
AutoER: A System for the Automatic
Generation and Evaluation of UML

Database Design Diagrams
by

Sarah Foss

BCIS, Okanagan College, 2019

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The College of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

July, 2022

© Sarah Foss, 2022

The following individuals certify that they have read, and recommend
to the College of Graduate Studies for acceptance, a thesis/dissertation en-
titled:

AutoER: A System for the Automatic Generation and
Evaluation of UML Database Design Diagrams

submitted by Sarah Foss in partial fulfilment of the requirements of the
degree of Master of Science

Dr. Ramon Lawrence, I. K. Barber Faculty of Science
Supervisor

Dr. Patricia Lasserre, I. K. Barber Faculty of Science
Supervisory Committee Member

Dr. Bowen Hui, I. K. Barber Faculty of Science
Supervisory Committee Member

Dr. Stephen W. McNeil, I. K. Barber Faculty of Science
University Examiner

ii

Abstract

Interactive question systems improve student engagement and provide
opportunities for increased practice and skill mastery. Developing database
design diagrams is a key skill for database courses, but providing evalua-
tion feedback is time-consuming for instructors and accurate auto-grading
is challenging due to the variability of student answers especially when la-
beling diagram components. This work presents a system for the automatic
creation and real-time evaluation of database design questions using Unified
Modeling Language (UML) diagrams. Students directly interact with the
question text, and the system continuously generates a visual representation
of their answer as well as provides immediate feedback at any time. By uti-
lizing a web-based, customizable user interface, the system supports precise
marking and the ability to practice variants of design questions to mastery.
Classroom evaluations demonstrate high student satisfaction compared to
traditional UML design questions and preference for using the software to
improve their learning outcomes. Experiments also measured how submis-
sion limits, such as maximum submission limits and applying regression
penalties, significantly improve student behavior.

iii

Lay Summary

This thesis proposes and implements a new system, AutoER, for the cre-
ation and automatic evaluation of database design diagrams. This system
allows students to build visual representations of diagrams by directly in-
teracting with question text. Students can, at any time, request automated
feedback to check their work. Instructors can choose to load the system
with pre-written questions, or they can have the system auto-generate ran-
dom questions. The ability to generate questions allows students to practice
questions until mastery and also reduces academic dishonesty by generat-
ing unique questions for each student during examinations. Surveys from
classroom evaluations revealed high student satisfaction and that students
prefer to use the software over traditional methods. To limit over-reliance
on the auto-grading feature, limitations on the number of student attempts
per question were explored and measured in the classroom studies.

iv

Preface

The study in this thesis was conducted with the approval of the UBC
Okanagan Behavioural Research Ethics Board (BREB) under the certificate
number H21-01600.

Parts of this thesis were published in the research-article titled Auto-
matic Generation and Marking of UML Database Design Diagrams in the
Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education V. 1, Pages 626–632, in February 2022.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

Glossary . xii

Acknowledgements . xiv

Dedication . xv

Chapter 1: Introduction . 1
1.1 Thesis Contributions . 1
1.2 Thesis Organization . 3

Chapter 2: Background . 4
2.1 Database Design and Diagram Creation 4

2.1.1 Simplified Educational Database Design Tools 4
2.2 Automated Evaluation . 7

2.2.1 Pattern Matching . 7
2.2.2 Machine Learning . 7
2.2.3 String Comparison . 8

2.3 Generating Questions . 10
2.4 Limitations on Submissions 10
2.5 Discussion . 12

vi

TABLE OF CONTENTS

Chapter 3: AutoER System Development and Design 13
3.1 System Overview . 13
3.2 System Architecture . 14

3.2.1 Student Frontend . 15
3.2.2 Backend . 15
3.2.3 Database . 17
3.2.4 Reverse Proxy . 17

3.3 Features . 19
3.3.1 Login . 19
3.3.2 Question Interface . 19
3.3.3 Submission Policies . 21
3.3.4 Student Mark Retrieval 23

3.4 AutoER Question Creation 23
3.4.1 Question Markup . 27
3.4.2 Answer Format . 28
3.4.3 User Interface Template 30
3.4.4 Automatic Question Evaluation 30
3.4.5 Automatic Question Generation 31

Chapter 4: Case Studies: Undergraduate Database Course . 34
4.1 Participant Recruitment . 34
4.2 System Use Data Collection 34

4.2.1 Assignments . 36
4.2.2 Midterm Exam . 38
4.2.3 Final Exam . 38

4.3 Student Survey . 39
4.4 Course Administrator Survey 40

Chapter 5: Results . 42
5.1 System Evaluation . 43

5.1.1 System Use . 43
5.1.2 System Usability . 44
5.1.3 Free-form Survey Results 44
5.1.4 Administrator Evaluation 46

5.2 Student Performance Evaluation 47
5.2.1 Assignment Performance 47
5.2.2 Midterm Generated Question Performance 48
5.2.3 Final Exam Performance 48
5.2.4 Summer 2021 Study 49
5.2.5 Fall 2021 Study . 52

vii

TABLE OF CONTENTS

5.3 Discussion . 61

Chapter 6: Conclusion . 65
6.1 Limitations and Threats to Validity 67
6.2 Future Work . 68

Bibliography . 70

Appendix . 76
Appendix A: Consent Forms . 77
A.1 Administrator Consent . 77
A.2 Student Consent . 79
Appendix B: Surveys . 81
B.1 Student Survey . 81
B.2 Administrator Survey . 83
Appendix C: Assignments . 85
C.1 Assignment 1 . 85

C.1.1 Question 1 (10 marks) 86
C.1.2 Question 2 (10 marks) 87

C.2 Assignment 2 . 88
C.2.1 Question 1 (15 marks) 88
C.2.2 Question 2 (35 marks) - Project Deliverable 90

viii

List of Tables

Table 3.1 AutoER Question Components 25

Table 5.1 Description of Common Metrics in AutoER Evaluations 42
Table 5.2 AutoER Usage Metrics 43
Table 5.3 Assignment Upload Metrics 43
Table 5.4 System Usability Scale survey results Categories - SD:

Strongly Disagree, D: Somewhat Disagree, N: Neutral,
A: Somewhat Agree, SA: Strongly Agree 45

Table 5.5 AutoER Performance Metrics 47
Table 5.6 Student Profile Categories 50
Table 5.7 Summer Student Profile Metrics 51
Table 5.8 Limiting Attempts Change 52
Table 5.9 Comparison of Profiles Across Studies 53
Table 5.10 User Count and Grades with One Submission 55
Table 5.11 Performance Comparison of Submission Policies 56
Table 5.12 Limiting Attempts Across Student Profiles 58
Table 5.13 Limiting Attempts: Student Preference and Performance 61

ix

List of Figures

Figure 2.1 Database Design Text and UML Class Diagram . . . 5

Figure 3.1 AutoER System Architecture 14
Figure 3.2 Administration Interface Question Creation 17
Figure 3.3 AutoER Design Diagram 18
Figure 3.4 AutoER Login Screen 19
Figure 3.5 AutoER User Interface 20
Figure 3.6 Adding a Key to an Attribute 20
Figure 3.7 Editing a Relationship between Entities 21
Figure 3.8 Example Student Feedback 22
Figure 3.9 Evaluation Details of a Student’s Submitted Answer . 24
Figure 3.10 Question Base . 27
Figure 3.11 Question Markup . 27
Figure 3.12 Original Answer . 29
Figure 3.13 String Representation of the Answer 29
Figure 3.14 Check Mark Button 30
Figure 3.15 Generated Question Example with Letter Placeholders 33

Figure 4.1 Assignment 1 Question 1 37
Figure 4.2 Final Exam Question and Answer 41

Figure 5.1 Student Performance Grouped By Total Submissions.
Marker shows maximum quartile submissions cutoff. . 49

Figure 5.2 Example Student Performance Profiles 50
Figure 5.3 Example Fall Student Performance Profiles 54
Figure 5.4 Midterm Exam Students by Category and Submission

Policy . 57
Figure 5.5 Final Exam Students by Category and Submission

Policy . 57
Figure 5.6 Midterm Exam Students by Category and Submission

Policy . 59

x

LIST OF FIGURES

Figure 5.7 Final Exam Students by Category and Submission
Policy . 60

Figure C.1 Assignment 1 Question 1 86
Figure C.2 Assignment 1 Question 2 87
Figure C.3 Assignment 2 Question 1 89
Figure C.4 Assignment 2 Question 2 91

xi

Glossary

Application Programming Interface (API) A software intermediary with a
set of definitions and protocols to allow applications to interact. 15–17,
30

Data Definition Language (DDL) The syntax for creating and modifying
database objects. 90

