison

The performance of one key scan depends directly on the number of
distinct sort keys D. The performance of heap sort depends on the sort
memory size M and tuple size LT . One key scan will be superior if D+ 1 <

T⌊
M−LP
LT+LI

⌋ or for simplicity D < T∗LT
M . If the number of distinct values is small

or the number of tuples or their size is large, one key scan will dominate.
Since M is small, one key scan dominates for sensor applications until D
approaches T .

28

4.2. Algorithm Comparison

Flash MinSort always dominates one key scan in both page I/Os: P (1 +
DR) < P (1 +D) and tuple I/Os: T (1 +DR) < T (1 +D) as DR the average
number of distinct values per region is always less than the number of distinct
values for the whole table D.

Basic Flash MinSort dominates heap sort when 1 + DR < T∗LT
M . Flash

MinSort is superior unless the size of the table being sorted T ∗ LT is a
small fraction of the available memory (e.g. input table is only twice the
size of available memory). In the worst case, DR = NT (each tuple in a page
is distinct), Flash MinSort will dominate unless the ratio of the input size
to the memory size is less than the number of tuples per page. Given the
amount of memory available, this is very rare except for sorting only a few
pages.

The adaptive version of Flash MinSort changes the analysis slightly.
First, both algorithms will perform a one-pass sort if the input fits in mem-
ory with identical performance. When the input is slightly larger than mem-
ory, Flash MinSort builds its minimum index and uses the rest of the space
available for buffering input pages. The pages are buffered according to their
minimum values (keep pages with smallest minimum in cache). In general,
Flash MinSort will perform 1 + DR ∗ (1 − hitRate) I/Os per page in this
case, with hitRate being the cache hit rate on each request. A rough esti-
mate of cache hit rate can be calculated by determining the percentage of
the input relation buffered in memory which is M−P∗LK

T∗LT
which is approx-

imately M
T∗LT

since the space used for the minimum index, P ∗ LK , will
typically be small. Thus, adaptive Flash MinSort will dominate heap sort
when 1 +DR ∗ (M

T∗LT
) < T∗LT

M .
As a best case example for heap sort, assume a 2 to 1 input to memory

size ratio with M=2000 bytes, T ∗LT=4000 bytes, LP=500 bytes, and P=8
pages. The number of passes for heap sort is 2, so each page is read twice.
The number of times each page is read by Flash MinSort is 1 +DR, and the
cache hit rate is approximated by M−P∗LK

T∗LT
= 2000−16

4000 ≈ 0.50. The actual
number of reads per page is 1+0.5∗DR. The value of DR will determine the
superior algorithm, but the addition of the input page cache makes Flash
MinSort much more competitive in this memory ratio range.

In comparison to external merge sort, the relative performance depends
on two critical factors: the number of distinct sort keys and the write-to-
read time ratio. The number of distinct sort keys affects only Flash MinSort.
The write-to-read time ratio is how long a write takes compared to a read.
As each pass in the sort merge algorithm both reads and writes the input,
a write ratio of 5:1 would effectively cost the equivalent of 6 read passes.

29

4.3. Sorting in Data Processing

To simplify the discussion, we will assume that external merge sort is given
sufficient memory to only require two passes. In practice, this is highly
unlikely due to the device memory constraints. With this amount of memory,
Flash MinSort is able to have a region be one page, and the minimum index
consumes a small amount of memory leaving a lot of memory for input
buffering. If the write-to-read ratio is X, then Flash MinSort dominates if
P ∗ (1 + DR) < (2 + X) ∗ P or DR < X + 1. Since the common ranges
of the write-to-read ratio are from 5 to 100, and DR is bounded by the
number of records that can fit in a page (NT), Flash MinSort will dominate
external merge sort for a large spectrum of the possible configurations even
while using considerably less memory and performing no writes. Similar
to the previous analysis, the adaptive version of Flash MinSort reduces the
number of actually I/Os performed based on the cache hit rate which has a
significant affect for input to memory ratios in the range of 1 to 10.

The previous analysis considered only complete page I/Os, if the flash
chip allows direct memory reads, the performance of Flash MinSort is even
better. As discussed in Section 4.1, Flash MinSort will only read the keys
when scanning a page to update its minimum index and only retrieve the
tuple required from a page rather than the whole page when outputting
individual tuples. This results in considerable savings in bytes transferred
from the device and bytes transferred from device buffers to the processor
over the bus.

4.3 Sorting in Data Processing

Sorting is used extensively in data processing for ordering output, joins,
grouping, and aggregation. For sorted output, the sort operator is typically
applied at the end of the query plan. Sorting used for joins, grouping, and
aggregation requires the algorithm to be implemented in an iterator form.
This section discusses some of the issues in using Flash MinSort in iterator-
based query plans.

Sorting a base table can be done with or without using an iterator im-
plementation as the algorithm has direct access to the table stored in flash.
Flash MinSort requires the ability to perform random I/Os within the input
relation. At first glance, Flash MinSort does not work well in the itera-
tor model as it requires the input relation to be materialized to allow for
random reads that it uses to continually get the next smallest tuple. One
simple solution would be to materialize the input relation before the opera-
tor. Materialization is typically used [2] as an alternative to rescanning the

30

4.3. Sorting in Data Processing

input many times which is often more costly than materialization depending
on the complexity of the subplan. However, in many cases avoiding materi-
alization is preferable due to the large write cost and the temporary space
that is required.

A better alternative is to exploit the well-known idea of interesting orders
for sorting [38]. Instead of executing the sort as the top iterator in the tree,
the sort can be executed first during the table scan and ordering preserved
throughout the query plan. This allows Flash MinSort to execute without
materialization. Depending on the query plan, early sorting with Flash
MinSort may still be more efficient than performing sort as the last operation
using other algorithms.

