
i

Extracting Patient Events from Clinical Text Using
Natural Language Processing

by Shanika Rajapakshe

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

B.SC. COMPUTER SCIENCE HONOURS

in

Irving K. Barber School of Arts and Sciences

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

April 2017

Qc Shanika Rajapakshe, 2017

ii

ABSTRACT:

The clinical progress note is one of the most crucial documents in medicine.

Details on a patient’s well being, progression through treatment, and future care

management are noted by the attending physician. This makes the progress note a

dense source of clinically relevant information. However, it requires a significant

amount of time for humans to read these notes and determine the best course of

action for the patient. Event Extraction, the recognition and mining of events from

text data, offers a streamlined method to accomplish this task. Traditionally,

computers are not well equipped to deal with the unstructured nature of human

language. Improvements in machine learning and natural language processing in

the recent past have lead to a proliferation of open source tools to deal with the

nuances of natural language.

This paper illustrates a natural language pipeline utilizing these tools for

intelligent event extraction in a clinical setting, dealing specifically with clinical

progress notes of lung cancer patients.

iii

Table of Contents

Abstract ... ii

Table of Contents ... iii

Acknowledgements ... iv

List of Tables ... v

List of Figures ... vi

Chapter 1: Introduction .. 1

Chapter 2: Background .. 2
2.1 Key Terms and Definitions ... 2

2.2 Overview ... 3

2.3 The Data .. 4

2.4 Event Extraction .. 4

Chapter 3: Dr. Zed .. 6
3.1 Data Preparation .. 6

3.2 Feature Extraction Preparation ... 11

3.3 Feature Extraction ... 13

Chapter 4: Algorithms and Methods .. 17
4.1 Logistic Regression ... 17

4.2 Nearest Neighbor Classifier .. 18

4.3 Multilayer Perceptron .. 18

4.4 Other Algorithms ... 19

Chapter 5: Evaluation and Results Analysis 20
5.1 Recurrence .. 21

5.2 Chemotherapy ... 24

Chapter 6: Conclusions ...28

6.1 Additional Work ... 28

6.2 Future Applications ... 29

Bibliography ... 30

iv

Acknowledgements

I would like to thank Dr. Jonn Wu, senior radiation oncologist and Chair of the Provincial

Head and Neck Tumour Group at the BC Cancer Agency for the motivation and idea behind

this project, Dr. Cheryl Ho for access to the patient cohort, which allowed for the pipeline to

be created and trained, and Dr. Ramon Lawrence for his advice and guidance in creating this

project.

v

List of Tables

Table 1: N-Grams for the phrase ‘to be or not to be’ .. 13
Table 2: Subset of the Penn Treebank POS tags (Bird, Klein, & Loper, 2014) 14
Table 3: Examples of Named Entities ... 15

Table 4: Examples of Named Entities ... 15
Table 5: Output of various algorithms ... 21

file://///N12/N12_DATA3/STAFF/RLAWRENC/Supervision/Past/2017/ShanRajapakshe/Honours/Shan_Rajapakshe_Thesis_2017.docx%23_Toc481520979
file://///N12/N12_DATA3/STAFF/RLAWRENC/Supervision/Past/2017/ShanRajapakshe/Honours/Shan_Rajapakshe_Thesis_2017.docx%23_Toc481520980

vi

List of Figures

Figure 1: Screenshot of CAIS .. 7
Figure 2: Example of a clinical progress note ... 8
Figure 3: The sentences from all progress notes ... 10

Figure 4: The event categorization for sentences .. 11
Figure 5: Sentence with its corresponding POS Tags .. 13
Figure 6: Example of a Dependency Parse Tree (Bird, Klein, & Loper, 2014) 15
Figure 7: Overall Pipeline.. 16
Figure 8: Architecture of a typical multilayer perceptron ... 19

file:///C:/Users/Shan/Desktop/Honours%20Thesis/Thesis/Thesis.docx%23_Toc481002384
file:///C:/Users/Shan/Desktop/Honours%20Thesis/Thesis/Thesis.docx%23_Toc481002386
file:///C:/Users/Shan/Desktop/Honours%20Thesis/Thesis/Thesis.docx%23_Toc481002387
file:///C:/Users/Shan/Desktop/Honours%20Thesis/Thesis/Thesis.docx%23_Toc481002388
file:///C:/Users/Shan/Desktop/Honours%20Thesis/Thesis/Thesis.docx%23_Toc481002389
file:///C:/Users/Shan/Desktop/Honours%20Thesis/Thesis/Thesis.docx%23_Toc481002390
file:///C:/Users/Shan/Desktop/Honours%20Thesis/Thesis/Thesis.docx%23_Toc481002391

1

Chapter 1: Introduction

The electronic patient chart is a standard document used in medicine for storing

information about a patient’s care. Due to the complexity of healthcare data, the patient chart

is a source of both structured and unstructured information. Extracting meaningful insights

from this data is a laborious process. Currently, the data must be understood by humans with

relevant domain knowledge for this information to be obtained. The Cancer Agency

Information System (CAIS) is the main repository of patient records for the British Columbia

Cancer Agency (BCCA). Details such as lab reports and physicians’ notes are stored as

quantitative data or free text. In the current workflow, health care professionals are required

to open each patient’s relevant information from a desktop computer to properly identify

important patient events. Although methods have been suggested in improving the access of

this data, it is still a difficult process to navigate CAIS to obtain these events.