Entity Relationship (ER) A database design model that describes how en-
tities relate to each other. 3, 4, 6, 7, 9, 30, 44, 47, 65, 85, 90

Hypertext Markup Language (HTML) A markup language used to struc-
ture web documents. 14, 30

Internet Protocol (IP) The set of rules for routing and addressing packets
of data. 35

JavaScript Object Notation (JSON) A text-based format for representing
structured data. 15, 16

Learning Management System (LMS) A software application designed for
the distribution, management, and automation of educational materi-
als. 14, 26

Massive Online Open Course (MOOC) An open online course designed for
large numbers of geographically dispersed students. 1

Representational state transfer (REST) An architectural style defining stan-
dards used across web-based applications. 15

Structured Query Language (SQL) A programming language used to ma-
nipulate and manage databases. 34, 37, 88, 90

xii

System Usability Scale (SUS) A standardized survey tool used for measur-
ing system usability. 39, 44, 61, 67

teaching assistant (TA) An individual that assists an instructor with in-
structional activities. 1, 23, 40, 48, 62, 66

Unified Modeling Language (UML) A modeling language used to express
and design software systems. iii, 1, 4, 6–9, 12, 13, 23, 25, 34, 36, 48,
65–68, 85, 90

Uniform Resource Locator (URL) A web address. 15–17, 19, 25, 26, 32, 66

xiii

Acknowledgements

I would like to express my deepest gratitude to Dr. Ramon Lawrence. It
has been a privilege to work with and learn from such a dedicated educator
and researcher. His passion for teaching and commitment to his students’
success is inspiring, and I hope to bring it with me and emulate it in my own
academic career. Without his wealth of experience, guidance, and patience
this work would not have been possible.

Special thanks to Tatiana Urazova. Her invaluable assistance and dedica-
tion helped ensure the success of this work. I would also like to acknowledge
Dr. Youry Khmelevsky for his continued support of the project.

Thank you to my supervisory committee, Dr. Bowen Hui and Dr. Pa-
tricia Lasserre, for reviewing my work and helping me ensure that it is the
highest quality possible.

This endeavor would not have been possible without the ongoing support
of the faculty and administration at Okanagan College, and in particular,
the support of my colleagues Ken Chidlow, Dr. Jim Nastos, Dr. Scott
Fazakerley, and Alan Kennedy.

Finally, I could not have undertaken this journey without the support of
my family. Thank you to my amazing husband, Jeramie, and my two incred-
ible children, Gabrielle and Gavin. Their unending patience and unwavering
support mean the world to me.

xiv

Dedication

For Anne and Clair Foss.
I’m so incredibly fortunate to have had your love and unconditional support
in my life. I know you would be proud.

xv

Chapter 1

Introduction

Classrooms can now take many different formats ranging from traditional
on-campus lecture halls to online learning platforms offering Massive Online
Open Courses (MOOCs). Many courses, regardless of the format, can have
hundreds of students, creating time-consuming workloads for course admin-
istrators. These large class sizes can also present issues with precise marking
as it is difficult for humans to grade a large quantity of assignments or ex-
ams consistently, particularly when the marking workload is divided across
multiple instructors or teaching assistants (TAs).

Automated learning tools can help alleviate these issues by providing
consistent, instant feedback to students. These tools can further benefit stu-
dents by providing opportunities for increased practice with learned concepts
and skill mastery. Several systems support the generation and auto-marking
of questions [WHZ15, EP08, BE15] for practice and improving learning out-
comes.

Database design and modeling are key concepts taught in database and
software engineering courses. Design exercises are often challenging for stu-
dents and additional practice helps learning. This work focuses on questions
where the goal is to produce a design diagram for a database that captures
the requirements discussed in a written text. Evaluating design diagrams
is complex due to the lack of testing frameworks, diversity of correct an-
swers, and interpreting the semantics of the diagram and its concepts. Prior
work examined automatic evaluation of design diagrams using image pro-
cessing [TWS06], syntactic, structural, and semantic analysis [BAK19], and
machine learning [BMM20]. These systems provide evaluations similar to
human markers for instructor developed questions.

1.1 Thesis Contributions

The contribution of this thesis is a question generation and evaluation
system for Unified Modeling Language (UML) database design diagrams
and its evaluation in a database course. The system, called AutoER, sup-
ports both instructor-created and automatically generated questions with

1

1.1. THESIS CONTRIBUTIONS

instructor configurable marking. Automatically generating question vari-
ants allows for students to practice questions until mastery and is beneficial
for online exams where the potential for student collaboration and academic
dishonesty exists. AutoER provides flexibility for instructors to change all
aspects of its behavior including the user interface, marking and feedback,
question generation, and operation as a stand-alone system or integrated
with a learning management system.

A unique aspect of the user interface is that the student builds the design
diagram by interacting with the question text directly and requesting the
system add components to the diagram rather than drawing them manu-
ally. This improves the speed of diagram construction and helps beginners
learn fundamental design challenges. Consistent naming also enables precise
marking and matching with correct solutions.

The system was evaluated in two offerings of an undergraduate database
course at the Okanagan campus of the University of British Columbia. The
research questions were:

− RQ1: Do students prefer to use the AutoER system compared to
paper and other design software?

− RQ2: Is the AutoER system efficient and usable for students?

− RQ3: Does automatic grading increase student performance on database
design assignments?

− RQ4: Is random generation of questions effective for use in exam
evaluations?

− RQ5: Does limiting submissions to the system impact student sub-
mission behaviour in a positive way?

− RQ6: Which of the submission policies limiting student submissions
is most effective?

− RQ7: What submission policy is preferred by students?

To address these questions, students were given an opportunity to use
the system for assignments, examinations, and additional practice at their
own discretion. Extensive data was collected regarding the system usage
and student performance. The students were surveyed after several weeks
of usage to gain insight into the perceived usability and effectiveness of the
system.

2

1.2. THESIS ORGANIZATION

1.2 Thesis Organization

This thesis examines the development and evaluation of an interactive
pedagogical tool for the generation and evaluation of Entity Relationship
(ER) diagrams. Chapter 2 presents a background on the database design
problem and a discussion of existing systems for diagram creation and auto-
matic evaluation. The AutoER system architecture and system features are
described in Chapter 3. Chapters 4 and 5 detail the experimental setup and
results using the system in an undergraduate database course. Finally, the
conclusion of the thesis and potential future work are discussed in Chapter
6.

3

Chapter 2

Background

2.1 Database Design and Diagram Creation

A fundamental learning objective in an undergraduate database course is
the ability to design a database for a particular problem domain. Database
design is a challenging problem for students as they must learn the particular
diagram syntax and be able to translate the written text into the appropriate
diagram elements.

Database diagrams are constructed using either ER notation [Che76] or
UML [Gro17]. UML class diagrams represent database entities as classes,
relationships as associations, and attributes may be associated with entities
and relationships. To manually construct a database design problem, an in-
structor would describe a database schema using plain language and would
also construct one or more solution diagrams. A set of grading criteria would
be defined to standardize the evaluation of answers. Student’s diagrams
would then manually graded by visual comparison between the student’s
answers and the solution diagrams. Evaluation and providing feedback is
time-consuming as students may not use the syntax consistently, misinter-
pret the question, use inconsistent naming and labels, and not understand
fundamental modeling constraints.

Figure 2.1 contains a database design question text and the answer as a
UML class diagram.

2.1.1 Simplified Educational Database Design Tools

Given a particular database design question, an instructor allows a stu-
dent to produce the diagram on paper or using UML database design soft-
ware. Surveys of modeling software for instruction [ALS19, AL17] indicate
preference for easy-to-use systems to allow students to focus on learning the
concepts rather than the software. Other important aspects in preferred
systems are that they are perceived to give good feedback, are simple to in-
stall, and that they should be low cost or free to use. Commercial products
used by experts are often costly, large programs that contain more features

4

2.1. DATABASE DESIGN AND DIAGRAM CREATION

(a) Question Text

(b) Example UML Class Diagram

Figure 2.1: Database Design Text and UML Class Diagram

5

2.1. DATABASE DESIGN AND DIAGRAM CREATION

and complexity than required for educational use.
Several low-cost educational systems have been developed to support

the construction and evaluation of database designs in ER or UML class
diagrams.

QuickUML [AV03] was developed in response to existing systems that
provide too much UML notation to beginner students, over-complicating
the learning process. This system simplifies beginner level learning by only
providing basic UML functions to allow students to begin to apply newly
learned concepts without being slowed down with more advanced aspects of
domain modeling. This tool was intentionally kept small and lightweight to
allow for easy installation on a number of systems. