
 1

Linear Hashing for Flash Memory on Resource-Constrained

Microprocessors

by

Spencer Donald James MacBeth

Supervisor: Dr. Ramon Lawrence

The Irving K. Barber School of Arts and Sciences

(Honours in Computer Science Major, Minor in Data Science)

The University of British Columbia – Okanagan Campus

April 2017

 2

Abstract – Hardware widely adopted in recent times has stimulated the need for algorithms attuned

to a wide array of physical environments. One set of environments which poses several

implementation challenges are microprocessors with constrained resources such as the Arduino.

Many implementations of data structures cannot perform as desired without significant

modifications in the Arduino environment due to the low levels of RAM typically available, such

as the 2KB of RAM available in the ATmega328. In addition, these devices typically use a

microSD card or local erasable programmable read-only memory (EEPROM) for non-volatile

storage. Since the performance of random write operations are much slower than are random reads

on flash-memory devices, algorithms that interface with flash memory need to employ different

strategies than hard disk-based devices to achieve the highest possible performance. IonDB is a

performance-competitive associative-array implementation capable of running on Arduino

devices. This document presents an implementation of the linear hash data structure optimized for

the Arduino environment that adds a new set of performance trade-offs to the current suite of

IonDB configurations.

 3

Table of Contents

1. Introduction .. 7
1.1 Embedded Devices ...7
1.2 Algorithms for Flash Memory ...8
1.3 IonDB ...9
1.4 Motivations.. 10

2. Background ... 11
2.1 Linear Hashing .. 11
2.2 The Linear Hash Algorithm .. 12

2.2.1 Attributes and Parameters .. 12
2.2.2 Basic Operations .. 14

2.3 Variations on the Linear Hash ... 18
2.3.1 Log Records ... 18
2.3.2 Self-Adaptive Linear Hashing .. 19
2.3.3 Spiral Storage .. 20

3. Embedded Flash Implementation of the Linear Hash .. 22
3.1 Structures .. 22

3.1.1 Linear Hash Table .. 22
3.1.2 Buckets .. 23
3.1.3 Records .. 23

3.2 Swap-on-Delete .. 24
3.3 Eager Deletions During Swap .. 25
3.4 Bucket Caching ... 26
3.5 Linked List Structure ... 27
3.6 Mod 2n by Bit Shifting ... 28
3.7 Polynomial String Hashing .. 28

4. Analysis ... 29
4.1 Insert ... 29
4.2 Delete .. 29
4.3 Split ... 30
4.4 Get and Update .. 30

5. Results... 31
5.1 Testing Environment .. 31
5.2 Insert ... 31
5.3 Delete .. 32
5.4 Get ... 33
5.5 Performance of Hash Function .. 34
5.6 Performance Comparison with Flat File ... 36

6. Conclusions and Future Work .. 37

References .. 38

 4

Table of Figures

Figure 1: Graphical representation of the IonDB dictionary-level interface structure. 10
Figure 2: Graphical depiction of a dynamic resizing of a simple hash table. 12
Figure 3: General structure of a linear hash table as described. .. 13
Table 1: List of the parameters of a linear hash table ... 13
Figure 4: Algorithm for insertions into a linear hash table. ... 14
Figure 5: Algorithm for deletions from a linear hash table. ... 15
Figure 6: Algorithm for performing a split operation. ... 16
Figure 7: Algorithm for gets from a linear hash table. ... 17
Figure 8: Algorithm for updates on a linear hash table. .. 17
Figure 9: Example of a series of operations in which has operations that can be removed with

no consequence. Since the record with key 1 was deleted before after insertion and was
never needed in a get operation, the insertion and the updates can be skipped and the
same state will still result. .. 18

Figure 9: The structure of the Self-Adaptive Linear Hash .. 20
Figure 10: Distribution of records in buckets relative to split pointer. Spiral storage can be

used to make the distribution of records more uniform. ... 21
Figure 11a: Example of the definition of the type implementing the embedded flash

implementation of the linear hash. .. 23
Figure 11b: Example of the definition of the type implementing the buckets used in the

embedded flash implementation of the linear hash. ... 23
Figure 12: Example usage of record data for the embedded flash implementation of the linear

hash. .. 24
Figure 13: Graphical representation of the swap-on-delete algorithm. 25
Figure 14: Algorithm used to implement the eager deletion strategy used. 26
Figure 15: Graphical representation of the caching strategy used. .. 26
Figure 16: Graphical example of adding an overflow bucket to the embedded flash

implementation of the linear hash. .. 27
Figure 16: The bucket assignment functions used to map values to the address space currently

used in the linear hash. .. 28
Figure 17: The polynomial string hash used in the embedded flash implementation of the

linear hash. .. 28
Figure 18: Formula to calculate the expected number of disk accesses required by a single

insert operation. .. 29
Figure 19: Formula to calculate the expected number of disk accesses required by a single

delete operation. ... 30
Figure 20: Formula to calculate the expected number of disk accesses required by a single

split operation. .. 30
Figure 21: The expected disk accesses required by the get and update operations for the

embedded flash implementation of the linear hash described. 30
Figure 22: Visualization of the relationship between the time taken to complete an insertion

and the input size for the embedded flash implementation of the linear hash. The input

 5

size does not affect the time taken for insertions. The blue dots correspond to insertions
which trigger a split to occur, the blue dots are insertions which required the creation of
an overflow bucket, and the green dots required no additional processing. 32

Figure 22: Visualization of the relationship between the time taken to complete a deletion
and the input size for the embedded flash implementation of the linear hash. 33

Figure 22: Visualization of the relationship between the time taken to complete a get and the
input size for the embedded flash implementation of the linear hash. The input size does
not affect the time taken for get operations. .. 34

Figure 22: Visualization of the distribution of records amongst the buckets in the linear hash
with 5000 records in it.. 35

Figure 23: Visualization of the distribution of records amongst the buckets in the linear hash
with 5000 records in it grouped by 50 records. This demonstrates that the hash function
used is not significantly biased toward any regions of the table. 35

Figure 25: Visualization of the relationship between the time taken to complete a get for the
embedded flash implementation of the linear hash and the input size from the
performance comparison trails. The input size does not affect the time taken for get
operations. .. 36

Figure 26: Visualization of the relationship between the time taken to complete a get for the
flat file implementation in of the IonDB platform and the input size from the
performance comparison trails. There is a clearly linear relationship between the input
size and the time taken to complete the get operation. .. 37

 6

Acknowledgements

 I would like to express my sincere appreciation to Dr. Ramon Lawrence, who invested

much time in me throughout my time at UBC Okanagan. I would also like to extend my gratitude

to Eric Huang, who went above and beyond his assigned duties in managing my activities on this

project. The mentorship and encouragement I was fortunate to receive from these two individuals

has been as inspiring as it has been illuminating. Thank you.

 7

1. Introduction

 In today’s world, advances in both hardware and software happen quickly. New

technologies are constantly transforming the kinds of tools and challenges facing computing

professionals. One such technology is flash memory. First presented by Toshiba in 1987, NAND

Flash memory has become cheaper and more pervasive in recent years, increasing the need for

algorithms better suited to this environment [14]. New computing paradigms, such as the internet

of things, rely largely on flash-based devices. Some of these paradigms bring with them increased

number of relatively resource-constrained computing devices. As the physical structures of

computers change, the interaction between high level problem-solving tools used in practice and

the physical environments in which they are implemented is an increasingly important area of

research.

 Developing algorithms for these environments is a challenging and exciting task. This work

presents such an algorithm. Specifically, an implementation of the linear hash data structure for

embedded devices using flash memory will be discussed in detail. The paper begins by discussing

the domains of embedded devices, flash memory, and the IonDB platform to make clear its

motivations. Next, a detailed background and discussion of the linear hash algorithm is presented.

The specifics of the implementation that satisfies the motivations of the present work are then

described. A thorough analysis of the expected performance of this implementation is given in the

following section. Next, the results of several simulations run on the Arduino platform are

discussed. Finally, the conclusions of the present work and suggestions for future research are

presented.

1.1 Embedded Devices

 Decreases in the size and cost of microprocessors led to the replacement of several

previously analog devices, such as variable capacitors, with small computer systems known as

embedded devices. The capabilities of a single embedded device could often be used to replace

several analog controllers. Modern-day cars use advanced embedded systems to perform many

functions which were previously analog. This includes tasks ranging from how music is played

and controlled to the ignition. Trends such as this have led to new standards in the field of

embedded computing devices.

 The first embedded device was produced for the Apollo space program [13]. Dubbed the

Apollo Guidance Computer (AGC), it centralized interfaces for underlying computations and

processes related to the space craft’s control, navigation, and guidance systems. Since this time,

an increasing number of domains have utilized embedded devices. Consumer electronics, military

technology, and national infrastructure such as telecommunications rely heavily on the capabilities

provided by embedded devices.

 Today, several vibrant embedded-device projects exist within the open-source community.

Among the most popular of these is the Arduino project, which produces inexpensive

programmable circuit boards. The wiring for the Arduino project was created for a graduate thesis

at the Interactive Design Institute Ivrea in 2003 [2]. Arduinos provide a means for people with

little knowledge about electronics to partake in the development of open source hardware projects.

Developing for Arduinos is very accessible, and the Arduino IDE used to create Arduino projects

is available on MacOS, Windows, and Linux operating systems [1].

 8

 The internet of things paradigm has seen a lot of Arduino-driven development. Arduinos

allow less experienced developers to build internet-enabled devices capable of performing

networked operations. Projects such as this were previously only accessible by people with

knowledge of electrical engineering. This greatly widened the number of people capable of

participating in internet of things projects. The benefits of the Arduino project have been numerous

for developers wanting to get started in this field.

 Currently, however, inexpensive embedded devices come with relatively limited amounts

of computational resources. The Arduino Mega 2560, one of the most popular modern Arduino

boards, has only 8KB of SRAM and a clock speed of 16MHz [9]. With such limited processing

and main-memory capabilities, many modern applications cannot run on an Arduino.

Consequently, there has been a drive to implement services necessary for these kinds of

applications in such a way that they can be used in more resource-constrained environments.

 Algorithms which take advantage of environment-specific considerations such as

behaviour of their hardware medium are now developed in tandem with the hardware they are

optimized for. One type of hardware which has spawned the development of several algorithms is

flash-memory. The Arduino Mega 2560 uses flash-memory for program memory [9]. It also has a

microSD card interface and as such sports a relatively high amount of non-volatile, flash-memory

storage. The present study exploits this knowledge in its implementation of the linear hash data

structure for the Arduino platform.

1.2 Algorithms for Flash Memory

 As the price of flash memory has decreased with time, storage systems previously occupied

by hard disk technology are being replaced with flash. An increasing number of personal

computing devices are using flash-based storage devices. Many laptops now come with solid-state

drives out-of-the-box, and both the local and expandable storage devices available in smart phones

are flash-memory based. As the price of flash-memory continues to decrease, the pervasiveness of

flash devices will likely continue to rise.

 While flash- and disk-based memory generally serve the same functions, flash memory is

not just an enhanced version of the same set of behaviours performed by disk-based memory.

There are some important differences in the characteristics of these two storage formats. While the

access time is generally much faster on flash-memory, the data transfer rate is relatively slow.

Consequently, when calculating the total time taken to read some amount of data, the block size

of the system is an important consideration [5]. However, flash-memory far outperforms disk-

memory when the transfer size of data is reasonable. Running programs which are purely random

read operations has been shown to be as much as 20 times faster on flash than on disk [5].

 The behaviour of random write operations on flash memory diverges most dramatically

from disk-based memory. The physical structure of flash memory is built using groupings called

erase blocks. When a write operation is performed, the individual sectors of an erase block cannot

be changed directly, the entire erase block must be updated. This means there is much more

overhead for random write operations on flash-memory storage than on hard-disk storage.

Consequently, programs which are purely random write operations have been shown to run a much

as 15 times slower on flash than on disk [5].

 Flash memory also has a limited life span. It can only perform a finite number of write

operations to the same physical memory location before that location wears down. Therefore, to

maximize the life of a flash-memory device, it is important to keep the distribution of write

 9

operations relatively uniform amongst the physical memory locations. The technique of extending

the lifetime of flash memory in this way is known as wear levelling.

 The differences in the performance characteristics of flash and hard-disk storage media

does not necessarily mean that certain kinds of programs will always run optimally on one medium

or the other. Efficient algorithms for flash memory are currently subject of many research and

development projects. One pattern commonly adopted in data structures used in flash-memory

systems is that of logging operations as they are requested then performing them in a sequential

batch where possible. This not only reduces the amounts of random-write operations, but also

produces a more even wear-levelling. The efficient log-structured flash file system (ELF) project

applied this philosophy to the development of a file system for flash-memory based micro-sensor

nodes achieved near-uniform wear leveling, greatly extending the functional life of the flash-

memory system [4].

 Other algorithms have used this idea to achieve a faster performance. The self-adaptive

linear hash discussed in detail in a later section buffered logs of requested operations in main

memory to achieve a notable increase in its performance [15]. By flushing buffered records

operations affecting records in the same physical block of memory at the same time when freeing

buffer space, the number of random writes was decreased considerably. Even research into hash

functions designed specifically for the characteristics of flash memory is being done [3]. The

limitations of the physical medium can be overcome with varying degrees of success, though there

is still much work to be done in this field.

1.3 IonDB

 IonDB is a data management system designed for Arduinos and other resource constrained

devices [6]. It uses a simple key-value store interface with several underlying implementations

with different performance trade-offs that can be selected from. Currently, there is no efficient

interface for data management in Arduinos natively. IonDB aims to fill this void and expand the

functionality of the Arduino platform. This means that Arduino developers don’t have to develop

their own data structures and algorithms for this purpose.

 Massive amounts of data are gathered by the kinds of devices IonDB is designed for.

Deriving information from this data has both great scientific and industrial value. With no viable

local data management system, using networked devices for storage and processing is

commonplace. Network communications are costly however. An experiment conducted by Pottie

and Kaiser showed that it takes the same amount of energy to execute 3 million instructions at 100

MIPS as it does to transfer 1KB of data over 100 meters of network links [11]. Clearly, there is

great value in being able to manipulate data locally on embedded devices.

 Data management systems such as MySQL are a heavily-used resource in most computing

applications. They provide an abstracted way to manipulate and store data, greatly improving

programmer efficiency. Unfortunately, not even the least computationally demanding relational

database software like SQLite can run on the Arduino platform. Prior to IonDB, a number of

relational database implementations existed for the Arduino. However, the constraints on the

resources of the devices restricted the features and performance of these systems. A key initial

goal of the IonDB project was to push performance of simplified data management interfaces past

what was currently available.

 Currently, IonDB provides an extensible, high-level interface for a key-value store that

gives users several different implementations to choose from, each with their own strengths and

 10

weaknesses. As of this writing, IonDB includes a skip-list, flat-file, and disk- and main-memory-

based implementations of a hash map. All of its implementations support insert, update, get, and

delete operations, as well as find and range queries. The implementations all perform these

operations in their respective expected times [6].

Figure 1: Graphical representation of the IonDB dictionary-level interface structure.

 IonDB is open source. Through its freely available and extensible library of key value store

implementations, it also aimed to educate Arduino developers on data structures and algorithms.

Many Arduino developers are students, and have little exposure to programming data structures.

This is especially problematic in the Arduino environment due to the lack of a data management

layer mentioned previously. When using IonDB, developers can learn while using a fully exposed

data management system, but don’t have to start from scratch.

 As more developers seek to build technologies that push the limits of the internet of things

paradigm, the features offered by IonDB are becoming more widely sought. IonDB has received

notable attention from the software engineering community. Featured on HackerNews in 2016,

IonDB currently has 450 stars on its GitHub repository. Development on the IonDB project’s

GitHub repository is active. The data structure implementation discussed in the later sections of

this paper was designed for use in the IonDB API on the Arduino platform.

 The IonDB platform is written in the C programming language, and any example code in

this document should be assumed to be C code.

1.4 Motivations

 The motivations for the present study are many-fold. Hash algorithms such as hash maps

are among the most useful and performant ever realized. Good hash functions allow for a near-

constant time complexity for the basic hash-table operations. One consideration which must be

made for hash maps which heavily affects their worst-case performance is how to handle the

growth required by an unspecified number of insertions. This consideration, known as dynamic

resizing, has led to a number of research efforts made in the data structures used to implement hash

maps.

 The linear hash data structure is dynamically resizable and has constant time complexity

for the basic hash table operations. This kind of near-optimal performance is desirable in any

environment, and would be an especially useful tool for resource-constrained environments such

 11

as the Arduino. As the linear hash described in the present study was made for the IonDB platform,

Arduino developers can utilize the high performance of the linear hash presented through a simple

interface.

 Currently, there is no implementation of a dynamically resizable hash table for the IonDB

platform. Adding a linear hash to the suite of implementations currently in IonDB would give

developers on the Arduino platform another tool for data management. This is a very desirable

thing for a platform with no accessible native data management layer. All the implementations

currently available in IonDB exhibit a complexity growth of logarithmic or worse for at least some

of the insert, update, get, and delete operations, or are not dynamically resizable efficiently. Adding

a linear hash to the IonDB implementation suite provides a new, desirable configuration when

managing data using the IonDB platform.

 Since the Arduino uses flash memory, developing such a structure presents an opportunity

to explore implementations that favour the performance characteristics of flash. In the Arduino

environment, main memory is at a premium. As previously stated, ATmega256 model has only

8KB of SRAM and 256KB of flash memory [9]. For programs to scale with these constraints on

processing and storage capabilities, optimal time and space complexity must be obtained.

 These design challenges were approached in several ways. At times, strategies were

explicitly used to minimize random write operations. These techniques are discussed in depth in

later sections. Several implementations of flash-aware hash maps have been produced. Many of

these, however, buffer log records in main memory. In environments such as the Arduino, the use

of such techniques is heavily restricted. As such, other techniques for improving performance will

be presented to the reader.

 As Arduinos and other embedded systems become more common, improving programmer

efficiency for these environments becomes of great value. IonDB and other platforms are

generating the tools that will aid in such improvements.

2. Background

2.1 Linear Hashing

 First introduced by Witold Litwin in 1980 [8], the linear hash data structure is a

dynamically-resizable hash table which maintains constant-time complexity for all the basic hash

table operations. The linear hash does this by keeping track of a small number of parameters. It

achieves this using only linear space as a function of the number of records in the table. At the

time of Litwin’s writing, no data structure with this level of performance was known.

 The previous techniques used to increase the capacity of a hash tables often involved

rehashing all the records stored after increasing the size. As the functions offered by hash maps

are often desired in programs which need to deal with massive amounts of data quickly, even

occasional resizing done in this way is unacceptable. Through the clever structure of the linear

hash, this is avoided. Because of its desirable properties, popular database management systems

such as PostgreSQL use implementations of the linear hash described by Litwin [10]. The

algorithms used to achieve are as follows.

 12

Figure 2: Graphical depiction of a dynamic resizing of a simple hash table.

2.2 The Linear Hash Algorithm

2.2.1 Attributes and Parameters

 The basic storage unit of the linear hash described by Litwin are buckets that all have the

same, finite capacity. Upon initialization, the linear hash is allocated some number of buckets.

These buckets are arranged in the fashion of a linked-list and are given an index, the first bucket

being given an index of 0, the second an index of 1, and so on. Records are assigned to buckets

using one of two hash functions that change throughout the life of the linear hash. The hash

functions used to map keys to buckets have the property that if a key maps to bucket m using hash

function h0, then using h1 it will map to the bucket with index m or the bucket with index n. When

a record is assigned for insertion to a bucket that is already full, an overflow bucket is created and

a pointer from the full bucket to the overflow bucket is assigned to the full bucket.

 13

Figure 3: General structure of a linear hash table as described by Litwin.

 The load of a linear hash table is the number of records in the table divided by the capacity

of that table. The capacity of the linear hash table is the number of non-overflow buckets in the

table multiplied by the capacity of buckets. Note that the capacities of overflow buckets are not

factored in to the load of the linear hash, but the records they contain are. When the table reaches

a certain load, a new bucket is created and about half of the records from one of the buckets in the

table are reassigned to this bucket. This operation is known as a split, and it is what allows the

linear hash to maintain its constant time performance while growing dynamically. The load at

which splits are performed is declared upon initialization. A pointer tracks which bucket half of

the records will be taken from during each split. This structure requires the tracking of several

parameters, summarized below.

Table 1: List of the parameters of a linear hash table

Symbol Value

t The load which, if exceeded, triggers a

split
s The initial size of the linear hash

r The maximum number of records allowed

in a single bucket
b The number of indexes in the bucket list

n The total number of records in the table

● Records per bucket = 4
● Capacity = 4 * 4 = 16

● Load = 14 / 16 = 87.5%
● Split pointer = Bucket 0

 14

capacity r * b

i The index of the bucket to split next
load n / capacity

d The number of times the number of buckets

in the table has doubled.
h0(key) hash(key) mod s * 2d

h1(key) hash(key) mod s * 2d + 1

2.2.2 Basic Operations

Insert

 Insertions into a linear hash table happen in a constant number of disk accesses. The

algorithm for insertions into a linear hash table is similar to simple hash tables. Recall that the

linear hash tracks the index of the next bucket to be split i. Because of periodic redistribution of

some of the records from the bucket with index i to the newly created bucket, the proper location

to insert the record at could be in one of two places. If the result of h0 is less than the index of the

next bucket to be split, the bucket has already been split and the hash function h1 is used. The terms

2d and 2 d + 1 that appear in h0 and h1 respectively change as the number of buckets in the table

changes. This allows for expansion of the address space that h0 and h1 map keys to.

 Two additional processes can be triggered by inserting records into a linear hash table.

Recall that the buckets in a linear hash table have a finite capacity. When a record is mapped to a

bucket that is currently full, an overflow bucket is created. This requires the writing of a new

bucket to disk as well as the updating of the current tail in the linked list of overflow buckets being

inserted into. The gains in overall performance from this operation exceed the overhead it requires.

 The other process which can be triggered by an insertion is the split operation. This

operation requires the writing of a new bucket, as well as several insert and delete operations.

Details of the split operation are discussed below. Fortunately, the proportion of records in at a

bucket index and the rate at which the load increases are both inversely proportional to the number

of buckets in the table. This means that as the size of the linear hash grows, the frequency of the

creation of overflow buckets and split operations decreases as the table grows.

insert(key k, value v):
 bucket_index = h0(k)
 if bucket_index < linear_hash.i
 bucket_index = h1(k)
 bucket = get_bucket(bucket_index)
 bucket.append({k, v})

 if (bucket.number_records == table.records_per_bucket)
 create_overflow_bucket(bucket_index)

 if (table.load > table.load_factor)
 split(table.split_pointer)

Figure 4: Algorithm for insertions into a linear hash table.

 15

Delete

 The algorithm for delete operations in a linear hash is generally the same as a simple hash

table with one modification. Because of periodic redistribution of some of the records from the

bucket with index i to the newly created bucket, the key could be in one of two places depending

on the state of the linear hash.

 To determine which bucket to search for the key in, an additional check is again required

as it was in the insert. If the bucket has not been split since the last time the next split index i was

reset to 0, we search for the record to delete in the bucket with index h0(key). If this bucket has

been split, we search for the record in the bucket at index h1(key).

 The empty space created when a record is deleted from the table must be managed in some

way for the linear hash to maintain its performance. One strategy commonly employed for this

purpose is known as tombstoning. This involves marking the records with some sort of status flag,

or “tombstone”, that signifies it is now empty space that can be reused. Then, when a record is

inserted into the table, a scan through the chain of overflow buckets at the index a record is mapped

to is done to see if there are any tombstones marking empty space that can be reused. This is very

space efficient, however there is a lot of overhead as scans of the entire chain of overflow buckets

is necessary to perform an insert operation. This is especially undesirable in situations where a

large number of insertions are expected, such as in the logging of sensor data.

 Another technique used to handle this issue is known as swap-on-delete. The swap-on-

delete algorithm is used to ensure that there are no holes in a list structure. When a deletion occurs

in the list, the terminal record is removed from the end of the list and used to fill the hole created

by the deletion. This guarantees that if any empty space exists, it will be immediately after the last

entry currently in the list. This algorithm favours insertions over deletions as some overhead is

required to read the terminal record into memory and delete it from the end of the list. Insertions,

however, become instant, as all the location of freed space (if any is available) is always known.

 Some linear hash implementations support a contract operation which is essentially the

reverse of a split. When the load factor falls below some threshold, a bucket is removed and its

records are redistributed to another bucket. The split pointer is then decremented. This operation

requires significant overhead periodically on deletions, and is beneficial when non-volatile storage

is at a premium. However, as this was not a key limiting resource in the Arduino environment, the

contraction operation was not used in the implementation discussed in the following sections.

delete(key k, value v):
 bucket_index = h0(k)
 if bucket_index < linear_hash.i
 bucket_index = h1(k)
 bucket = get_bucket(bucket_index)

 while bucket != null
 for each record in bucket
 if record.key == k
 remove record form the table
 bucket = bucket.overflow_bucket

Figure 5: Algorithm for deletions from a linear hash table.

 16

Split

 The periodic splitting and adding of buckets is what makes the linear hash more performant

than other hash tables. Splitting makes the load of the linear hash remain relatively constant as the

number of records in the table grows. As previously mentioned, splits are triggered when the linear

hash has a load exceeding the threshold parameter t. The check for this event is done after a record

is inserted in the table.

 The split operation involves several steps. Frist, a new bucket is created with an index of n

and is added to the table, where n is equal to the largest index currently in the table + 1. Next, the

bucket at index i, the index tracked by the linear hash as the index of the next bucket to split, is

read in to memory. For each record in this bucket, h0 and h1 applied to its key and the results are

compared. If the result of h0 and h1 are not equal, the result of h1 will be equal to the index of the

new bucket just created. The record is then deleted from the bucket it is currently in and inserted

into the new bucket. This same process is then applied to all the overflow buckets for the bucket

chain at index i at the time the split was triggered.

 After the split is complete, the linear hash will be below its split threshold t. The index of

the bucket to split during the next split operation i is incremented at this time. If the number of

buckets in the table has doubled since the last time i pointed to index 0, i is reset to 0 and the

number of times the table has doubled d is incremented. This is done to prevent buckets which

have been in the table longer (i.e. the buckets at the lower indexes) from accumulating

disproportionate amounts of records.

 While the split can be relatively expensive when compared to the insert, update, get, and

delete methods as it requires multiple insertions and deletions, the cost of splits remains constant

as the table grows. This is possible because of the expansion of the address space that occurs when

d is incremented. Recall that d appears in both the h0 and h1 and hence they are changed when i is

reset to 0. Because of this, the overhead cost of occasionally performing splits is more than made

up in the long run by the properties it guarantees.

split():
 bucket = get_bucket(linear_hash.i)

 while bucket != null
 for each record in bucket
 if h0(record.key) != h1(record.key)
 remove record from current bucket
 insert record into new bucket
 bucket = bucket.overflow_bucket

 linear_hash.i++

 if linear_hash.i == linear_hash.s * 2linear_hash.d
 linear_hash.i = 0
 linear_hash.d++

Figure 6: Algorithm for performing a split operation.

 17

Get

 The algorithm for the get operation even more closely resembles a simpler hash table than

the delete and the insert algorithms do. To perform a get, the bucket to look for the record is

resolved the same way as it was in the delete by comparing the results of h0(key) and the index of

the next bucket to split. If bucket has been split, that is, if h0(key) is less than i, then the bucket at

index h1(key) is searched. The records in the bucket at the index determined in this way are then

checked to see if they have the key specified. The first record with the key specified is then

returned.

get(key k):
 bucket_index = h0(k)
 if bucket_index < linear_hash.i
 bucket_index = h1(k)
 bucket = get_bucket(bucket_index)

 while bucket != null
 for each record in bucket
 if record.key = k
 return record
 bucket = bucket.overflow_bucket

Figure 7: Algorithm for gets from a linear hash table.

Update

 The algorithm for the update operation is essentially the same as the get operation except

it updates the first record encountered instead of returning it. To perform an update, the bucket to

look for the record in is resolved the same way as it was in the previous methods. The records in

the bucket at the index determined in this way are then checked to see if they have the key

specified. The value of the first record with the key specified encountered is set to the value

specified in the update operation.

update(key k, value v):
 bucket_index = h0(k)
 if bucket_index < linear_hash.i
 bucket_index = h1(k)
 bucket = get_bucket(bucket_index)

 while bucket != null
 for each record in bucket
 if record.key = k
 record.value = v
 break
 bucket = bucket.overflow_bucket

Figure 8: Algorithm for updates on a linear hash table.

 18

2.3 Variations of the Linear Hash

2.3.1 Log Records

 As discussed in the beginning of this paper, a key difference between flash- and disk-based

memory is the performance of write operations. The reason for this is that individual sectors in the

memory array could not be manipulated because of the physical structure. Individual sectors are

grouped together in erase blocks which are usually much larger than a page, greatly affecting the

performance of random writes. Designed with this in mind, some hash table implementations

buffer logs of successive operations before flushing the result to disk. This can often decrease the

total number of read and write operations required to arrive at the same result, and, in some

environments, allow for some writes that would have been performed randomly otherwise to be

performed sequentially. This is a desirable result in any environment, but especially when the cost

of random write operations is very high and large numbers of them are expected.

 As a simplified example, consider a basic key-value store structure where no duplicate keys

are allowed. If we were to give the hash table the operations INSERT(1, 5), UPDATE(1, 10),

UPDATE(1, 5), DELETE(1), there would be no record with key = 1 in the key-value store after

all operations are completed. However, achieving this state took 5 operations. Since the last

operation was a delete and the data was not needed for any get operations after it was inserted and

before it was deleted, nothing about the state of the key-value store actually needs to change, and

3 write operations can be avoided.

Figure 9: Example of a series of operations which has operations that can be removed with no

consequence. Since the record with key 1 was deleted after insertion and was never
needed in a get operation, the insertion and the updates can be skipped and the same
state will still result.

 19

 To achieve this efficiently in practice, the log records that store which operations are

performed are buffered in memory. Exact implementations differ, but some general patterns are as

follows. Typically, when a buffer is full, inconsequential operations are removed from the buffer.

If none can be removed, then data needs to be flushed. If possible to guarantee that certain pieces

of data are stored sequentially, the largest string of sequential data is flushed from the buffer to

disk. Several hash tables have applied this idea in practice, including variations on the linear hash

such as the implementation of the Self-Adaptive Linear Hash described in the next section [3].

 This technique of using logs records to improve of the performance of data structures has

been applied for many years. In 1992, Rosenblum and Ousterhout introduced a log-structured file

system for environments in which reads were assumed to be cheap and writes costly [12]. Their

implementation far outperformed the Unix file system in terms of bandwidth usage, achieving a

bandwidth usage of 70% in environments where Unix file systems could only achieve between 5%

and 10%.

 Projects have since applied this idea to achieve other desirable effects such as the

previously mentioned ELF data structure which achieved near-uniform wear leveling [2]. Clearly,

log records are a useful algorithmic tool, and can mitigate some of the issues that come with using

flash memory.

 There is of course a main-memory cost associated with buffering anything. This makes the

technique of logging operation records difficult or even futile in heavily constrained environments.

Consequently, it was not used in the embedded flash implementation of the linear hash described

in later sections. Examining the viability of this technique for the linear hash in the Arduino

environment could be a fruitful research endeavour.

2.3.2 Self-Adaptive Linear Hashing

 A specialized implementation of the linear hash for solid state drives known as the Self-

Adaptive Linear Hash (SAL) takes the use of log records a few steps further. Presented by Yang,

Jin, Yue, and Zhang, the SAL adds higher levels of organization to the linear hash to achieve more

coarse-grained writes to improve the bandwidth [3]. In the SAL, a group contains some set number

of buckets. When the load factor of a SAL is exceeded, an entire group is created instead of a

single bucket. A set in the SAL is composed of a number of groups. Attached to each set is a log

of operations that affects only members of that set. This amortizes the cost of writes by

guaranteeing the locality of buckets and thus writes can be performed at a coarser grain for

improved bandwidth. To try and determine in advance the location of an update operation for a

particular bucket in the log of operations for the set it belongs to, bloom filters were used.

 20

Figure 9: The structure of the Self-Adaptive Linear Hash

 There are costs associated with having these logs of update operations for every set. When

performing a get operation, it is required that the logs be examined. Otherwise, there is no way to

ensure that the result reflects the true state of linear hash after all the operations specified thus far.

The overhead associated with this structure grows with the number of log records stored for a set.

Thus, using these structures alone, there is a trade-off made between read and update performance.

 Thankfully, the way in which the SAL is “self-adaptive” mitigates these undesirable

effects. An online cost-based algorithm is used to detect sets which are frequently searched. If such

a set is detected, the operation logs are fully merged so that they no longer need to be searched.

This may greatly offset the cost of the gains in write performance. However, there are certain

problem instances in which the read performance of an SAL will lag behind a linear hash which is

not organized in this way.

2.3.3 Spiral Storage

 Spiral storage is a technique that can be used in combination with linear hash. By applying

an additional transformation to the result of the linear hash bucket mapping functions h0 and h1,

spiral storage intentionally distributes the records amongst the buckets unevenly. Whenever a

bucket is added to the linear hash, the address space is expanded. New space is added in the form

of the new bucket, and some space will be freed in the bucket that will be split during this

expansion.

 21

 While the expected performance of the linear hash is constant, there is some cyclical

variation. In simple terms, this is because the buckets in the lower end of the address space have

been around for longer. While the split operation, the periodic resetting of the split pointer, and

the updating of the hash functions largely deals with this, a segment of the address space remains

slightly bloated.

Figure 10: Distribution of records in buckets relative to split pointer. Spiral storage can be

used to make the distribution of records more uniform.

 This may seem unintuitive at first, but consider this example. Suppose a linear hash table

that had an initial size of 5, had 9 buckets, and had a split pointer pointing to the bucket at index

3. That means that buckets at the indexes 0, 1, and 2 have been split. For the purposes of this

example, imagine that a record is inserted to a bucket at random every time step ti. This means that

at any time ti a bucket b would have (ti – b.time_created) / linear_hash.n in it if b has not been

split and (b.time_split / linear_hash.n)/2 + ((ti –b.time_split) b.time_created / linear_hash.n

records if it has been split. Since for all buckets bi in the linear hash table that have an index less

than s * 2d there is a bucket bj such that bi.time_split = bj.time_created and that, given any

reasonable hash function, (b.time_split / linear_hash.n)/2 will be greater than 0, bi.record_count

= bj.record_count. This will difference will remain the same for bi and bj until the next time the

split pointer is reset and both bi and bj are split again.

 While this is a very contrived example, it illustrates why spiral storage techniques can be

beneficial for the linear hash. These were not used in this first iteration of the linear hash data

structure created for IonDB. The implementation described in the following sections could benefit

from such an addition, and such a research project could further push the limitations of hash

indexes for embedded devices. The mathematics behind the function used to achieve this property

are beyond the scope of this paper. A spiral-storage based hash index which makes use of these

techniques is described by Larson in [7].

 22

3. Embedded Flash Implementation of the Linear Hash

3.1 Structures

3.1.1 Linear Hash Table

 The implementation used a set of parameters necessary to capture the information required

for the algorithm described in the previous section. The initial_size attribute of the linear hash type

defined was used to store the value of linear_hash.s * 2 linear_hash.d, which is the value used in h0 and

h1. Doing so saved on repeated calculations. In practice linear_hash.s and linear_hash.d parameters

described previously are not required for anything else. The index of the next bucket to split, the

load threshold at which splits occur, total number of records, total number of buckets, the total size

of a record, and the number of records per bucket allowed in the table were all tracked either out

of necessity or to avoid repeated calculations.

 To store the data for the linear hash, two data files were used. The first data file was used

to store information about the linear hash’s state. This file was only read from on initialization and

written to on destruction. This state data file was tracked by the state attribute on the linear hash.

The second was used to store the record and bucket data currently in the linear hash table. This

data file was written to repeatedly throughout the use of the linear hash methods. The database

attribute was used to track the pointer in this data file.

 As previously mentioned, the implementation being discussed was made for the IonDB

platform and thus conformed to its design specifications. The IonDB platform has a generic

interface called the dictionary interface. To implement polymorphism in the C programming,

IonDB defines a dictionary type which serves as the super class for the low-level implementations

of the key-value store like the linear hash.

 Conforming to this, linear hash type defined had an attribute titled super which contained

data that would be used by any of the low-level implementations such as the key type, key size,

and value size. A generic dictionary struct tracks a pointer to the instance being used and a handler

struct which is a collection of function pointers that are set to the methods of the implementation

level structures such as the linear hash. With this organization, IonDB can provide a generic

interface for the implementations. After initializing the structs, the linear hash methods can be

called using a function call such as dictionary->handlerget(key).

 Two caches were used. One served a mapping of indexes to file offsets in the data file. This

was pointed to by the bucket_map attribute. The other was used to store data that would have

otherwise been lost due to the split method. This attribute was simply titled cache as it was just a

generic array of bytes that could be used for any purpose. The uses of these two attributes are

described in detail in the following sections.

typedef struct {
 ion_dictionary_parent_t super;
 ion_dictionary_size_t dictionary_size;
 int initial_size;
 int next_split;
 int split_threshold;
 int num_buckets;

 23

 int num_records;
 int records_per_bucket;
 ion_fpos_t record_total_size;
 FILE *database;
 FILE *state;
 array_list_t *bucket_map;
 ion_byte_t *cache;
 int last_cache_idx;

} linear_hash_table_t;

Figure 11a: Example of the definition of the type implementing the embedded flash
implementation of the linear hash.

3.1.2 Buckets

 A very simple structure was used for the buckets. All that had to be tracked were the index

of the bucket, the number of records it contained, and the location of its overflow bucket in the

data file. The same struct was used for both overflow and non-overflow buckets. To indicate that

a bucket did not have an overflow bucket (i.e. that it was the terminal bucket in a linked list of

overflow buckets) a special value was used for that bucket’s overflow location.

typedef struct {
 int idx;
 int record_count;
 ion_fpos_t overflow_location;
} linear_hash_bucket_t;

Figure 11b: Example of the definition of the type implementing the buckets used in the
embedded flash implementation of the linear hash.

3.1.3 Records

 No actual struct was defined for the record data. Whenever needed in main memory, two

byte arrays and one single-byte variable were defined to store data read from the data file (an

example of this process is shown below). IonDB supports keys of multiple types which are not

guaranteed to be the same size. This is information is stored in the super parameter and defined

upon initialization. As such, a statically defined struct for linear hash records was not appropriate.

Consequently, the total size of a record for this linear hash was computed upon initialization of the

linear hash and added as a parameter to the linear hash state information in main memory to avoid

repeated calculations.

 In addition to having a key and a value, records also had a status flag that consisted of a

single byte. If a record was deleted, this status was given a value of linear_hash_record_empty,

signifying that it could treated as empty space during an insertion.

 24

ion_byte_t *key = alloca(linear_hash->super.record.key_size);

ion_byte_t *value = alloca(linear_hash->super.record.value_size);
ion_byte_t status = linear_hash_record_status_empty;

// read entire record into main memory
fread(record, linear_hash->record_total_size, 1, linear_hash->database)

// read copy individual data elements to structures
memcpy(status, record, sizeof(*status));
memcpy(key, record + sizeof(*status), linear_hash->super.record.key_size);
memcpy(value, record + sizeof(*status) + linear_hash->super.record.key_size,
linear_hash->super.record.value_size);

Figure 12: Example usage of record data for the embedded flash implementation of the linear
hash.

3.2 Swap-on-Delete

 Swap-on-delete is a technique used for managing empty space caused by deletions in a list.

The algorithm does this by ensuring that there are no holes in a list of items. Whenever an item is

deleted in the list, the item at the end of the list is plucked from the end and placed in the hole

where the deleted previously was. In our implementation, swap-on-delete was used on the logically

contiguous list of records that exists amongst a chain of overflow buckets. This means that

whenever a record was deleted in any bucket, the last record in the last bucket of the overflow

chain was read into memory and written to the location the previous record on disk and in the

cache. For the linear hash, using the swap-on-delete technique guarantees that if any free space is

available it will be in the first open space in the last bucket of that bucket’s overflow chain.

 The previously discussed tombstoning technique involved simply placing a status flag on

records and assigning this attribute the tombstone value being used when it is deleted.

Tombstoning was used in the early stages of development but was found to be less performant

than swap-on-delete for the IonDB specification. Since tombstones just bloat the table with junk

data unless they are overwritten, a deterioration of performance can often happen when using

tombstoning. This is especially true for the linear hash which must scan through an entire linked

list of overflow buckets to look for available space during an insertion when using naïve

tombstoning. Swap-on-delete guarantees us this knowledge at all times. While there is some

overhead performance cost during the delete method to implement swap-on-delete, insertion time

was greatly improved after its implementation.

 25

Figure 13: Graphical representation of the swap-on-delete algorithm.

3.3 Eager Deletions During Swap

 Using swap-on-delete required an additional three disk accesses. First, the bucket has to be

read in to memory to obtain the swap record. Second, the swap record needs to be written to the

bucket where there is now a hole. Since the cached was now invalid as records have moved from

the tail bucket to the bucket currently in main memory on disk, a disk read is required to update

the cached bucket.

 This overhead can be reduced slightly when deleting as per the IonDB specifications,

however. Since all records with the key specified are to be deleted for a delete operation, if a swap

record has the same key as the one specified for deletion, it too can be deleted without being

inserted into the cache. Since the swap record is guaranteed to be the last record in the terminal

overflow bucket, no holes need to be filled to maintain the benefits of swap-on-delete when this

done. This eliminates the need for the additional reads and writes associated with deleting that

record when it would otherwise have been encountered during the scanning of all the records in

the bucket chain.

 Using this strategy did impose some design challenges, however. During the split

operation, records are redistributed from one bucket to another. This was implemented as series of

insert and delete operations. Since a single delete operation could delete multiple records, the

 26

values associated with those records needed to be saved for re-insertion. To achieve this, a small

generic cache of bytes was used. The gains received from using this strategy are proportional to

the number of duplicate keys in the table.

eagerDelete(delete_record, swap_record):
 while(delete_record.key == swap_record.key)
 swap_record.status = deleted
 cache.add(swap_record.value)
 swap_record = linear_hash.getNextSwapRecord()

Figure 14: Algorithm used to implement the eager deletion strategy used.

3.4 Bucket Caching

 To improve the performance of operations that may be performed on all records in a bucket

such as key comparisons in the get operation, the entire contents of buckets were read in to memory

in a single read. During the iteration over the records of the bucket, the individual records were

then copied from the cached data into variables that could be manipulated. An example of this

process is shown below. This reduces the amount of reads when scanning a bucket from the

number of records currently in that bucket to 1 provided that the total size of the maximum amount

of records in a single bucket is less than the page size of the device being used.

 In some cases, however, the record cache required refreshing. The use of the swap-on-

delete technique at the bucket level meant that the structure of the data used to fill what’s currently

in the cache was mutated. To work around this limitation, the cache was refreshed and the iteration

was restarted every time a record in that bucket was deleted. This saved a number of disk accesses

that was proportional to the number of records per bucket.

Figure 15: Graphical representation of the caching strategy used.

 27

3.5 Linked List Structure

 To remove the need for an additional read and write operation, insertions of new overflow

buckets into the linked list were handled slightly differently than a traditional linked list. Usually,

when a new node is added to the tail of a linked list, it is required that the previous tail be updated

so that it points the new tail. To have this operation reflected in the data file at least two disk

accesses must be performed. First, the newly created bucket must be written to disk. Second, the

previous tail must be updated, which can be done in a single write operation in the simplest case

 To avoid the need for the latter of these two write operations, newly created overflow

buckets were given pointers to what would have been the previous head of the overflow bucket

list it belongs to. The linear hash then indexes the location of the new overflow bucket which is

now the new head of its bucket chain. This means that whenever a bucket chain is scanned, the

first bucket read in to memory was the most recently created overflow bucket. The original bucket

indexed by the linear hash always serves as the tail of the list of buckets.

Figure 16: Graphical example of adding an overflow bucket to the embedded flash
implementation of the linear hash.

 28

 To index the locations of the heads of the overflow bucket chains, a simple array list was

used. The array list implementation used only needed to track its current size and a pointer to the

its data array. The file offsets stored in the bucket map were stored in main memory. Since the

bucket indexes were integers, the indices of the array could serve as the key in the key-value

mapping of bucket indexes to file offsets. Whenever an index larger than the size of the table was

given for an insertion, the table was expanded.

3.6 Mod 2n by Bit Shifting
 Division is the most expensive of the basic arithmetic operation computationally speaking.

Modulo is even worse as it requires multiple divisions. It is unfortunate then that all lookups done

in a linear hash table require this operation, sometimes even twice. By using an initial size that

was a power of two, a useful logical equivalency could be exploited to make this a non-issue. It

can be proved that for any power of 2, taking the bitwise and of that number - 1 is equivalent to

the modulo operation. This eliminates the need for expensive division operations. As such, the

implementations of the bucket mapping functions h0 and h1 use this operation, and the initial

number of buckets in a linear hash table must be a power of 2.

h0(key) = key & (s d – 1)

h1(key) = key & (s d + 1 – 1)

Figure 16: The bucket assignment functions used to map values to the address space currently
used in the linear hash.

3.7 Polynomial String Hashing
 To distribute keys amongst buckets evenly, a polynomial string hash was applied to the

raw bytes of the array key passed in. The results of this function were satisfactory, achieving a

relatively even distribution of records amongst the buckets. First, the bytes of the key were

transformed in to an integer. Then, the string of bytes that represents this integer had the

polynomial string hash applied to it. Finally, the result of this transformation was passed in to the

bucket assignment functions h0 and h1. The details of the performance of this hash function are

discussed in the results section.

int polnomialStringHash(int key) {
 int hash = 0;
 int i;
 int size_of_int = (int) sizeof(int);
 int coefficients[] = {0, 3, 7, 9, 53, 67, 5, 99};
 for (i = 0; i < size_of_int; i++) {
 hash += *(&key + i) + (i * coefficients[i]);
 }
 return hash;
}

Figure 17: The polynomial string hash used in the embedded flash implementation of the
linear hash.

 29

4. Analysis

4.1 Insert

 The implementation described in Section 3 requires a varying number of computations

made. In the most basic case, an index is calculated, a bucket is read to determine its first empty

location, and the record is written to the first free location. This most simple case requires 2 disk

accesses.

 If a bucket is full and an overflow bucket is created, then a new bucket is written to the

data file and the record is written to the first location in that bucket. These additional operations

are required approximately ((1/records_per_bucket)/number_of_buckets)) of the time. As this

number is inversely proportional to the number of buckets in the table, the frequency with which

it is necessary to create an overflow bucket decreases over time. When creating an overflow

bucket, a total of 3 additional disk accesses were made in the algorithm used. First, a bucket was

read and found to be full. Next, a new overflow bucket is created and written to disk. A record is

then written to the new overflow bucket on disk. Finally, the count of the records in the bucket

was incremented by 1 and the bucket was updated on disk.

 While it is possible to reduce avoid the writing of the record and the new overflow bucket

separately, as well as the additional updating of the bucket after the record is inserted, specialized

methods are required. Future refactoring of this implementation of this linear hash could benefit

from including such specialized methods to further performance.

Figure 18: Formula to calculate the expected number of disk accesses required by a single
insert operation.

4.2 Delete

 To complete a delete operation, all overflow buckets in the linked list of overflow buckets

at the index that the key specified for deletion maps to must be checked. Since, however, the

calculation for the capacity of the linear hash table (which is then used in the calculation for the

load of the linear hash table) does not count overflow buckets, there should not be more than one

or two overflow buckets at most at any index given a reasonably good hash function. However,

averaged over the entire table, there will be few as the load should rarely exceed the threshold,

which should always be less than one. An estimate of the mean number of overflow buckets in the

present implementation was determined using a simulation and was found to be approximately

0.3.
 As mentioned in a previous section, the swap-on-delete algorithm used to manage empty

space efficiently requires some overhead. Specifically, when a record with the key specified for

deletion is encountered, the bucket containing the swap record is read, the swap record itself is

read, the swap bucket is updated, the data on disk that defines the bucket currently cached is

 30

updated on disk, and the bucket currently cached in memory is refreshed. This means that if only

one record has the key specified for deletion, a total of 6 disk accesses are required. There are a

few processes here which could again be further reduced, however for code simplicity and reuse

they were performed thusly. These optimizations can be added reasonably easily in future work.

 When more than one record has the key specified, some of the overhead is reduced. As

previously described, if a record to be inserted into a newly freed slot by the swap-on-delete

algorithm has the key specified for deletion, it is just deleted immediately. This means that the

portion of the data file that defines the cached bucket does not need to be updated, and the cache

does not need to be refreshed. This gain is proportional to the average number of records that share

a key with any given record.

Figure 19: Formula to calculate the expected number of disk accesses required by a single

delete operation.

4.3 Split
 Split operations are triggered by insertions require even more additional processing. If

interested in the worst-case time for insertions, it would be the time of the split. On average, half

of the records in a bucket being split will need to be deleted and re-inserted. Assuming a good hash

function is being used, approximately (t * r) / 2 records will need to be processed in this way. Since

the ratio of the records in the table to the number of buckets indexed by the table remains constant

as the linear hash expands, the cost of splits remains constant as the size of the table grows. The

split operation is just a series of delete and insert operations. As such, the number of disk accesses

performed by a split can be expressed in terms of the number of disk accesses performed by these

operations individually.

Figure 20: Formula to calculate the expected number of disk accesses required by a single

split operation.

4.4 Get and Update
 The algorithms used for the get and update methods are almost identical. As previously

mentioned, the average number of overflow buckets was determined to be approximately 0.3 in

the present implementation. All the records in each bucket in the bucket chain at the index that the

key maps to are checked to see if their key matches the one specified in the operation. In the case

of a get operation, once a record is found its value is just returned and no additional accesses are

required. In the case of updates, one additional write is needed to update the record specified.

Figure 21: The expected disk accesses required by the get and update operations for the

embedded flash implementation of the linear hash described.

 31

5. Results

5.1 Testing Environment

 All tests on an Arduino platform were performed on a ATmega256 model. This has 8KB

of SRAM and 256KB of flash memory [9]. To expand the amount of non-volatile memory

available, a Lexar 300x 16GB Micro SD card was used in the device. Time was measured using

the ion_time() function in the IondB platform which uses different time functions depending on

the platform. When used on Arduino, it is a wrapper on the Arduino’s millis(). For all tests, an

initial size of 4, a split threshold of 85%, and 20 records per bucket were used as the values for

these parameters of the linear hash.

5.2 Insert

 Figure 1 shows the time to complete 5 insertions into the embedded flash implementation

in milliseconds plotted against the amount of records in the table. The expected time for insertions

remains constant as the table grows. The three clusters coloured differently in Figure 1 correspond

to insertions where overflow buckets are created in red, insertions where splits are triggered in

blue, and insertions where no additional processing are needed in green. Clearly, the insertions

which require the creation of an overflow bucket are costlier than insertions where this is not

necessary, and splits are costlier still.

 The mean insertion time when capturing the time taken to write overflow buckets and

perform splits was found to be 33.16 milliseconds. Naturally, the standard deviation was high

when grouping these together, amounting to 43.56 milliseconds. Drilling down into the individual

segments showed more representative results for the individual kinds of insert operations. Inserts

where no splits were performed and no overflows were created had an mean time of 10.71

milliseconds with a standard deviation of 3.36 milliseconds. The insert operations which triggered

the created of an overflow bucket had a mean time of 74.79 milliseconds and standard deviation

of 18.59 milliseconds. The split operation took by far the longest, demonstrating an mean time of

150.10 milliseconds with a standard deviation of 27.78 milliseconds.

 32

Figure 22: Visualization of the relationship between the time taken to complete a series of

insertions and the input size for the embedded flash implementation of the linear hash.
The input size does not affect the time taken for insertions. The blue dots correspond to
insertions which trigger a split to occur, the red dots are insertions which required the
creation of an overflow bucket, and the green dots required no additional processing.

5.3 Delete

 The time taken in milliseconds to complete 5 delete operations is shown on the y-axis in

Figure 3. Again, the x-axis denotes the amount of records in the table at the time the 5 deletes

measured were performed. As discussed, the specification for deletes in IonDB requires the

deletion of all records with the key specified. Consequently, the equivalent of multiple delete

operations in a specification not as such must be performed. As the number of records in the table

increases, the probability that a record will share a key with it gradually increases in most typical

address spaces where duplicate keys are allowed. Consequently, there is an increase in the variance

of delete operations as the number of records in the table increases. It is worth noting here again

that this is the issue was the motivation for the eager deletions during the swap-on-delete process

 33

that was implemented and described in a previous section. The mean time for deletions was found

to be 10.67 milliseconds with a standard deviation of 6.97 milliseconds.

Figure 22: Visualization of the relationship between the time taken to complete a deletion

and the input size for the embedded flash implementation of the linear hash.

5.4 Get

 Pictured in Figure 2 is the time to complete 5 get operations. Again, the expected time

taken to complete get operations remains constant as the table size grows. Several factors

contribute to the variation observed. Importantly, a portion of the variation is due to the differing

number of overflow buckets amongst the indexes. The mean time taken for get operations was

4.94 milliseconds with a standard deviation of 2.03 milliseconds. As the algorithm for the get and

update operations are essentially the same, a thorough analysis of the update operation would be

redundant and, as such, was excluded.

 34

Figure 22: Visualization of the relationship between the time taken to complete a get and the

input size for the embedded flash implementation of the linear hash. The input size does
not affect the time taken for get operations.

5.5 Performance of Hash Function

 To assess the performance of the hash function used, a total of 5042 records with randomly

generated integer keys were inserted into a linear hash table. The resulting mean record count

across all buckets was 18.88 records which is below the full capacity of a bucket. The mean number

of overflow buckets was 0.33. Histograms at the finest grain (binwidth = 1 bucket) and a slightly

coarser grain (binwidth = 10) are shown below in Figure 5 and Figure 6 respectively.

 35

Figure 22: Visualization of the distribution of records amongst the buckets in the linear hash

with approximately 5000 records in it.

Figure 23: Visualization of the distribution of records amongst the buckets in the linear hash

with approximately 5000 records in it grouped by 50 records. This demonstrates that the
hash function used is not significantly biased toward any regions of the table.

 36

5.6 Performance Comparison with Flat File

 As previously discussed, IonDB currently has several different implementations which can

be chosen from. A flat file is a simple data structure which can be used to implement a key-value

store. An implementation of a flat file is available in the IonDB platform. To assess how the

performance of the embedded flash implementation of the linear hash compared with a structure

currently in IonDB, a simulation was conducted to assess performance. 2000 records were inserted

into the table and time taken for gets was recorded as the table size grew. Figure 7 and Figure 8

visualize the performance of the flat file and the linear hash respectively.

Figure 25: Visualization of the relationship between the time taken to complete a get for the

embedded flash implementation of the linear hash and the input size from the
performance comparison trails. The input size does not affect the time taken for get
operations.

 37

Figure 26: Visualization of the relationship between the time taken to complete a get for the

flat file implementation in of the IonDB platform and the input size from the
performance comparison trails. There is a clearly linear relationship between the input
size and the time taken to complete the get operation.

 A linear relationship between the number of records in the table is clearly demonstrated by

the flat file, and a constant relationship is seen between these two variables for the linear hash. The

mean times taken for get operations in the simulation conducted was 60.58 milliseconds for the

flat file and 2.42 milliseconds for the linear hash. The mean is a poor basis of comparison in this

case however, as the mean for the flat file will continue to increase while the linear hash will stay

the same. In fact, in the last 200 observations of the data set, the mean for flat file gets rises to

104.44 milliseconds and the mean for the linear hash remains essentially the same at 2.43

milliseconds.

6. Conclusions and Future Work

 The embedded flash implementation of the linear hash detailed in this work could maintain

its desirable time and space complexities in the resource-constrained Arduino environment.

Several implementation challenges had to be surmounted to attain this, and development highly

performant data management systems for such environments was found to be a formidable task.

 This implementation of the linear hash described far outperformed the flat file available in

IonDB. This was especially true when the number records in the table grew large due to different

computational complexities of each data structure. No other implementations currently available

in IonDB can perform all the operations of the dictionary interface in a constant number of disk

accesses regardless of the size of the table and remain dynamically resizeable.

 While many algorithmic techniques were used, there are still areas in which the

implementation presented could be improved upon. As noted in a previous section, ease of

 38

implementation and code reusability was favoured at times over sheer performance. To further

improve the performance of the embedded flash implementation of the linear hash, a refactoring

of the basic operations could beneficial. For example, code reuse in the linear_hash_insert()
leads to an unnecessary write operation when creating an overflow bucket in the form of a call to

linear_hash_update_bucket() that gets reused regardless of the insertion case encountered.

 Exploration of the viability of higher levels of structuring like that used in the self-adaptive

linear hash for resource-constrained microprocessors could also be a fruitful endeavour. Likewise,

the development of a growth function that would enable spiral storage could also provide further

gains in performance. While buffering a useful number of log records of operations in main

memory in the environments like the Arduino seems like a challenging task, the benefits associated

with the successful use of such techniques are well known.

 The data structure presented as part of this work has already proven itself as a performance-

competitive option for embedded devices. An even more performant implementation could be

realized by using the embedded flash implementation of the linear hash described in this work as

a foundation and could serve as a foundation for an implementation that incorporates the results

of the future work described above.

 39

References

[1] Barragan, H. (2016). The Untold History of the Arduino. Retrieved April 8, 2017.
https://arduinohistory.github.io/

[2] Barragan, H. (2004). Wiring: Prototypical Physical Interaction Design. Interaction Design
Institute Ivrea, Ivrea, Italy.

[3] Clemons, T., et. al. (2013). Hash in a flash: Hash tables for flash drives. 2013 IEEE
International Conference on Big Data. Retrieved April 12, 2017.
http://users.eecs.northwestern.edu/~hardav/papers/2013-BigData-HashFlash-Clemons.pdf

[4] Dai, H., Neufeld, M., & Han, R. (2004). ELF: An efficient log-structured flash file system for
Micro Sensor Nodes. Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems. Pp. 176-187. doi: 10.1145/1031495.1031516

[5] Dumitru, D. (2007). Understanding Flash SSD Performance. Retrieved April 1, 2017.
http://www.storagesearch.com/easyco-flashperformance-art.pdf

[6] Fazackerley, F., Huang, E., Douglas, G., Lawrence, R. (2015). Key-Value Store
Implementations for Arduino Microcontrollers. 2015 IEEE 28th Canadian Conference on
Electrical and Computer Engineering. pp. 158-164. doi: 10.1109/CCECE.2015.7129178

[7] Larson, P., A. (1988). Dynamic hash tables. Communications of the ACM, 31(4), pp. 446-457.
doi: 10.1145/42404.42410

[8] Litwin, W. (1980). Linear hashing: A new tool for file and table addressing. Proceedings of
the sixth international conference on Very Large Data Bases, 6, 212-223. Retrieved April 2,
2017. http://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf

[9] Microchip Technology, Inc. (2017). Arduino ATmega2560. Retrieved April 13, 2017.
http://www.microchip.com/wwwproducts/en/ATmega2560

[10] The PostgreSQL Global Development Group (2017). CREATE INDEX. PostgreSQL 8.0.26
Documentation. Retrieved April 27th, 2017. https://www.postgresql.org/docs/8.0/static/sql-
createindex.html

[11] Pottie, G. J., & Kaiser, W. J. (2000). Wireless Integrated Network Sensors.
Communications of the ACM. 43. pp. 51–58. doi: http://doi.acm.org/10.1145/332833.332838

[12] Rosenblum, M., Ousterhout, J. (1992). The design and implementation of a log-structured
file system. ACM Transactions on Computer Systems, 10(1), pp. 26-52. doi:
10.1145/146941.146943

https://arduinohistory.github.io/
http://www.storagesearch.com/easyco-flashperformance-art.pdf
http://www.microchip.com/wwwproducts/en/ATmega2560
http://doi.acm.org/10.1145/332833.332838

 40

[13] Tomayko, J. (1998). Computers in Spaceflight: The NASA Experience. Washington, DC:
National Aeronautics and Space Administration, Scientific and Technical Information Division.

[14] Toshiba America Electronics Components, Inc. (2017). What Would You Do Without Flash
Technology? Retrieved April 12, 2017. http://www.flash25.toshiba.com/

[15] Yang, C., Jin, P., Yue, L., & Zhang, D. (2016). Self-adaptive linear hashing for solid-state
drives. 2016 IEEE 32nd International Conference on Data Engineering. doi:
10.1109/ICDE.2016.7498260

http://www.flash25.toshiba.com/