Due to recent improvements in the fields of computer and data science, the field of

machine learning (ML) has matured significantly over the past 10 years. Natural language

processing (NLP), a subfield of machine learning, has also seen tremendous growth in the

past decade. Recent events, such as IBM’s Watson winning Jeopardy in 2011 and the

popularity of Google’s search engine have shown the potential of these new technologies. In

addition, the World Health Organization (WHO) has suggested that eHealth, or the

incorporation of information and communication technologies for health as an area of

important growth in healthcare.

The combination of these factors has allowed for an influx in ML and NLP research

in the field of healthcare informatics. However, many of these studies are performed by

combinations of well-endowed research universities (Mount Sinai, University of California),

large hospital systems (Memorial Sloan Kettering, Veterans Health Administration) and

established information technology companies (IBM, Microsoft). These groups are able to

circumnavigate the two major roadblocks of ML in medicine, lack of expertise and lack of

relevant medical datasets.

At this point, NLP can be performed by those with access to the correct data and

training. The critical point is gathering the necessary amount of accurate data to make a

machine learning solution viable. Due to the nature of ML, large amounts of meaningful data

must be leveraged in order to train and test the eventual machine learner. In addition, this

data must be prepared in a way that would allow it to be easily ingested by the ML system.

The information supplied by CAIS has the potential of being such a data set.

This thesis will explore the steps involved in the creation of a NLP pipeline to

perform automatic data extraction from an open text document stored in CAIS.

1

Chapter 2

Background

2.1 : Key Terms and Definitions

BC Cancer Agency (BCCA)

The organization provides the entire spectrum of cancer care to the BC population.

This includes cancer prevention, treatment, and awareness.

CAIS

The BCCA’s electronic health record (EHR), which stores patient information from

across their cancer care, including progress notes, images, lab reports and blood work.

Machine Learning (ML)

A subfield of computer science and statistics involved in ‘teaching’ computers to

make decisions on data provided for them.

Supervised Learning

A machine learning paradigm characterized by providing pre-labeled data from

which the algorithms ‘learn’ from.

Natural Language Processing (NLP)

A subfield of machine learning and linguistics, involving the use of computers in

understanding and working with human language.

Personally Identifiable Information (PII)

Information that can uniquely identify an individual, such as full name, address,

date of birth, and telephone number.

Cancer

2

Cancer is a set of related diseases characterized by abnormal cell growth. In almost

all forms of cancer, body cells begin to proliferate and divide in an uncontrolled manner, and

eventually spread to other tissues if left unchecked. As the disease progresses, masses of

these cells form growths known as tumours.

Clinically relevant events

For the purpose of this paper, these are defined as events in a patient’s care that have

major implications to all future points of care. In the context of lung cancer, clinically

relevant events are:

- Therapies

 Surgery

 Chemotherapy

 Radiation

- Recurrence

- Palliative Care

Cancer Therapies are methods used to treat cancer. Most often, they are involved in

the degradation or removal of the cancerous tissues. Additionally, it may also involve

targeting tissues that are at risk for developing cancer in the future. These at risk tissues can

be noted due to their location relative to the affected tissue, or physical characteristics that

make them more susceptible.

Surgery
The most common method of dealing with cancer is surgery. Generally, this is the

removal of the cancerous tissues. In the context of lung cancer, there are several kinds of

surgeries, most notably:

 Pneumonectomy – removal of entire lung

 Lobectomy – removal of the entire lobe (lungs made of 5 lobes, 3 on right, 2 on

left)

 Segmentecomy or wedge resection – part of a lobe is removed

 Pleurectomy – removal of the pleura, linings surrounding the lungs

 Sleeve Resection – used for treating cancers in large airways of the lungs

Chemotherapy
Chemotherapy is the use of powerful drugs to treat cancer. These drugs are specially

designed to specifically target the quickly growing cancerous cells. Chemotherapy often

carries side effects, including but not limited to nausea, hair loss and lowered immune system

function. Specific chemotherapy drugs relevant to lung cancer include:

 Cisplatin

 Vinorelbine

 Gefitinib (Iressa)

 Carboplatin

 Gemcitabine1

 Docetaxel

 Erlotinib (Tarceva)

 Anastrozole

3

Radiation
Using high energy radiation to treat cancer by shrinking tumours and killing cancer

cells. Radiation damages cancer cells by damaging the cells DNA, causing them to break

apart and be digested by the body’s natural processes. Type of radiation used in cancer

therapy include X-Rays, Gamma Rays and charged particles.

Palliative Care
This refers to any treatment that is focused on pain management rather than curing

the patient. It can be any of the three types of treatment listed above. Typically, it is used in

end of life scenarios.

Recurrence
A cancer that is found after treatment and after a period of time when the cancer could

not be detected. Generally, any new cancer developed by the patient in the vicinity of their

previous cancer is considered a recurrence. However, a cancer recurrence can also occur

further away from the original tumour site.

 Local Recurrence – the new cancer has come back in the same place as the original

 Regional Recurrence – the new cancer has come back in lymph nodes close to the

original cancer

 Distant Recurrence – the new cancer has come back in a different part of the body,

some distance away from the original site.

2.2: Overview

Healthcare creates a multitude of data. Before the introduction of information

systems, most of this data was either lost or remained locked in paper records. Now with the

move towards more digital systems, most of this data is captured and stored electronically.

However, much of it is still difficult to use at scale. This is due to the unstructured nature of

most healthcare data. Unlike structured data, those that traditionally fit within a relational

database, unstructured data is much more difficult for a computer system to manage. This is

mainly due to the ambiguities within the unstructured data. Text and multimedia, such as

audio and video, are the main forms of unstructured data.