Consider a query plan, such as Figure 2.2, consisting of a base table
scan, selection, projection, and sort to order the output. The plan with
the sort on top is only executable with Flash MinSort if the input from
the projection is materialized first. However, if the sorting is done first the
plan is executable and may still be more efficient than the original plan
using another sort algorithm. The selection potentially reduces the number
of distinct values to be sorted, and both operators reduce the size of the
input relation in terms of bytes and pages. Let σ represent the selectivity
of the selection operator, and α represent the reduction in input size from
projection. Thus, if the original table was of size T ∗LT the sorted relation
size is σ ∗ α ∗ T ∗ LT . The cost formulas in the following section can be
modified by multiplying by σ and α to compare the performance of Flash
MinSort with the other operators. A similar analysis holds for plans with
joins, so the query optimizer can easily cost out all options to select the best
plan.

As an example, consider a query plan involving a sort, projection, se-
lection, and base table scan. The base table has P=20 pages with LP=500
bytes, so the input size is 10000 bytes. Assume M=1000 bytes, the selectiv-
ity σ = 0.5, and the size reduction due to projection α=0.4. The effective
input size for the sort if performed as the top operator of the query plan
is 10,000 bytes * 0.5 * 0.4 = 2000 bytes. Since M=1000 bytes, two passes
would be required for external merge sort or heap sort. For external merge
sort, this involves writing 2000 bytes to flash as sorted runs and merging.
For heap sort, unless the input is materialized, this requires executing the
subplan twice. Thus the total I/Os is 20,000 bytes (as the input relation
needs to be scanned, filtered, and projected twice). If Flash MinSort was
executed above the base table scan to allow random I/Os, its effective input
size is 10,000 bytes. The number of input table scans is 1 +DR. Depending
on the value of DR, Flash MinSort may have as good performance as heap

31

4.3. Sorting in Data Processing

sort despite sorting a larger input. Clearly, the best choice depends on the
ratio of the input size to memory size for both algorithms and the selectivity
and projectivity of the plan. Note that subplans with non-materialized joins
would be especially costly to re-execute if performing heap sort.

32

Chapter 5

Experimental Evaluation

The experimental evaluation compares Flash MinSort with one key sort,
heap sort, and the standard external merge sort algorithm. The sensor
node used for evaluating these algorithms has an Atmel Mega644p proces-
sor clocked at 8 MHz, 4KB of SRAM, and a 2MB Atmel AT45DB161D [4]
serial flash chip. The maximum amount of memory available to an operator
is 2KB, with the rest of system memory used for critical node functionality.
The serial flash has a page size of 512 bytes. This sensor node design was
used for field measurement of soil moisture and integrated with an auto-
mated irrigation controller [16]. The system was designed to take sensor
readings at fixed intervals and periodically send data back to the controller.

The data used for evaluation was collected at one minute intervals over
a period of three months. Continuous portions of three months of the live
sensor data were loaded onto the device for testing. The algorithms were
also run on pre-generated ordered and random data sets. The tuple size is
16 bytes and the sort key attribute is a 2 byte integer. In the real sensor
data, this attribute is the soil moisture reading computed from a 10-bit
analog-to-digital converter. All results are an average of three runs.

5.1 Raw Device Performance

The performance of the Atmel DataFlash chip was tested by benchmark-
ing the read and write bandwidth. The data used for benchmarking con-
tained 50,000 records. The Atmel chip provides three different read mecha-
nisms: direct byte array reads to RAM, direct page reads to RAM, and page
reads to an internal buffer and then to RAM. We constructed three types of
file scans: one that reads individual tuples using a direct byte array read, a
second that reads a whole page to RAM, and a third that reads a page into
an on-chip buffer then access the tuples on the page one at a time. The time
to scan the file with each of these methods was 5.31, 3.68, and 5.76 seconds
respectively. Thus, buffering has limited performance difference compared
to direct to RAM reads. However, there is a performance difference in trans-
ferring large amounts to RAM from flash memory (buffered or not) as there

33

5.2. Real Data

are fewer requests to be sent over the bus with each request having a cer-
tain setup time. Although there is a full page memory cost of doing the
direct page read, we use it for one key sort, heap sort, and Flash MinSort
to improve their performance and do not count this memory usage for the
algorithm. The first two algorithms especially benefit because they perform
numerous sequential scans of the data.

The direct byte array read feature allows Flash MinSort to read only the
sort keys instead of the whole page. We tested two types of key scans. The
first reads only the keys directly from flash and the second reads keys from a
page stored in a flash buffer. For 16 byte records (32 records per page), the
time to perform a key scan using these methods was 2.13 and 2.64 seconds
respectively. We use the first method that reads keys directly from flash since
it has the best performance and does not require buffering a page in RAM
for good scan performance. The performance of this direct read increases
further as the record size increases relative to the key size. The ability
to only read bytes of interest has a significant performance improvement,
primarily due to the time to transfer the data over the bus to the CPU from
the device.

In terms of write performance, the flash memory requires an on-chip
buffer to be filled and then written out to a page. You can either fill the on-
chip buffer a tuple at a time or a page at time. For writing 50,000 records,
buffering a tuple at a time takes 25.03 seconds and buffering a page at a
time takes 23.02 seconds. In the case where a singe tuple is transferred at
a time, the write-to-read ratio is 4.72. When transferring entire pages, the
write-to-read ratio is 6.26. The raw read and write performance of the flash
chip is masked by the slow processor and limited bus bandwidth on the
sensor node.

5.2 Real Data

The real dataset consists of 100,000 records (1.6MB) collected by a sensor
network during Summer 2009 [16]. The schema can be found in Table 5.1.
The data used for testing is a 10,000 record (160KB) subset of the sensor
network data. Since the individual sensor nodes collected soil moisture, the
data has few distinct values and they are temporally clustered. There are 42
distinct sort key values and the average number of distinct sort key values
per page is 1.79. The performance of the algorithms by time and disk I/Os is
shown in Figures 5.1 and 5.2. Each chart shows the algorithm performance
as the amount of memory increases. Note that the charts do not display

34

5.2. Real Data

the data for heap sort as its times are an order of magnitude larger. For a
memory size of 100 bytes (4 tuples), the time is 3,377 seconds and for 1200
bytes (60 tuples), the time is 302 seconds. Heap sort is not competitive on
this device since the maximum amount of memory available is 2KB.

One key sort has better performance due to the small number of distinct
sort key values. This type of data is common in sensor applications due to
the use of 10-bit analog-to-digital converters. The performance of One key
sort does not improve with additional memory.

There are two implementations of Flash MinSort: basic Flash MinSort
transfers a complete page from the flash to RAM and MinSortDR performs
direct reads of the sort keys from flash. All algorithms, with the exception
of MinSortDR, require an I/O buffer in memory. This buffer is common
to all algorithms that perform disk I/O and it is not included in the cost.
MinSortDR performs fewer I/Os than regular Flash MinSort and is faster
for small memory sizes. For clustered data, this performance advantage de-
creases as more memory becomes available since Flash MinSort will output
a greater number of records on each page it retrieves. The relative perfor-
mance of MinSortDR would be even better if the dataset had a larger record
size. With 32 records per page, there are 32 separate I/O operations to re-
trieve 2 bytes at a time. Since there is an overhead to each I/O operation,
direct reads of the sort keys is not much faster than reading the entire page
of data in a single call.

Table 5.1: Soil Moisture Table Schema

Attribute Type Width
year unsigned byte 1
month unsigned byte 1
day unsigned byte 1
hour unsigned byte 1
minute unsigned byte 1
second unsigned byte 1
sensorid unsigned short 2
nodeid unsigned short 2
value unsigned short 2
flow unsigned short 2
zone unsigned byte 1
status unsigned byte 1

External merge sort requires a minimum of three pages (1,536B) of mem-
ory to sort a dataset. With three pages of memory, seven write passes
(1.12MB) and eight read passes (1.28MB) are performed with a run time
of 76 seconds. Given little memory, Flash MinSort is faster than external
merge sort and it does not require any writes to flash. As memory increases,

35

5.3. Random Data

external merge sort becomes more competitive. However, for small memory
sizes typically found on wireless sensor nodes, external merge sort is not
executable.

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

T
im
e
(s
ec
on
ds
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.1: Sorting 10,000 Real Data Records (Time)

5.3 Random Data

The random data set consists of the 10,000 records, but each original
data value was replaced with a randomly generated integer in the range
from 1 to 500. This number of records was selected as the performance of
one key sort becomes too long for larger relations, and it is realistic given
that sensor values are commonly in a narrow range. The performance of the
algorithms by time and I/Os is shown in Figures 5.3 and 5.4. Both heap
sort and one key sort have the same execution times regardless of the data
set (random, real, or ordered). External merge sort took 78 seconds for the
random data set as the sorting during initial run generation took slightly
more time.

36

5.3. Random Data

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

I/O
(m
eg
ab
yt
es
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.2: Sorting 10,000 Real Data Records (Disk I/O)

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

T
im
e
(s
ec
on
ds
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.3: Sorting 10,000 Random Records (Time)

37

5.4. Ordered Data

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200

I/O
(m
eg
ab
yt
es
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.4: Sorting 10,000 Random Records (Disk I/O)

5.4 Ordered Data

The ordered data set consists of the same 10,000 records as the real data
set except pre-sorted in ascending order. The results are in Figures 5.5 and
5.6. As expected, Flash MinSort dominates based on its ability to adapt to
sorted inputs. The basic Flash MinSort implementation does not explicitly
detect sorted regions but still gets a benefit by detecting duplicates of the
same value in a region. MinSortDR stores a bit vector to detect sorted
regions as a special case. This along with only retrieving the bytes required
gives a major advantage. One key sort is still competitive while heap sort
(not shown) is not for these memory sizes. Heap sort has the same execution
time as the previous two experiments. External merge sort took 75 seconds.

38

5.4. Ordered Data

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

T
im
e
(s
ec
on
ds
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.5: Sorting 10,000 Ordered Records (Time)

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

I/O
(m
eg
ab
yt
es
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.6: Sorting 10,000 Ordered Records (Disk I/O)

39

5.5. Berkeley Dataset

5.5 Berkeley Dataset

The Berkeley dataset was collected from a sensor network at the Intel
Berkeley Research Lab [25]. This dataset contains 2.3 million records col-
lected by 54 sensor nodes with on-board temperature, light, humidity and
voltage sensors. The schema can be found in Table 5.2. Each record is 32
bytes in size and each page of flash contains 16 records.

Table 5.2: Berkeley Table Schema

Attribute Type Width
year unsigned short 2
month unsigned short 2
day unsigned short 2
hour unsigned short 2
minute unsigned short 2
second unsigned short 2
epoch unsigned short 2
moteid unsigned short 2
temperature float 4
humidity float 4
light float 4
voltage float 4

Table 5.3: Berkeley Data Distinct Values

Attribute Total Distinct Average Distinct Per Page
temperature 847 9.03
humidity 467 8.14
light 62 2.90

A 5,000 record subset of this dataset was used to evaluate the sorting
algorithms. Information on the number of distinct sort keys and the average
number of distinct sort keys per page can be found in Table 5.3. Figures
5.7 and 5.8 show the execution time and disk I/O of the algorithms when
sorting the dataset on the light attribute. Given three pages of memory,
external merge sort took 60.02 seconds to complete. Figures 5.9 and 5.10
repeat these experiments for the humidity attribute. In this case, external
merge sort took 59.87 seconds to complete. Finally, Figures 5.11 and 5.12
show the results of sorting on the temperature attribute. External merge
sort took 59.83 seconds to complete.

With the exception of external merge sort, these figures are consistent
with the results in previous sections. It is possible that external merge sort
is faster for this dataset because there is half the number of records and the
initial sort phase doesn’t copy as much data in memory.

40

5.5. Berkeley Dataset

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Ti
m

e
(s

ec
on

ds
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.7: Sorting on Light Attribute (Time)

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

I/O
(m

eg
ab

yt
es

)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.8: Sorting on Light Attribute (Disk I/O)

41

5.5. Berkeley Dataset

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

Ti
m

e
(s

ec
on

ds
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.9: Sorting on Humidity Attribute (Time)

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200

I/O
(m

eg
ab

yt
es

)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.10: Sorting on Humidity Attribute (Disk I/O)

42

5.5. Berkeley Dataset

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200

Ti
m

e
(s

ec
on

ds
)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.11: Sorting on Temperature Attribute (Time)

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200

I/O
(m

eg
ab

yt
es

)

Memory (bytes)

OneKey
MinSort

MinSortDR

Figure 5.12: Sorting on Temperature Attribute (Disk I/O)

43

5.6. Adapting to Memory Limits

5.6 Adapting to Memory Limits

Figures 5.13 and 5.14 contain a comparison between the adaptive and
base versions of the algorithm. It demonstrates sorting a dataset where
there is either enough memory to sort a dataset in-place or cache one or
more pages. Figure 5.13 shows the real dataset and Figure 5.14 shows the
random dataset. In both figures, the algorithms are provided with a fixed
2KB of memory and the size of the dataset is gradually increased from 800B
(50 tuples) to 9600B (600 tuples).

In both figures, the adaptive version of Flash MinSort outperforms the
base version when the dataset can be sorted in-place. At 200 tuples, the
dataset cannot be sorted in-place and the adaptive version has a slight ad-
vantage because it caches pages in memory instead of reading from flash. In
the real dataset, the base version of the algorithm performs 18 page reads
and the adaptive version performs 14 page reads with 4 cache hits. In the
random dataset, the base version of the algorithm performs 177 page reads
and the adaptive version performs 71 page reads with 106 cache hits. As the
dataset grows larger, the caching performance advantage disappears since
the number of cache hits is very small relative to the total number of pages
read.

0

50

100

150

200

250

300

0 100 200 300 400 500 600

T
im
e
(m
ill
is
ec
on
ds
)

Tuples

MinSortAdapt
MinSort

Figure 5.13: In-place Optimization (Real)

44

5.6. Adapting to Memory Limits

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600

T
im
e
(m
ill
is
ec
on
ds
)

Tuples

MinSortAdapt
MinSort

Figure 5.14: In-place Optimization (Random)

Figures 5.15 and 5.16 demonstrate the performance of the two versions
of the algorithm with small memory sizes. The dataset in both figures is
160KB (10,000 tuples). Figure 5.15 shows the real dataset and Figure 5.16
shows the random dataset. In both figures, the base version of the algorithm
has a performance advantage because the size of the dataset is known when
determining the number of pages represented by a region. The adaptive
version of the algorithm determines the region size as it performs the initial
scan of the relation. Given 50 bytes of memory, both versions of the Flash
MinSort algorithm have 20 regions in the index, with each region represent-
ing 16 pages of tuples. Increasing the amount of memory to 75 bytes, the
base version of the algorithm has 33 regions, with each representing 10 pages
of tuples. The adaptive version does not take advantage of the additional
memory and still has 20 regions in the index. The performance difference
between the two versions at these points can clearly be seen in the figures.

45

5.6. Adapting to Memory Limits

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500

T
im
e
(s
ec
on
ds
)

Memory (bytes)

MinSortAdapt
MinSort

Figure 5.15: Adaptive Algorithm (Real)

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500

T
im
e
(s
ec
on
ds
)

Memory (bytes)

MinSortAdapt
MinSort

Figure 5.16: Adaptive Algorithm (Random)

46

5.7. Distinct Sort Key Values

5.7 Distinct Sort Key Values

This section examines the effect of increasing the average number of dis-
tinct sort key values per region (DR) on the sorting algorithms discussed in
previous sections. Three datasets were generated with different DR values.
The record size is 16 bytes and the sort key is a 2 byte integer. All experi-
ments have 1600 bytes of available memory, which is more than enough for
Flash MinSort to represent each page as a region in the index.

Figures 5.17 and 5.18 show the execution time and disk I/O of the al-
gorithms on a dataset with DR = 8. Figures 5.19 and 5.20 repeat these
experiments with DR = 16. Finally, Figures 5.21 and 5.22 show the results
with DR = 32. Flash MinSort is the only algorithm effected by properties
of the dataset other than record size and the number of records. The run-
time of Flash MinSort is longer as DR increases because more disk I/O is
performed. The runtime on a dataset containing 2000 tuples increases from
2.15 seconds with DR = 8 to 6.6 seconds with DR = 32.

In the final two sets of figures, Flash MinSort is faster than heap sort
even for dataset sizes where it performs more disk I/O. This is likely due
to the cost of maintaining the heap by copying a large amount of data in
memory.

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

Ti
m

e
(s

ec
on

ds
)

Dataset (tuples)

MinSort
MinSortDR

HeapSort
MergeSort

Figure 5.17: Time (DR = 8)

47

5.7. Distinct Sort Key Values

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000

I/O
(k

ilo
by

te
s)

Dataset (tuples)

MinSort
MinSortDR
HeapSort

MergeSort-Read
MergeSort-Write

Figure 5.18: Disk I/O (DR = 8)

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

Ti
m

e
(s

ec
on

ds
)

Dataset (tuples)

MinSort
MinSortDR

HeapSort
MergeSort

Figure 5.19: Time (DR = 16)

48

5.7. Distinct Sort Key Values

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000

I/O
(k

ilo
by

te
s)

Dataset (tuples)

MinSort
MinSortDR
HeapSort

MergeSort-Read
MergeSort-Write

Figure 5.20: Disk I/O (DR = 16)

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

Ti
m

e
(s

ec
on

ds
)

Dataset (tuples)

MinSort
MinSortDR

HeapSort
MergeSort

Figure 5.21: Time (DR = 32)

49

5.8. Solid State Drives

0

200

400

600

800

1000

1200

0 500 1000 1500 2000

I/O
(k
ilo
by
te
s)

Dataset (tuples)

MinSort
MinSortDR
HeapSort

MergeSort-Read
MergeSort-Write

Figure 5.22: Disk I/O (DR = 32)

5.8 Solid State Drives

Accessing data stored on a SSD is considerably different from accessing
data stored on an individual flash chip. Although SSDs use arrays of flash
memory chips as their underlying storage technology, they contain a sophis-
ticated controller that provides block-level access to the operating system.
This controller typically implements on-device buffering, logical-to-physical
address translation, error detection and wear leveling. Unlike earlier exper-
iments with flash chips, all I/O operations on a SSD must be performed at
the page level. Some SSDs achieve nearly symmetric read/write throughput
by using large on-board buffers and real-time data compression to reduce
write amplification. The maximum performance of these drives can only be
reached when they are used to store highly compressible data.

Experiments were run on a workstation containing an Intel Core i7-
950 3.06GHz processor, 16GB DDR3 and a 120GB OCZ Vertex 2 SATA
II SSD[20]. This workstation ran CentOS 5.6 and the SSD was formatted
with the ext3 file system. The performance of most SSDs depends on the
amount of data being transferred to or from the disk. Larger transfer sizes
are split into page-sized chunks and transferred in parallel across an array
of on-device flash chips. Figure 5.23 shows the read and write throughput
of the OCZ Vertex 2. Throughput was calculated by averaging five runs of
the IOzone benchmarking utility [10]. Optional flags were set to bypass the

50

5.8. Solid State Drives

operating system’s page cache and perform direct reads and synchronous
writes on a 1GB file. A queue depth of one was chosen so that this test
accurately reflects the workload created when sorting a single dataset. This
drive has a maximum sequential read bandwidth of 238MB/s at a transfer
size of 2MB. The maximum sequential write bandwidth was 205MB/s at a
transfer size of 4MB. The SandForce 1222 controller in the Vertex 2 uses
on-the-fly data compression to provide nearly symmetrical read and write
bandwidth.

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Tr
an

sf
er

R
at
e
(m

eg
ab

yt
es

/s
ec

on
d)

Transfer Size (kilobytes)

Seq. Read
Seq. Write

Rand. Read
Rand. Write

Figure 5.23: SSD Throughput Benchmark

The following experiments compare the Flash MinSort algorithm with
external merge sort. These experiments use real and random datasets. Each
dataset contains 10,000,000 tuples and has a total size of 16MB. The real
dataset contains 135 distinct sort key values. This data is the result of
copying the full soil moisture sensor dataset used in previous experiments
100 times. The random dataset contains 500 distinct sort key values that are
uniformly distributed. All experiments use direct I/O to bypass the kernel’s
page cache.

These datasets are much larger than previous experiments on the sensor
node. The size of index used by Flash MinSort can become very large when
given enough memory to store a value for each page. To reduce the overhead
of performing a linear scan over the entire index for each distinct sort key
value, a binary min heap is used to store the index. A node in the heap
consists of a region number and the smallest sort key value in that region.

51

5.8. Solid State Drives

Initially, the entire dataset is scanned to find the smallest sort key value
in each region. Once a region has been scanned, its node is inserted into
the heap. During each iteration of the algorithm, the root node is removed
from the heap to determine the region to be scanned and the current sort
key value. The pages of that region are searched for records that have the
current sort key value. After all pages in the region have been read, the
node is updated with the next smallest sort key value and inserted into the
heap. If all tuples in a region have been sent to output, the node is not
inserted into the heap. This process repeats until the heap is empty. There
is additional overhead when using a heap to store the index since each region
requires 8 + LK bytes of memory on a 32-bit system. Flash MinSort is no
longer a stable sorting algorithm when a heap is used for the index.

Unlike earlier experiments, data does not have to be transferred in chunks
that are exactly equal to the physical page size of the SSD. The idea behind
the Flash MinSort algorithm is to use a dynamic index to sort a dataset
stored in external memory. Since I/O bandwidth is a bottleneck for external
sorting, the use of a dynamic index can significantly reduce the amount of
data transferred and the sort time. Given sufficient memory to store an
index entry for each page, a smaller logical page size has the potential to
reduce the amount of data transferred between external memory and the
processor. A smaller logical page size will never result in more data being
transferred; however, as seen in Figure 5.23, the transfer rate of a SSD is
low at small transfer sizes.

Figures 5.24 and 5.25 show the execution time and disk I/O of the Flash
MinSort algorithm as the logical page size is increased. These tests were run
on the real dataset and the algorithm was provided with enough memory to
create an index entry for each page of data. The optimal logical page size
depends on the average number of distinct sort keys per page. When sorting
the real dataset, the optimal logical page size is 32KB. If a larger logical page
size is selected, the increase in disk I/O will outpace the increase in transfer
rate. Figures 5.26 and 5.27 repeat this experiment using the random dataset.
In this case, the optimal logical page size is 1MB.

Figure 5.28 shows the performance of the Flash MinSort algorithm when
sorting the real dataset. The results are shown for page sizes of 32KB and
1024KB. Given less than 5KB of memory, Flash MinSort performs roughly
the same amount of I/O for both page sizes and the larger transfer size
is much faster. If the algorithm is given more memory, the smaller page
size results in less disk I/O and better performance. At 30KB of available
memory, Flash MinSort takes 41.23 seconds to sort the entire dataset. Figure
5.29 shows the performance of the Flash MinSort algorithm when sorting

52

5.8. Solid State Drives

40

50

60

70

80

90

100

110

4 8 16 32 64 128 256 512 1024 2048

Ti
m

e
(s

ec
on

ds
)

Page Size (kilobytes)

Figure 5.24: Real Data - Increasing the Logical Page Size (Time)

0

2

4

6

8

10

12

14

16

18

20

22

4 8 16 32 64 128 256 512 1024 2048

I/O
(g

ig
ab

yt
es

)

Page Size (kilobytes)

(a) Disk I/O

0

20

40

60

80

100

120

140

4 8 16 32 64 128 256 512 1024 2048

A
ve

ra
ge

D
is

tin
ct

K
ey

s

Page Size (kilobytes)

(b) Avg. Distinct Sort Keys Per Page

Figure 5.25: Real Data - Increasing the Logical Page Size (I/O)

53

5.8. Solid State Drives

400

500

600

700

800

900

1000

1100

1200

1300

1400

4 8 16 32 64 128 256 512 1024 2048

Ti
m

e
(s

ec
on

ds
)

Page Size (kilobytes)

Figure 5.26: Random Data - Increasing the Logical Page Size (Time)

30

35

40

45

50

55

60

65

70

75

80

4 8 16 32 64 128 256 512 1024 2048

I/O
(g

ig
ab

yt
es

)

Page Size (kilobytes)

(a) Disk I/O

200

250

300

350

400

450

500

550

4 8 16 32 64 128 256 512 1024 2048

A
ve

ra
ge

D
is

tin
ct

K
ey

s

Page Size (kilobytes)

(b) Avg. Distinct Sort Keys Per Page

Figure 5.27: Random Data - Increasing the Logical Page Size (I/O)

54

5.8. Solid State Drives

the random dataset. In this case, the amount of disk I/O is roughly the
same for both page sizes and the larger transfer size is always faster.

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60

Ti
m

e
(s

ec
on

ds
)

Memory (kilobytes)

32KB
1024KB

(a) Time

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60

I/O
(g

ig
ab

yt
es

)

Memory (kilobytes)

32KB
1024KB

(b) Disk I/O

Figure 5.28: MinSort - Real Data

400

500

600

700

800

0 10 20 30 40 50 60

Ti
m

e
(s

ec
on

ds
)

Memory (kilobytes)

32KB
1024KB

(a) Time

65

70

75

80

85

0 10 20 30 40 50 60

I/O
(g

ig
ab

yt
es

)

Memory (kilobytes)

32KB
1024KB

(b) Disk I/O

Figure 5.29: MinSort - Random Data

Figure 5.30 shows the performance of external merge sort on the real
dataset with a 32KB page size. External merge sort requires a minimum of
three pages of memory. Figure 5.31 repeats this experiment with a 1024KB
page size. The performance of external merge sort is not shown for the
random dataset. The increase in execution time when sorting random data
is very small since the amount of disk I/O is unchanged. The small increase
in execution time is due to the time required to perform an in-place sort
on random data during the initial run generation. A comparison of the two
algorithms using the real dataset can be found in Figure 5.32. External
merge sort outperforms Flash MinSort as the amount of memory increases.

55

5.8. Solid State Drives

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7

Ti
m

e
(s

ec
on

ds
)

Memory (megabytes)

(a) Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7

I/O
(g

ig
ab

yt
es

)

Memory (megabytes)

Read
Write

(b) Disk I/O

Figure 5.30: MergeSort - Real Data (32KB Page Size)

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Ti
m

e
(s

ec
on

ds
)

Memory (megabytes)

(a) Time

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16

I/O
(g

ig
ab

yt
es

)

Memory (megabytes)

Read
Write

(b) Disk I/O

Figure 5.31: MergeSort - Real Data (1024KB Page Size)

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300

Ti
m

e
(s

ec
on

ds
)

Memory (kilobytes)

MergeSort
MinSort

(a) Time

0

2

4

6

8

10

12

14

16

18

20

22

0 50 100 150 200 250 300

I/O
(g
ig
ab
yt
es
)

Memory (kilobytes)

MergeSort-Read
MergeSort-Write

MinSort

(b) Disk I/O

Figure 5.32: Real Data Comparison (32KB Page Size)

56

Chapter 6

Conclusion

Flash MinSort outperforms one key sort and heap sort on memory con-
strained embedded devices. This performance advantage is due to its ability
to use low-cost random I/Os in flash memory to examine only relevant pages.
The performance of the algorithm is especially good when sorting datasets
that have few distinct values and exhibit clustering. Even when sorting a
random dataset, there is still a performance advantage because no expen-
sive write passes are performed. For flash storage that allows direct reads,
MinSortDR is even faster and does not have the in-memory page buffer
overhead of the other algorithms. MinSortDR would see even larger perfor-
mance gains if the sort key was smaller relative to the size of a tuple. Given
a larger tuple size, it would perform fewer small reads relative to the overall
size of the dataset.

Flash MinSort is a generalization of one key sort as both function the
same if there is only one region. The difference is that Flash MinSort is able
to use additional memory to divide the table into smaller regions and reduce
the amount of I/O performed. The primary factor in the performance of
both algorithms is the number of distinct values sorted. A smaller number
of distinct values results in better performance.

As the memory available increases, heap sort becomes more competitive.
It is not the absolute memory size that is important, but the ratio of memory
available versus sort data size. For small sensor nodes, both the absolute
memory and relative amount of memory is very limited. In the sensor node
architecture used for testing, heap sort can potentially outperform Flash
MinSort when the input dataset is less than ten pages in size. The reason
for this limitation is that we can buffer at most four pages (2KB) of data in
memory. If the dataset is larger than ten pages, the number of sequential
read passes and execution time increases significantly.

External merge sort has reasonable performance, but it will only be com-
petitive with Flash MinSort when it is supplied with additional memory to
generate larger initial sorted runs. Since external merge sort requires a min-
imum of three pages (1,536B) of memory, it is unsuitable for many low-cost
embedded systems applications. When given the smallest amount of mem-

57

Chapter 6. Conclusion

ory, external merge sort takes up to 4.5 times longer than Flash MinSort
to sort a typical dataset collected by wireless sensor nodes. External merge
sort performs fewer byte I/Os from flash, but the write-to-read ratio of a
typical flash memory chip contributes to the performance difference.

Another issue with external merge sort, and any other algorithm that
performs writes of the entire relation in passes, is that the amount of flash
memory consumed is three times the size of the relation. This extra storage
requirement includes the original relation, the sorted runs being merged, and
the sorted runs being produced in the current pass. If external merge sort is
used on the table storing sensor readings, the maximum input table is 1/3
of the maximum flash memory size and only one sort algorithm can run at
a time. Further, whenever writes are introduced the system must deal with
wear leveling. For applications whose primary function is environmental
monitoring and data collection, dealing with the additional space required
and wear leveling significantly complicates the design and performance.

The ability to adapt to the size of the dataset at runtime allows Flash
MinSort to be used in a standard database query planner. The adaptive
version sorts the dataset in-place when it is small enough to fit into memory.
When the ratio of cache hits to page reads is large, the adaptive version of the
algorithm provides a slight performance advantage. While Flash MinSort
is executable when there is very little memory available, it is not able to
outperform external merge sort running on a typical workstation with a
SSD.

An efficient sort operator greatly increases the local data processing ca-
pability of energy-constrained embedded devices. Flash MinSort uses very
little memory and is executable on the most computationally-constrained
devices. Compared to existing external sort algorithms for these devices,
it reduces the runtime and number of disk I/O operations required to sort
a dataset. Flash MinSort can be combined with other energy efficient op-
erators in an embedded database system to increase the functionality and
lifetime of low-cost embedded systems.

58

Bibliography

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey
on Sensor Networks. IEEE Communications, 40(8):102–114, Aug 2002.
→ pages 9, 10, 11, 12

[2] N. Anciaux, L. Bouganim, and P. Pucheral. Memory Requirements
for Query Execution in Highly Constrained Devices. In VLDB, pages
694–705, 2003. → pages 13, 14, 30

[3] P. Andreou, O. Spanos, D. Zeinalipour-Yazti, G. Samaras, and P. K.
Chrysanthis. FSort: External Sorting on Flash-based Sensor Devices.
In DMSN’09: Data Management for Sensor Networks, pages 1–6, 2009.
→ pages 13, 16

[4] Atmel. Atmel Flash AT45DB161D Data Sheet, 2010. → pages 9, 33

[5] Atmel. Atmel Corporation - Serial Flash,
(http://www.atmel.com/products/SFlash/), 2011. → pages 8

[6] R. Beckwith, D. Teibel, and P. Bowen. Report from the Field: Results
from an Agricultural Wireless Sensor Network. In Proceedings of the
29th Annual IEEE International Conference on Local Computer Net-
works, LCN ’04, pages 471–478, Washington, DC, USA, 2004. IEEE
Computer Society. → pages 10

[7] C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez. PicoDBMS:
Scaling Down Database Techniques for the Smartcard . In IN VLDB,
pages 11–20, 2000. → pages 9

[8] L. Bouganim, B. T. Jónsson, and P. Bonnet. uFLIP: Understanding
Flash IO Patterns. In CIDR, 2009. → pages 8

[9] C. Buratti, A. Conti, D. Dardari, and R. Verdone. An Overview
on Wireless Sensor Networks Technology and Evolution. Sensors,
9(9):6869–6896, 2009. → pages 9

59

Chapter 6. Bibliography

[10] D. Capps. Iozone Filesystem Benchmark (http://www.iozone.org/),
2006. → pages 50

[11] P. Chen, S. Oh, M. Manzo, B. Sinopoli, C. Sharp, K. Whitehouse,
G. Tolle, J. Jeong, P. Dutta, J. Hui, S. Shaffert, S. Kim, J. Taneja,
B. Zhu, T. Roosta, M. Howard, D. Culler, and S. Sastry. Experiments
in Instrumenting Wireless Sensor Networks for Real-Time Surveillance.
In Proceedings of the International Conference on Robotics and Au-
tomation, 2006. → pages 9

[12] T. Cossentine and R. Lawrence. Fast Sorting on Flash Memory Sensor
Nodes. In IDEAS 2010, pages 105–113, 2010. → pages 2

[13] D. Culler, D. Estrin, and M. Srivastava. Guest Editors’ Introduction:
Overview of Sensor Networks. Computer, 37:41–49, 2004. → pages 9

[14] T. E. Daniel, R. M. Newman, E. I. Gaura, and S. N. Mount. Complex
Query Processing in Wireless Sensor Networks. In Proceedings of the
2nd ACM Workshop on Performance Monitoring and Measurement of
Heterogeneous Wireless and Wired Networks, PM2HW2N ’07, pages
53–60, New York, NY, USA, 2007. ACM. → pages 12

[15] Y. Diao, D. Ganesan, G. Mathur, and P. J. Shenoy. Rethinking Data
Management for Storage-Centric Sensor Networks. In CIDR’07, pages
22–31, 2007. → pages 13

[16] S. Fazackerley and R. Lawrence. Reducing Turfgrass Water Consump-
tion using Sensor Nodes and an Adaptive Irrigation Controller. In IEEE
Sensors Applications Symposium (SAS), pages 90 –94, 2010. → pages
10, 33, 34

[17] M. J. Franklin, J. M. Hellerstein, and S. Madden. Thinking Big About
Tiny Databases. IEEE Data Eng. Bull., 30(3):37–48, 2007. → pages 12

[18] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The
Complete Book. Prentice Hall Press, Upper Saddle River, NJ, USA, 1
edition, 2002. → pages 3, 4, 6, 8

[19] J. Gehrke and S. Madden. Query Processing in Sensor Networks. IEEE
Pervasive Computing, 3:46–55, 2004. → pages 12

[20] O. T. Group. OCZ Vertex 2 Sata II 2.5 SSD - OCZ
(http://www.ocztechnology.com/ocz-vertex-2-sata-ii-2-5-ssd.html),
2010. → pages 50

60

Chapter 6. Bibliography

[21] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
Efficient Communication Protocol for Wireless Microsensor Networks.
In Proceedings of the 33rd Hawaii International Conference on System
Sciences - Volume 8, HICSS ’00, page 8020, Washington, DC, USA,
2000. IEEE Computer Society. → pages 11

[22] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health Monitoring of Civil Infrastructures using Wireless
Sensor Networks. In Proceedings of the 6th International Conference
on Information Processing in Sensor Networks, IPSN ’07, pages 254–
263, New York, NY, USA, 2007. ACM. → pages 9

[23] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison Wesley Longman Publishing Co., Redwood
City, CA, USA, 2 edition, 1998. → pages 5

[24] B. Krishnamachari. Networking Wireless Sensors. Cambridge Univer-
sity Press, 2005. → pages 9, 10, 11

[25] S. Madden. Intel Lab Data, (http://db.csail.mit.edu/labdata/labdata.html),
2004. → pages 40

[26] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB:
An Acquisitional Query Processing System for Sensor Networks. ACM
Transactions on Database Systems, 30:122–173, March 2005. → pages
12

[27] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Ander-
son. Wireless Sensor Networks for Habitat Monitoring. In Proceedings
of the 1st ACM International Workshop on Wireless Sensor Networks
and Applications, WSNA ’02, pages 88–97, New York, NY, USA, 2002.
ACM. → pages 10

[28] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-Low Power
Data Storage for Sensor Networks. In Proceedings of the 5th Interna-
tional Conference on Information Processing in Sensor Networks, IPSN
’06, pages 374–381, New York, NY, USA, 2006. ACM. → pages 8, 11

[29] R. Min, T. Furrer, and A. Chandrakasan. Dynamic Voltage Scaling
Techniques for Distributed Microsensor Networks. In Proceedings of
the IEEE Computer Society Workshop on VLSI, pages 43 –46, 2000.
→ pages 11

61

Chapter 6. Bibliography

[30] H. Park and K. Shim. FAST: Flash-Aware External Sorting for Mobile
Database Systems. Journal of Systems and Software, 82(8):1298 – 1312,
2009. → pages 13, 15

[31] P. Pavan, R. Bez, P. Olivo, and E. Zanoni. Flash Memory Cells - An
Overview. Proceedings of the IEEE, 85(8):1248 –1271, aug 1997. →
pages 8

[32] J. Polastre, R. Szewczyk, and D. E. Culler. Telos: Enabling Ultra-
Low Power Wireless Research. In Information Processing in Sensor
Networks, pages 364–369, 2005. → pages 11

[33] G. J. Pottie and W. J. Kaiser. Wireless Integrated Network Sensors.
Communications of the ACM, 43:51–58, May 2000. → pages 12

[34] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava.
Design Considerations for Solar Energy Harvesting Wireless Embedded
Systems. In IPSN ’05: Proceedings of the 4th International Symposium
on Information Processing in Sensor Networks, pages 457–462. IEEE
Press, 2005. → pages 11

[35] V. Raghunathan, C. Schurgers, S. Park, M. Srivastava, and B. Shaw.
Energy-Aware Wireless Microsensor Networks. In IEEE Signal Pro-
cessing Magazine, pages 40–50, 2002. → pages 11

[36] M. Vieira, C. J. Coelho, D. J. da Silva, and J. da Mata. Survey on
Wireless Sensor Network Devices. In Emerging Technologies and Fac-
tory Automation, pages 537–544, 2003. → pages 9, 11

[37] J. S. Vitter. External Memory Algorithms and Data Structures: Deal-
ing with Massive Data. ACM Computing Surveys, 33(2):209–271, 2001.
→ pages 6

[38] X. Wang and M. Cherniack. Avoiding Ordering and Grouping In Query
Processing. In VLDB, pages 826–837, 2003. → pages 31

[39] T. Wark, P. I. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman,
P. Valencia, D. Swain, and G. Bishop-hurley. Transforming Agriculture
through Pervasive Wireless Sensor Networks. IEEE Pervasive Comput-
ing, 6:50–57, 2007. → pages 10, 11

62

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Relational Databases
	2.1.1 Structured Query Language
	2.1.2 Query Plan
	2.1.3 Indexing
	2.1.4 Sorting

	2.2 Flash Memory
	2.3 Embedded Devices
	2.3.1 Smart Cards
	2.3.2 Wireless Sensor Networks

	2.4 External Sorting for Flash Memory Devices
	2.5 Summary

	3 Flash MinSort
	3.1 Algorithm Description
	3.2 Adapting to Memory Limits
	3.3 Exploiting Direct Byte Reads
	3.4 Detecting Sorted Regions

	4 Algorithm Analysis
	4.1 Flash MinSort Performance
	4.2 Algorithm Comparison
	4.3 Sorting in Data Processing

	5 Experimental Evaluation
	5.1 Raw Device Performance
	5.2 Real Data
	5.3 Random Data
	5.4 Ordered Data
	5.5 Berkeley Dataset
	5.6 Adapting to Memory Limits
	5.7 Distinct Sort Key Values
	5.8 Solid State Drives

	6 Conclusion
	Bibliography

