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Overview
Purpose

The aim of this project was to design and implement a system to allow for the real-time calculation of single-bounce 
indirect illumination in dynamic, interactive 3d-environments.

Overview

Indirect illumination is a natural phenomenon that results when light from a light source (known as direct lighting, or 
incident lighting) partially reflects off of a surface and continues to illuminate other surfaces until the majority of the 
light is absorbed. This effect is readily observed in every-day life, and is particularly noticeable in brightly-coloured 
environments. The primary effect of this indirect illumination is a general brightening of a given room, versus the 
ambient light level that would have resulted if lighting was a result of direct illumination only. A very pronounced 
consequence of this is an effect known as “light-bleeding”, where coloured light is reflected off one surface onto an-
other in a very noticeable fashion (such as when light bleeds off of a white couch onto a red wall, appearing to stain 
the wall red).

Indirect illumination, and in particular light bleeding, is a very powerful technique for softening the generally harsh 
lighting that direct lighting calculations provide in simulated 3d environments, and help to not only add a sense of 
realism to a scene, but also provide artists with a powerful tool to create mood and atmosphere.

Indirect illumination is not a new concept in 3d environments. In fact offline reproduction (pre-calculating lighting 
results in a pre-production phase) has been in use for several years - particularly in animated films. For example, 
Shrek 2 was the first film to incorporate the effect into its production. However until recently, commodity desktop 
graphics hardware has not been powerful enough to calculate the full lighting solution (both direct and indirect light-
ing) at speeds which would allow for seamless user interaction.

Over the last 10 years hardware dedicated to at first transforming 3d geometry and performing the direct illumina-
tion calculations, and recently to performing general purpose floating point calculates, has been developed at an in-
credible pace. This hardware is known as the graphics processing unit, or GPU, and works in tandem with the tradi-
tional CPU in order to provide ever-more elaborate lighting calculations at interactive frame rates. The GPU has now 
reached a performance threshold where it is now conceivable to move beyond direct illumination, which is the tradi-
tional approach to real-time lighting, and into performing both direct and indirect illumination in interactive scenes.

Candidate Approaches

A literature search in the area of real-time indirect illumination provided a list of possible candidate techniques that 
have been implemented on recent GPU architectures. The following were considered.

• Spherical Harmonics

! During a pre-processing step, the geometry of the scene is considered, and a light transfer function is calcu-
lated for each vertex in the scene. This transfer function is then encoded as a third-order wavelet and stored along 
with the scene geometry. At runtime, the entire transfer function can be quickly evaluated by taking the dot product 
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of the wavelet and the incident light vector, for each light in the scene. This technique provides very fast run-time 
evaluation of the indirect lighting solution, and provides other benefits such as soft-shadows, ambient occlusion, and 
support for sub-surface scattering. However, drawbacks include a very intensive and long pre-processing procedure, 
the ability to represent a transfer function for only distant light sources (such as the sun) due to wavelet compression, 
and support only for static geometry (wavelets can be rotated easily, which allows for dynamic, moving light sources, 
but they cannot be displaced, rendering the lighting solution invalid if geometry within the scene were to move). 
Finally, because a wavelet must be stored per-vertex, the storage requirements for the lighting solution quickly be-
come prohibitive for complex geometry. Unfortunately, the restrictions on scene geometry and light distance render 
this technique unfit for our purposes.

• Cube Map Array

! During level design, a grid array of light probes (implemented as cube maps on graphics hardware) are 
placed throughout the scene. At runtime, the world is rendered using directed lighting into each cubemap-probe and 
then blurred, providing a low-frequency representation of the incoming light at each probe position. This technique is 
very similar to a popular photography technique used to measure light levels and propagation within a room. For 
each vertex in the scene, the nearest N probes are interpolated and sampled, providing the amount of indirect light-
ing available to that surface. This technique provides a rough approximation of indirect illumination that maps fairly 
well to commodity graphics hardware, utilizing a natural data structure, and supports completely dynamic geometry. 
However the amount of scene geometry that must be processed when updating the light probes can quickly become 
a bottleneck, and choosing the correct N probes per-vertex results in a very large under-utilization of the graphics 
hardware (due to cache misses, which hurts parallelism performance).

• Photon Mapping

! During a pre-processing phase, photons are traced out from light sources into the scene geometry, and inter-
sections are  mapped to a spatially-aware data structure (such as a BSP tree, Octree, or K-D Tree). During runtime, 
light is traced from the incident light source and propagated using the accelerated data structure. The final values are 
then mapped into a texture for use on the GPU, and read in as part of the lighting equation. This technique has only 
been implemented with limited success, and has been largely abandoned as of late. The pre-processing step limits the 
solution to static geometry (unless highly elaborate schemes are employed to provide temporal updating of the accel-
erating data structure), and mapping the data structure to the GPU has proven to be a very large challenge.

• Screen-Space Indirect Illumination

! This technique is relatively new, and is an extension of an earlier technique pioneered by Crytek in their 
game Crysis. Crytek developed a screen-space (working only on scene information encoded in a texture from the 
user’s point of view) technique for faking ambient occlusion as a post-process, by comparing the depths and normals 
of small regions of pixels in order to accumulate a blocking factor for each given pixel in the scene. Screen Space Indi-
rect Illumination works in a very similar fashion, however instead of accumulating a blocking factor, an incoming 
reflected light factor is accumulated from neighboring pixels. While not even close to being physically accurate, this 
technique provides fast light bleeding and works well with small details and low frequencies. It maps very well the 
GPU (being entirely texture-based) and makes no assumptions on the general makeup of the scene. However this 
technique suffers from extreme locality - the search radius for influencing neighboring pixels must be kept moder-
ately small in order to maintain performance (a larger radius greatly increase the number of cache misses on the GPU 
and breaks parallelism), so many influences will be missed, and any influencers from outside of the user’s field of 
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view will not affect the indirect illumination for the scene. As a result, light bleeding can “pop” in and out, depending 
on scene occlusion. This lack of continuity renders this technique suitable only for small, low-resolution details.

• Reflective Shadow Maps

! Reflective shadow maps draws from the principle of deferred rendering in order to accelerate what is gener-
ally the most expensive step in the indirect lighting calculations - the light-ray intersection with the scene, required to 
location reflective surfaces. In this approach, the scene is rendered from each light’s point of view, with geometry 
position, normal, and diffuse reflectance (the direct lighting) encoded as textures in GPU memory, forming what is 
referred to as a geometry buffer. Each pixel in this geometry buffer acts as a point light source. This geometry buffer 
is iterated over, and the lighting contribution from each pixel is propagated back into the scene. This technique maps 
very well to modern graphics hardware, requires no pre-processing of the scene, handles fully dynamic scenes, and is 
not view dependent. However, treating each pixel in the geometry buffer as a light source is extremely expensive - a 
very large number of calculations must be performed per-pixel, saturating both memory and FLOP bandwidth, to the 
point where the technique is not viable for more than a single light source.

• Instant Radiosity

! Instant radiosity uses the fact that indirect lighting is low-frequency, and so attempts to minimize the num-
ber of light traces required to propagate light within a scene by interpolating lighting values between two points. This 
is mapped well to the GPU by treating each reflective point as a virtual 180 degree light dome (or spotlight) and util-
izing the GPU’s built in support for calculating direct lighting equations. At runtime, rays are traced from each light 
source until they intersect with the scene. At the point of intersection a virtual light source is placed, with its proper-
ties (radius of influence, colour) based on the reflective material properties of the given surface. The scene is then 
rendered with the accumulation of both the direct and indirect (via the virtual lights) light contributions. This tech-
nique is view-independent, makes no presumptions on the scene (and therefore handles dynamic geometry), and 
maps well to the GPU. However, much of the work is still done on the CPU (the scene ray-tracing) which is slow, and 
bottlenecks occur when attempting to transfer the virtual light information over to the GPU (the scene must be ren-
dered once per virtual light). Several hundred virtual light sources are required in order to produce an aesthetically 
pleasing light-bleed effect, rendering this technique impractical for all but the simplest scenes.

The Chosen Approach

A combination of three approaches was chosen in order to attempt to implement a solution that would allow for a 
single bounce of indirect illumination in fully dynamic and interactive scenes. The overall goal was to take the 
strengths from each technique and combine them in order to move as much work onto the GPU as possible, and map 
scene and lighting information into data structures that maximize GPU utilization. To do this, a hybrid of Screen 
Space Indirect Illumination, Reflective Shadowmaps, and Instant Radiosity was designed, as well as changing render-
ing paradigms from traditional forward rendering to deferred rendering.

Instant radiosity’s approach of using virtual light sources distributed throughout the scene to represent indirect light 
was chosen as it maps very well to the GPU architecture, taking advantage of modern techniques and advancements, 
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and is the least intrusive technique when used on arbitrary scene geometry. However, instead of tracing out light rays 
from each light source in order to place the virtual lights (a very slow process), a reflexive shadowmap will be used 
instead. The scene will be rendered from the light’s point of view, with each pixel representing a possible virtual light 
that can then be placed into the scene without any intersection tests. In order to minimize the number of lights gener-
ated, only a subset of pixels will be sampled (for sake of simplicity and generality, a poisson disc sampling pattern 
was used, pre-computed and stored in a texture lookup table). In order to address the bandwidth problems associ-
ated with rendering the scene once for each virtual light source, deferred rendering is used to shift all light rendering 
onto the GPU, so that scene geometry has a fixed overhead. Screen-Space Indirect Illumination is then performed on 
the final scene with a very small search radius, so that it can quickly fill in only minor, highly local details (such as 
light bleeding at contact points).

This approach supports dynamic scenes, is only partially view-dependent, is scalable, and maps very well to the 
GPU. Additionally, because no elaborate data structures are required, implementation is relatively simple, and can sit 
along side existing rendering infrastructures.