In order to continue improving the healthcare system, it is important to utilize this

data. It offers the potential of uncovering large scale effects and population-level trends

within the healthcare system, and understanding the health of the population at an intimate

level. As more data is added, the value of easy access and understanding of the data will also

improve, since the tools that use the data will only improve as more relevant data is added.

Additionally, this deluge of data creates another problem; that of information

overload. Work needs to go in to minimize physician exposure to extraneous data. However,

due to the complex nature of healthcare information, it becomes very difficult to untangle

what is important, and what is not relative to a patient’s care.

The Problem
With all of this in mind, using unstructured data in a healthcare setting can be

complicated. Thus, we thought it would be beneficial to explore a small sub-problem within

this context. This became the task of performing event extraction from unstructured clinical

4

text. Specifically, extracting relevant events from clinical progress notes of lung cancer

patients.

The clinical progress note is a document dictated by a physician to record a patient’s

care at a point in time. Typically, information such as the physical and mental well being,

medication being taken, treatments planned or undergoing, and relevant medical history are

noted. Thus, it is a very information dense document. In order for an attending physician to

get an understanding of a patient, these clinical progress notes need to be retrieved and

reviewed. This can turn into a laborious process, especially in the case of chronic health

conditions such as cancer, which have patients repeatedly visiting healthcare centres over

the course of several months or years. With such a large amount of information to keep track

of, as well as the seriousness of content, it is important to examine this information.

However, there are times when physicians wish to review certain key events in a

patient’s care. Many of these events, such as treatments or cancer recurrence, drastically

effect the patient’s care going forward, and are the most important for physicians to review.

Yet physicians still need to review all progress notes to find all instances of these events for

any given patient. Extracting these events from clinical progress notes would work towards

streamlining this process for physicians. The hope is for them to quickly find the notes

relevant for a given event, allowing for less time looking at computers and more time caring

for the patient.

2.3: The Data

The dataset is the set of clinical progress notes from all patients referred to the BCCA

from January 2005 to December 2010 with surgically resected stage II non-small-cell lung

carcinoma. This resulted in a set of 261 unique patients with 2668 clinical progress notes.

2.4: Event Extraction

Event Extraction is the extraction of complex combinations of relations between

entities, performed after a series of initial NLP. (Kaymak, de Jong, Caron, Hogenboom, &

Frasincar, 2016). In more common terminology, it is the act of recognizing and retrieving

information about events from text data. It utilizes knowledge from several fields, including

computer science, linguistics, artificial intelligence, and statistics.

One of the major difficulties with Event Extraction is due to the ambiguous nature of

unstructured text. Many sentences that appear logically similar have drastically different

meaning depending on context. This in turn makes it very difficult for event extraction

systems to perform at the level of humans.

For example:

Let’s eat, Grandma.

Let’s eat Grandma.

5

The above sentences mean two very different things due to the inclusion of a single comma.

Such changes in meaning are common throughout the English language.

Thanks to its interdisciplinary nature, event extraction has grown include several

approaches, which can be summarized as three distinct methods.

Expert Systems

These utilize rules or patterns to perform event extraction. The strength of these

systems is that the rules are easy for humans to understand (i.e. People make the rules which

the computer follow). However, these are inflexible due to these very same rules. To add

new events to the system, entirely new rules need to be defined, and then applied to the text.

Data Driven Systems

These approaches utilize machine learning and statistical methods. In these methods,

the textual information is transformed into different representations that can be applied to

algorithms and mathematical models in a step known as training. These trained models can

then be applied to new instances of text to perform the event extraction.

Unlike expert systems, it is often very difficult to understand the reasoning behind

the decisions these algorithms make. Thus, they are treated as black box methods, where the

internal mechanics of the resulting trained algorithm are not understood by humans.

Hybrid Systems

Using one of the two methods above exclusively leads to many different problems.

A popular approach to solving these problems is using a hybrid approach. This approach

uses methods from both expert and data driven systems to utilize the strengths of each while

minimizing the weaknesses. For example, one can bootstrap expert systems with machine

learning, or optimize data driven systems using sentence patterns.

These systems require more data than expert systems, as they do involve some

machine learning. However, they require much less data than purely data driven systems.

6

Chapter 3

Dr. Zed

Dr. Zed is the NLP pipeline and resulting trained machine learning tool for data

driven event extraction from clinical text.

There are three major components of the system:

- Data Preparation

- Feature Extraction

- Algorithms.

Dr. Zed utilizes a data driven approach to event extraction. All of the software is written

in Python 3.5, and is open source with additional open source python software libraries.

The libraries are as follows:

 Scipy

 Numpy

 Pandas

 NLTK

 SciKit-Learn

 Faker

3.1: Data Preparation

This step refers to manipulating and altering the original dataset into a format

digestible for the subsequent parts of the system. The original dataset was spread across

several patients in the BCCA’s CAIS system. Additionally, the progress notes were saved as

PDF, a filetype with large overhead. Several steps were required to extract the data from

CAIS and modify it into a manageable format.

3.1.1: Reading in the charts

CAIS holds extremely sensitive patient information. These include date of birth sex,

location and other personally identifiable information. Due to this, CAIS only allows access

to the system through the user front end, and has no allowances for third party apps or

programs to access to the data. Manual effort was required to download the patient progress

notes.

Physicians, after meeting with a patient, call in to a dedicated number to verbally

dictate notes about the patient. These are then automatically transcribed via software or

manually transcribed by a trained transcriptionist.

7

Most clinical progress notes were stored as PDF files containing the dictated

information as well as some header information regarding the date of the note, date of

transcription, and identity of the physician. Some notes were uploaded in different file

formats, most notably pictures and screenshots of physical notes saved as jpeg images.

