
Extracting Events from 
Clinical Text Using 
Natural Language 
Processing

Shan Rajapakshe

Supervisor: Dr. Ramon Lawrence

Computer Science



Overview

• Background
 Healthcare data

 Information Extraction

 Dataset

• My Work
 Clinical Events

 Features

 Algorithms

• Results
 Evaluation

• Moving Forward

2



Healthcare Has a Lot of Data

• Pharmacy

• GP visits

• Lab Reports

• Pathology

• Imaging

• Progress Notes
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Nature of Healthcare Data

• Mix of both unstructured and structured data

• Structured data:

 Easy to feed into a computer

 Ie. Data in a spreadsheet

• Unstructured data:

 Much messier

 Harder to represent and ‘understand’

 Images, sounds, video, natural language text
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My Goal – Solve a Subproblem

• Extract relevant events from unstructured clinical text

Why?

• Currently Physicians need to look back on data 

• Less time reading charts, more time with patients!
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What is Event Extraction?

• “…Extraction of complex combinations of relations between 
actors (entities), performed after executing a series of Natural 
Language Processing steps…”

• Ie. Finding a relevant event within text data

Difficult because of ambiguity
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Methods of Information Extraction

• Expert Systems
 Leverage pre-existing knowledge

 Often use patterns or rules

 Limited by scope of knowledge

• Data Driven
 Use features from text

 Apply statistical methods and Machine learning

 Limited by the data 
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Dataset

• Clinical Progress notes from a set of 262 Lung Cancer Patients 
from the BC Cancer Agency

• Had to be anonymized (no patient identifiable information left, 
but able to access the specific patient if necessary)

~ 10 Charts per patient

~ 2700 Charts total

~ 56000 sentences
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My Goal – Revisited

• Extract relevant events from unstructured clinical text
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My Goal – Revisited

• Extract relevant events from unstructured clinical text using a
data driven approach
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My Goal – Revisited

• Extract relevant events from unstructured clinical text using a 
data driven approach
 Determine relevant events

 Prepare data

 Find appropriate features

 Choose suitable machine learning methods

 Apply features to methods

 Evaluate results
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Tools

As well as NLTK, Numpy, Faker, and others! 
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Clinically Relevant Events

Had to define what were important events

• Treatments
 Chemotherapy

 Radiation

 Surgery

 Palliative

• Recurrence
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Data Preparation

• Pull data from CAIS (at BCCA)

• Convert PDFs to text

• Anonymize and obfuscate patient information
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Recurrence Chemotherapy Radiation Surgery Palliative

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 1 0 0 0

-1 0 0 0 0

0 0 0 0 0

0 0 1 0 1

1 0 0 0 0



Features

• How to let a computer represent textual data?

• Balance between understandability for humans vs ease of use 
for machine
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Features Used

Bag of Words representations
 1-grams

 2-grams

 TFDIF 

Alice saw Bob

Susan called Bob

Alice

Bob

Saw

Susan

Called
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Parts of Speech Tags
 Dependency Parse Trees

 Named Entities



Algorithms

Logistic Regression
 Robust

 Quick

 powerful
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Multilayer Perceptron
 Slow

 Requires lots of data

 Lots of potential



Pipeline
Chart

Text

Sentences
Categories of 

each Sentence

Words

POS Tags

Dependency 

Parse Trees

Named 

Entities

Bag of 

Words
Doc2Vec/Word2Vec
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Evaluation
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Preliminary Results

• Using 3-Gram BOWs for Recurrence Events

----- LOGISTIC REGRESSION -----

Normalized Score: 0.9860

Raw Score: 2329

----- PERCEPTRON -----

Normalized Score: 0.9814

Raw Score: 2318
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Precision Recall F1-Score Support

-1 0.68 0.73 0.70 26

0 0.99 0.99 0.99 2308

1 0.6 0.54 0.57 28

Avg / 

Total

0.99 0.99 0.99 2362

Precision Recall F1-Score Support

-1 0.46 0.73 0.57 26

0 0.99 0.99 0.99 2308

1 0.43 0.11 0.17 28

Avg / 

Total

0.99 0.99 0.99 2362
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What does this mean?

• Majority of sentences not relevant to these events

• Potential to streamline physician workflow by only showing 
relevant information
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Conclusions

• Open Source NLP tools can be used to extract clinical events 
from healthcare data 

• Simple algorithms work well for small datasets

• Methods work better than a naïve classifier

• Data cleaning is hard
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Going Forward

• Already sharing data with group in Victoria

• Improve labelling/data generation process 

• Find a meaningful way to represent information to physicians
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Thanks!

• To Dr. Ramon Lawrence for providing guidance and asking me 
tough questions 

• To Dr. Jonn Wu for the space to work at the BCCA and the idea 

• To Dr. Cheryl Ho for the patient cohort

And thank you!
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Questions?
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