Deferred Rendering

Deferred rendering is an approach for rendering that attempts to separate geometry from lighting, decoupling the 
two so that an increase in complexity for one does not also increase the complexity for the other. In deferred render-
ing the scene is rendered from the user’s point of view, and geometry information (such as depth and surface normal) 
are encoded into textures and stored in a geometry buffer. Each light is then drawn into the scene using proxy geome-
try (a sphere for point lights, a cone for spot lights), sampling any pixels from the geometry buffer that the proxy ge-
ometry overlaps. Lighting is then calculated for these pixels using values from the geometry buffer, and stored into a 
light accumulation buffer. The scene is then rendered again with more material properties, sampling lighting values 
from the light accumulation buffer, and the result is a fully illuminated scene. By encoding the scene geometry into 
textures which are stored on the GPU, a large number of light sources may be rendered in real time without have to 
re-download scene data to the GPU for each light source. This alleviates the bandwidth bottleneck that plagues tradi-
tional forward rendering with complex scenes.
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Implementation
Overview

Original implementation was to be done using Java, on top of OpenGL (for cross-platform compatibility). However, 
after a couple of weeks worth of development on the java-based graphics engine, it was decided that too much time 
was being invested into infrastructure development. A switch was made to the TrueVision3D graphics engine, and 
DirectX. This allowed us to focus on implementation of the proposed lighting pipeline, and not have to worry about 
managing the graphics API, cross-platform compatibility, or resource management.

Light Pre-Pass, a specific technique for deferred rendering, was implemented with good success. A demo was built 
that showcased up to 1000 dynamic light sources (powered by the Newton physics engine) in view at the same time, 
running at over 60 frames per second.

Implementation of the reflexive shadowmap was also completed with success. Optimization techniques were used in 
both the geometry buffer required for the deferred rendering, and for the reflexive shadowmap.

Implementation of instant radiosity utilizing the reflexive shadowmap was met with mixed results. While the ap-
proach was technically implemented, performance and aesthetic results were not acceptable. More work is required 
in both the sampling pattern used for virtual light placement and scaling, and in optimizing the generation of the 
virtual lights.

Deferred Rendering

Fairly standard implementation of light pre-pass, utilizing a two-buffer system. One buffer stored the depth of the 
scene, from the camera, and another stored the world-space normals of the scene. Depth was used as it could be 
compressed from a floating point value to an integer using 4 channels of the buffer, cutting bandwidth requirements 
in half. Spherical coordinate compression was used for normals in order to reduce the number of required channels 
from 4 to 2, also to cut down on the bandwidth required for storage (specialized two-channel texture formats were 
used). Lights were rendered using instanced proxy geometry - light positions, ranges, colours and rotations were 
uploaded as a large block to the GPU, and the same light geometry was then modified solely on the GPU using these 
values. For 1000 light sources, this reduced the number of draw calls from 1000 to 4, for the light sources (a maximum 
of 250 light sources could be rendered in a single call). During rendering, depth information was decoded and used to 
reconstruct the world-space position of a given pixel, based on the view frustum. MRT (multiple render targets) was 
used in order to draw to multiple buffers with a single draw call. GPU utilization was fairly high with this approach, 
and performance exceeded expectations.

Reflexive Shadowmap

Implementation was very similar to the geometry buffer implemented for deferred rendering. The same compression 
techniques were implemented, and MRT was used. 3 buffers were required for the reflexive shadow map - depth, 
normals, and diffuse reflectance (often referred to as flux).
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Instant Radiosity

Implementation at this stage was difficult and never reached satisfactory results. While the theory worked (some 
light bleeding was observed by redistributing virtual lights using the reflexive shadowmap), the sampling pattern 
employed (using a poisson disc distribution) yielded concentrations of light in some areas of the scene, and a lack of 
indirect in others. Additionally, performance was poor, mostly due to the unoptimized read-back of pixel values on 
the CPU. A further optimization that was not attempted due to lack of time would be to generate the instancing data 
for the virtual lights purely on the GPU with no read-back, by having each light source use its index to sample a 
lookup table that could provide correct texture coordinates in order to sample from the reflective shadow map. This 
would (potentially) remove the bandwidth issues bottlenecking the current pixel read-back. Further work is required 
in order to come up with an optimal sampling pattern for light distribution, and for properly modeling the light 
transfer function.
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Conclusion
The feasibility of real-time indirect illumination in dynamic scenes is still an open question at this point in time. 
However, even with only the partial results observed in this study, there is indication that with further work and op-
timization, this combination of techniques could very well lead to a suitable implementation. The key work done in 
this study is adapting several existing techniques in order to better utilize the power of the GPU. Exceptionally posi-
tive results were observed with deferred rendering, and there is still a large amount of room available for further op-
timizations. At this point in time, instant radiosity still remains highly sensitive to “artist-based’ parameters, such as 
sampling pattern, strength of virtual light sources, and scaling of the scene. Further work in this area is recommended 
in order to better produce a natural, self-adjusting system that can automatically adjust to several different scene 
types.
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