Optical Character Recognition was proposed, to read these images. These screenshots added

up to a very small set of notes (less than 50), and the workload required to use these images

was judged as too high for this small amount of additional data.

Figure 1: Screenshot of CAIS

8

Figure 2: Example of a clinical progress note

The downloaded PDF files were then stored securely on a dedicated desktop machine located

at the BCCA in Kelowna, BC within the PHSA firewall.

3.1.2: Conversion from PDF to .txt

Although PDF files are a standard method of storing textual data, they have

additional information that is in addition to the actual text. Therefore, it was necessary to

convert the PDF files into .txt files for ease of use within the proposed pipeline.

9

The open source Xpdf library and its pdftotext command line application was used

to convert the PDF files to .txt files. The resulting .txt files were stored in the same manner

as the PDF files. On some occasions, adjacent words were combined but for the most part

the conversion worked very well. These infrequent errors were left in the finished text

documents, as they did not compromise the validity of the documents, and it would have

been a time-consuming process to fix. Dealing with these errors is a small price to pay, as it

was much easier to use the script than to manually copy and paste text from each of the 2668

pdfs into separate .txt files.

3.1.3: Anonymization

As stated previously, clinical progress notes contain personally identifiable

information. It was imperative to remove this information in order to protect the privacy of

the patients involved. The clinical progress note has some standardization regarding PII of

the patients. In the header of the document, the name of the patient, ID number (referenced

by the BCCA to uniquely identify the patient) date of birth, and sex of the patient are all

indicated.

A python script was written to recognize these PII, and generate fake data to replace

them. However, as a way to retrieve specific patients in the future, a dictionary was

maintained to link the fake name and ID to the real patient. This dictionary was also kept on

the dedicated desktop at the BCCA in Kelowna, BC for security reasons.

3.1.4: Sentence Tokenization

Sentence Tokenization refers to the splitting of a document into sentences. There are

several methods to do this, usually involving Regex expressions. Both the NLTK and SpaCy

libraries were explored for this component. However, NLTK outperformed the SpaCy

implementation, and was consequently used in the final pipeline.

3.1.5: Word Tokenization

Similar to sentence tokenization, word tokenization splits a sentence into individual

words. This is an easier task than sentence tokenization as spaces define separation between

words in most English sentences. Again, both NLTK and SpaCy were proposed for this step.

To maintain consistency with the sentence tokenization, NLTK was used in the final pipeline.

3.1.6: Stemming

 Even in small corpa of documents, many words are present. Often, there are a

significant number of words that are structurally related to other words. A good example of

this are different tenses of verbs. A method of simplifying downstream parts of the pipeline

involves reducing the vocabulary size by trimming words to their word stem. Stemming is

one such process, where inflected and derived words are reduced to their word stems. In this

case, broad rules are applied, which remove morphological affixes from words.

10

The Snowball and Porter stemmers are two commonly used stemmers, and both

have implementations in NLTK. After some testing, the Snowball stemmer was chosen for

use in the pipeline.

3.1.7: Categorizing Each Sentence

In order to get a good training and test set, the presence or absence of each event

needed to be coded manually. To do this, the extracted sentences were ported to an excel

sheet. The source document title, sentence number, and manual coding for all events was

recorded for each sentence.

At the time of the writing of this thesis, 10000 of the total 55679 sentences were

coded. This was deemed as an appropriate size for testing the rest of the pipeline components.

Figure 3: The sentences from all progress notes

11

3.2: Feature Extraction

3.2.1: Bag of Words (BOW)

The bag of words approach is a staple of natural language processing.

In this method, a vocabulary is defined. Typically, it is the set of all words found across all

documents. In the case of Dr. Zed, this would refer to all of the words across all patient charts

in the dataset. Each sentence is represented as a vector of length equal to the size of the

vocabulary. Each entry in the vector corresponds to one of the words in the vocabulary. The

value stored at each vector bin refers to the number of times that word appeared in the

sentence. Small word vectors can also visually represent this information about text, as they

can be represented as histograms.

BOWs make a few broad assumptions about the relationships between words. It

assumes that the occurrence of a word is independent of the occurrence of other terms. This

makes modelling far easier, but does go against our view of sentences, as there is implicit

understanding that certain words predispose other words to show or not show up in the rest

of the sentence.

Most documents will only contain a small subsection of the total set of words from

all documents. Thus, the vectors representing each sentence will be sparse i.e. Will contain

Figure 4: The event categorization for sentences

12

many zeros. For example, a set of 10000 short documents such as emails will use roughly

100000 words total, but each document will only contain 100 to 1000 unique words.

BOWs are very versatile, and have been utilized for a variety of other tasks. These

include image categorization (Li, Tao, & Xian-Sheng, 2011) and time series data (She,

Nahavandia, Kouzani, Wang, & Liu, 2013).

The classical BOW approach has a few weaknesses. By representing sentences as

vectors, it loses the ordered nature of text. As natural language relies heavily on word order

to express meaning, a lot of very important information is lost.

Improvements

Tf-IDF Weighting

In large sets of documents, words that occur frequently (ex. the, a, but, and) do not

hold much meaningful information about specific sentences. In the traditional BOW method,

which uses direct counts of words, these pervasive words would minimize the effect of more

interesting but less frequent words. Thus, it can be considered more important to weigh

words that occur less frequently more heavily than words that occur more frequently. The

Tf-IDF method manages this problem by transforming word counts into floating point

values. This reweighting is performed according to the following equation:

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡)

Where Term Frequency (TF) refers to the number of times a term (in this case, a word)

occurs in a document (which in this case is a sentence).

The IDF is defined as

𝑖𝑑𝑓(𝑡) = log
1 + 𝑛𝑑

1 + 𝑑𝑓(𝑑, 𝑡)
+ 1

N_d is the total number of documents, df(d,t) is the number of documents that contain the

term t

These vectors are then normalized by the Euclidian Norm

𝑣𝑛𝑜𝑟𝑚 =
𝑣

‖𝑣‖2
=

𝑣

√𝑣1
2+𝑣2

2 + ⋯ + 𝑣𝑛
2

The resulting floating point values are then used in the vector.

N-Gram Models

This approach tackles the loss of word ordering in the traditional BOW by including

n-grams rather than words. An n-gram is a sequence of continuous n items from a given

portion of text. N-grams of individual words are called unigrams. The vocabulary of an n-

gram model consists of all n-grams within the set documents.

13

Figure 5: Sentence with its corresponding POS Tags

Table 1: N-Grams for the phrase ‘to be or not to be’

N-Gram Unigram (1-Gram) Bigram(2-Gram) Trigram (3-Gram)

 to, be, or, not, to,

be

to be, be or, or not,

not to, to be

to be or, be or not,

or not to, not to be

Implementation

The Scikit-Learn Library contains a very effective BOW representation as the

CountVectorizer class. This can represent any N-gram representation of information.

Additionally, TF-IDF weighting is also implemented through the related

TfidfVectorizer class.

3.2.2: Parts of Speech (POS) Tagging

POS tagging is the process of denoting each word in a sentence with its

corresponding part of speech. These refer to grammatical parts of the sentences, such as

nouns, verbs, adjectives, etc.

The most used POS representation is coded using the Penn Treebank.

14

Table 2: Subset of the Penn Treebank POS tags (Bird, Klein, & Loper, 2014)

Many words have several meanings depending on context. This makes POS

Tagging a challenging task. Despite this difficulty, many algorithms have been proposed

for POS Tagging.

Like Event Extraction methods, POS Tagging algorithms fall into three groups: rule

based, data driven, and hybrid approaches. Additionally, many groups supply their own

pretrained data driven POS Taggers. Although these are more specific to the domain they

were trained upon, they work very well for most POS tasks. Thus, a pretrained data driven

POS Tagger was utilized for this pipeline.

Training of our own POS Tagger was also explored, but eventually rejected due to

the effort required to manually code the POS tags for all sentences.

Implementation

Both the SpaCy and NLTK libraries have prebuilt POS taggers. Dr. Zed used NLTK’s

pretrained POS Tagger, the maxent_treebank_pos_tagger.

3.2.4: Dependency Parse Trees

Dependency refers to the idea that words are connected by directed links. Typically

these are centered around the head of the sentence, most often the tensed verb. The

Dependents, all other parts of the sentence, are either connected directly to the sentence

head or are through a path of dependencies. Dependency Parse Trees are structures that

illustrate these relationships as a directed graph.

15

Implementation

In NLTK, POS Tags are used as inputs for obtaining the Dependency Parse Trees.

3.2.5: Named Entity Detection

Named entities are proper noun phrases that refer to a specific individual,

organization or entity.

This step uses pre-trained models to determine which words or phrases refer to named

entities, or proper nouns. The NLTK library contains a pretrained model, which was used for

the pipeline.

3.2.6: Overall Pipeline

The image below represents the overall pipeline. The black box represents the coded

results for each sentence. White boxes signify the feature representations of the text. Grey

boxes represent raw data from the source documents.

Figure 6: Example of a Dependency Parse Tree (Bird, Klein, & Loper,

2014)

Table 3: Examples of Named Entities

Table 4: Examples of Named Entities

16

Figure 7: Overall Pipeline

17

Chapter 4

Algorithms and Methods

As stated previously, much of the pipeline is used in creating the inputs for the machine

learning portion. Pipeline:

- Bag of Words (BOW)

- N-Grams

- TF-IDF Normalization

- POS Tags

- Dependency Parse Trees

- Named Entities

Due to the volume of information, BOWs, N-grams BOWs and TF-IDF BOWs were to be

used as inputs for the following algorithms. Future work would consider applying the other

inputs and potentially combining them with the BOW representations.

All the algorithms used below were implemented by the Scikit-Learn Library. Each was

trained by 6000 sentences and their corresponding event codings, with the remaining 4000

held out as the test set.

4.1: Logistic Regression

Logistic regression is a method of classification utilizing a specialized form of

linear regression, which itself is a method of supervised learning.

Background

Linear regression is a method of supervised learning, which is simple and powerful.

The traditional linear regression model is as follows:

𝐸[𝑦] = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝

Where E[y] is the expected value of the response variable Y that we are trying to predict,

β0, …, βp are the coefficients for the linear equation, and X1, …, Xp are the values of the p

predictor variables for that observation.

However, this method is not appropriate for predicting binary or categorical values.

(James, Witten, Hastie, & Tibshirani, 2014) However, a transformation can be applied to

work around this. In this case, we are modelling p(X), the probability that X is of a certain

category. We start with the logistic function:

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝

18

This can be manipulated into the following:

𝑝(𝑋)

1 − 𝑝(𝑋)
= 𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝

Taking the log of both sides leads to

log (
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝

The left-hand side is a quantity known as the log-odds, or the logit, thus

𝑙𝑜𝑔𝑖𝑡(𝑋) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝

That is, the logistic regression model has a logit that is linear in X (James, Witten, Hastie, &

Tibshirani, 2014).

Multi-level classifiers

Traditionally, logistic regression is used for binary classification. However, as some

of the data has more than one class (such as recurrence) it is necessary to allow for this. An

approach to this is the One-Versus-Rest (OVR) approach. A classifier is created for each

category, with members of that category coded as positive examples, and members of any

other category coded as negatives examples. The logistic regression performed by Scikit-

Learn supports this approach to multi-level classification, as well as several others.

4.2: Nearest Neighbor Classifier

This is a straightforward approach which uses ‘similar’ observations to classify new

instances. Upon exposure to the training set, the nearest neighbor algorithms store the

location of each observation, making it an example of instance based learning. When new

observations are given, they are classified by a majority vote system. Of the K nearest

neighbors to the observation in question, the category with the most neighbors will be the

classification of the new observation.

Basic nearest neighbors algorithms use uniform weights, which weighs the contribution

from each neighbor equally. Alternative methods can weigh neighbors more if they are

closer to the observation in question.

4.3: Multi-Layer Perceptron

These are basic implementations of neural networks, which are composed of layers

of input and output nodes. It is composed of several layers of nodes, called Perceptrons. Each

19

perceptron acts as a ‘neuron’ and takes in the summation of a number of inputs, and applies

an activation function. It then goes on to forward this resulting value, either to another set of

nodes in the following layer, or as a final output. Multilayer Perceptrons can use a variety of

activation functions, including the logistic function and sigmoid function.

Additionally, the input, hidden and output layers can have differing numbers of

nodes.

Because of their complexity, multilayer Perceptrons and other neural networks are able to

deal with messy data, especially those that may contain mistakes. This makes it a useful

algorithm for this project, as there is a possibility that some labelled sentences may be

labelled incorrectly. However, these algorithms are slow to train, and require a lot of data in

order to be useful.

4.4: Other Algorithms

The algorithms above were the method with the most interesting results. Other

algorithms utilized included Gaussian Naïve Bayes Classifiers, Support Vector Machines,

decision trees and linear discriminant analysis.

Figure 8: Architecture of a typical multilayer perceptron

20

Chapter 5

Evaluation

To evaluate which combinations of features and algorithms performed the best, a

standard set of evaluation metrics must be defined. In natural language processing, and event

extraction these metrics are precision, recall, and the F1-Score.

Precision

Also known as positive predictive value, is the fraction of correctly classified

sentences (true positives) over the total number of sentences classified as that category (true

positives plus false positives).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Recall

This is the sensitivity, or fraction of correctly classified sentences over the true total

of sentences that are of that category.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

F1-Score

This is hybrid approach to measuring precision and recall. It weighs each, and uses

that score to keep both in mind when measuring the performance of the system. The F1-

Score is defined as the following:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Additionally, each combination was compared to a naïve classifier, one that would classify

every sentence as a 0 for each of the events. This would allow us to determine a desired

lower bound for the performance of the algorithms.

21

Display of Results

As mentioned previously, 4000 sentences were used as a test set. Due to the number

of combinations of event, feature representation, and algorithm, a large amount of data was

produced. For brevity, it was decided that results of classification for Recurrence and

Chemotherapy would be investigated in depth. Recurrence was chosen because it was an

example of multiclass classification. Chemotherapy was chosen because it was the most

pervasive event.

Table 5: Output of various algorithms

5.1: Recurrence

Traditional Bag of Words

Logistic Regression

Classification Report

 precision recall f1-score support

 -1 0.38 0.08 0.13 37

 0 0.98 1.00 0.99 3924

 1 0.54 0.18 0.27 39

avg / total 0.97 0.98 0.98 4000

Naïve Classifier

Classification Report - Naive

 precision recall f1-score support

 -1 0.00 0.00 0.00 37

 0 0.98 1.00 0.99 3924

 1 0.00 0.00 0.00 39

avg / total 0.96 0.98 0.97 4000

Time taken for Category: recurrence Method: 1gram Algorithm: logistic :

4.485043287277222 seconds.

Multilayer Perceptron

 precision recall f1-score support

 -1 0.10 0.14 0.12 37

 0 0.99 0.99 0.99 3924

 1 0.00 0.00 0.00 39

avg / total 0.97 0.97 0.97 4000

Time taken for Category: recurrence Method: 1gram Algorithm: perceptron :

4.134629249572754 seconds.

22

K-Nearest Neighbors

 precision recall f1-score support

 -1 0.75 0.24 0.37 37

 0 0.98 1.00 0.99 3924

 1 0.00 0.00 0.00 39

avg / total 0.97 0.98 0.98 4000

Time taken for Category: recurrence Method: 1gram Algorithm: knn :

3.295135021209717 seconds.

Decision Tree

 precision recall f1-score support

 -1 0.14 0.19 0.16 37

 0 0.98 0.98 0.98 3924

 1 0.10 0.13 0.11 39

avg / total 0.97 0.96 0.97 4000

Time taken for Category: recurrence Method: 1gram Algorithm: tree :

2.387955904006958 seconds.

3-Gram Bag of Words

Logistic Regression

 precision recall f1-score support

 -1 0.76 0.59 0.67 37

 0 0.99 1.00 0.99 3924

 1 0.54 0.49 0.51 39

avg / total 0.99 0.99 0.99 4000

Naïve Classifier

Classification Report - Naive

 precision recall f1-score support

 -1 0.00 0.00 0.00 37

 0 0.98 1.00 0.99 3924

 1 0.00 0.00 0.00 39

avg / total 0.96 0.98 0.97 4000

Time taken for Category: recurrence Method: brute_force Algorithm: logistic :

37.60845398902893 seconds.

Multilayer Perceptron

 precision recall f1-score support

 -1 0.73 0.73 0.73 37

 0 0.99 1.00 1.00 3924

 1 0.58 0.54 0.56 39

avg / total 0.99 0.99 0.99 4000

Time taken for Category: recurrence Method: brute_force Algorithm: perceptron :

171.68322849273682 seconds.

23

TF-IDF Bag of Words

Logistic Regression

 precision recall f1-score support

 -1 0.79 0.59 0.68 37

 0 0.99 1.00 1.00 3924

 1 0.67 0.51 0.58 39

avg / total 0.99 0.99 0.99 4000

Time taken for Category: chemotherapy Method: tfidf Algorithm: logistic :

5.400489330291748 seconds.

Naïve Classifier

 precision recall f1-score support

 -1 0.00 0.00 0.00 37

 0 0.98 1.00 0.99 3924

 1 0.00 0.00 0.00 39

avg / total 0.96 0.98 0.97 4000

Multilayer Perceptron

 precision recall f1-score support

 -1 0.81 0.68 0.74 37

 0 0.99 1.00 1.00 3924

 1 0.88 0.36 0.51 39

avg / total 0.99 0.99 0.99 4000

Time taken for Category: recurrence Method: tfidf Algorithm: perceptron :

19.318445205688477 seconds.

K-Nearest Neighbors

 precision recall f1-score support

 -1 0.70 0.19 0.30 37

 0 0.98 1.00 0.99 3924

 1 0.50 0.05 0.09 39

avg / total 0.98 0.98 0.98 4000

Time taken for Category: recurrence Method: tfidf Algorithm: knn :

368.86042952537537 seconds.

Decision Tree

 precision recall f1-score support

 -1 0.73 0.81 0.77 37

 0 1.00 0.99 1.00 3924

 1 0.71 0.69 0.70 39

avg / total 0.99 0.99 0.99 4000

Time taken for Category: recurrence Method: tfidf Algorithm: tree :

7.4120965003967285 seconds.

24

5.2: Chemotherapy

Traditional Bag of Words
Logistic Regression

Classification Report

 precision recall f1-score support

 0 0.95 1.00 0.97 3782

 1 0.57 0.10 0.16 218

avg / total 0.93 0.95 0.93 4000

Time taken for Category: chemotherapy Method: 1gram Algorithm: logistic :

3.2356109619140625 seconds.

Naïve Classifier

Classification Report - Naive

 precision recall f1-score support

 0 0.95 1.00 0.97 3782

 1 0.00 0.00 0.00 218

avg / total 0.89 0.95 0.92 4000

Perceptron

 precision recall f1-score support

 0 0.96 0.99 0.97 3782

 1 0.61 0.28 0.39 218

avg / total 0.94 0.95 0.94 4000

Time taken for Category: chemotherapy Method: 1gram Algorithm: perceptron :

3.901289463043213 seconds.

K-Nearest Neighbors

Classification Report

 precision recall f1-score support

 0 0.95 0.99 0.97 3782

 1 0.60 0.13 0.22 218

avg / total 0.93 0.95 0.93 4000

Time taken for Category: chemotherapy Method: 1gram Algorithm: knn :

3.249997138977051 seconds.

Decision Tree

 precision recall f1-score support

 0 0.96 0.95 0.96 3782

 1 0.28 0.32 0.30 218

avg / total 0.92 0.92 0.92 4000

Time taken for Category: chemotherapy Method: 1gram Algorithm: tree :

2.398338556289673 seconds.

25

3-Gram Bag of Words

Logistic Regression

 precision recall f1-score support

 0 0.98 0.98 0.98 3782

 1 0.72 0.69 0.70 218

avg / total 0.97 0.97 0.97 4000

Time taken for Category: chemotherapy Method: brute_force Algorithm: logistic :

65.30312395095825 seconds.

Naïve Classifier

 precision recall f1-score support

 0 0.95 1.00 0.97 3782

 1 0.00 0.00 0.00 218

avg / total 0.89 0.95 0.92 4000

Perceptron

Classification Report

 precision recall f1-score support

 0 0.98 0.99 0.99 3782

 1 0.79 0.69 0.74 218

avg / total 0.97 0.97 0.97 4000

Time taken for Category: chemotherapy Method: brute_force Algorithm: perceptron :

171.58691263198853 seconds.

K-Nearest Neighbors

Classification Report

 precision recall f1-score support

 0 0.97 0.99 0.98 3782

 1 0.78 0.44 0.56 218

avg / total 0.96 0.96 0.96 4000

Time taken for Category: chemotherapy Method: brute_force Algorithm: knn :

298.4291546344757 seconds.

Decision Tree

Classification Report

 precision recall f1-score support

 0 0.98 0.98 0.98 3782

 1 0.60 0.61 0.60 218

avg / total 0.96 0.96 0.96 4000

Time taken for Category: chemotherapy Method: brute_force Algorithm: tree :

42.48824644088745 seconds.

26

TF-IDF Bag of Words

Logistic Regression

Classification Report

 precision recall f1-score support

 0 0.98 0.99 0.98 3782

 1 0.76 0.69 0.72 218

avg / total 0.97 0.97 0.97 4000

Time taken for Category: chemotherapy Method: tfidf Algorithm: logistic :

5.400489330291748 seconds.

Naïve Classifier

 precision recall f1-score support

 0 0.95 1.00 0.97 3782

 1 0.00 0.00 0.00 218

avg / total 0.89 0.95 0.92 4000

Perceptron

 precision recall f1-score support

 0 0.98 0.99 0.98 3782

 1 0.75 0.71 0.73 218

avg / total 0.97 0.97 0.97 4000

Time taken for Category: chemotherapy Method: tfidf Algorithm: perceptron :

20.071147203445435 seconds.

K-Nearest Neighbors

 precision recall f1-score support

 0 0.95 1.00 0.97 3782

 1 0.90 0.12 0.22 218

avg / total 0.95 0.95 0.93 4000

Time taken for Category: chemotherapy Method: tfidf Algorithm: knn :

370.56969809532166 seconds.

Decision Tree

Classification Report

 precision recall f1-score support

 0 0.98 0.98 0.98 3782

 1 0.68 0.67 0.67 218

avg / total 0.96 0.96 0.96 4000

Time taken for Category: chemotherapy Method: tfidf Algorithm: tree :

23.32229518890381 seconds.

27

Chapter 6

Conclusions and Future Work

After evaluating the results above, a few key insights were noted.

Sparsity of the data
Most sentences did not code for any events. That is, most of the information in

progress notes is not directly related to these events. Thus, if one can remove these sentences,

or perhaps highlight the important ones, physicians would be able to cut down on their time

reading charts.

 This also made evaluating the algorithms more nuanced. In general, the benchmark

naïve algorithm had very high F1-Scores. This was again because of the sparsity of the data.

Since around 95% – 98% of sentences did not code for an event, the naïve approach would

be able to score incredibly high.

Algorithm Performance
At present, the information above suggests that TF-IDF and 3-Gram BOWs work

very well at representing data when fed into logistic regression, multilayer Perceptrons, K-

Neighbors, and decision trees. However, Logistic Regression and Multilayer Perceptrons

seemed to outperform the other methods.

 This is rather puzzling, as logistic regression is considered a simpler and less

powerful machine learning method, especially compared to the Multilayer Perceptron.

However, for this set of data (sparse bags of words) it seems that logistic regression can hold

its own. Further investigation would be required to understand why it works so well in this

particular domain.

6.1: Additional Work

Improving data creation

The most time-consuming part of the project was manually coding the sentences to

produce the test data. In order to bring make this pipeline scalable, it is important to address

this issue. One promising solution is the implementation of distance learning. Specifically,

the creation of more positive sentences (those that code events as 1s rather than 0s) would

be beneficial, in order to deal with the sparsity problem present in the current dataset.

Using other Feature Representations
Although other feature representations were discussed, only the BOW, TF-IDF BOW

and N-Gram BOWs were used in training and testing the learning algorithms. It would be

beneficial to apply the other feature representations to the algorithms, either by themselves

or in conjunction with the BOWs to see if any improvements could be made.

28

Collaboration
If anything, the most important part of this project was the creation of the coded

dataset. Because it was time consuming process, being able to share that dataset would be

beneficial to anyone pursuing event extraction in a clinical setting.

At this point, we are in contact with a research group based at the University of

Victoria who are exploring a similar problem. However, they are using the output of a

prebuilt NLP system called cTakes built by the Apache Software Foundation. This program

uses SNOMED categorizations of clinical nomenclature, and recognizes certain instances of

text. By supplying the dataset to them, we hope that more people can benefit from the work

done in this project.

6.2: Future applications

There are some key applications that can be pursed with the results of this project.

By being able to extract event information from unstructured text, information systems can

be developed to streamline physician workflows by refining the information they need to

consume prior to seeing a patient.

One such tool is a clinical decision support system (CDSS), which augments a

physician’s ability to analyze and understand patients. These are “any software designed to

directly aid in clinical decision making in which characteristics of individual patients are

matched to a computerized knowledge base for the purpose of generating patient specific

assessments or recommendations that are then presented to clinicians for consideration.”

(Hoyt & Yoshihashi, 2014). In order for such a tool to be feasible, a majority of patient

information would need to be uncovered from unstructured data. However, as with this

project, scalability would be a key limiting factor.

29

Bibliography

Lawrence TS, Ten Haken RK, Giaccia A. Principles of Radiation Oncology. In: DeVita VT

Jr., Lawrence TS, Rosenberg SA, editors. Cancer: Principles and Practice of Oncology. 8th

ed. Philadelphia: Lippincott Williams and Wilkins, 2008

Contextual Bag-of-Words for Visual Categorization

(Li, Tao, & Xian-Sheng, 2011)

Bag-of-words representation for biomedical time series classification

(She, Nahavandia, Kouzani, Wang, & Liu, 2013)

A Survey of event extraction methods from text for decision

support systems

(Kaymak, de Jong, Caron, Hogenboom, & Frasincar, 2016)

Health Informatics - Practical Guide for Healthcare and Information Technology

Professionals

(Hoyt & Yoshihashi, 2014)

An Introduction to Statistical Learning with Applications in R

(James, Witten, Hastie, & Tibshirani, 2014)

Natural Language Processing with Python

(Bird, Klein, & Loper, 2014)

Microsoft Research – Relation Extraction

https://www.microsoft.com/developerblog/real-life-code/2016/09/14/Relation-Extraction-

Python.html

SPACY

https://spacy.io/

NLTK

http://www.nltk.org/

SciKit-Learn

http://scikit-learn.org/stable/index.html

cTAKES

https://ctakes.apache.org/

https://www.microsoft.com/developerblog/real-life-code/2016/09/14/Relation-Extraction-Python.html
https://www.microsoft.com/developerblog/real-life-code/2016/09/14/Relation-Extraction-Python.html
https://spacy.io/
http://www.nltk.org/
http://scikit-learn.org/stable/index.html
https://ctakes.apache.org/

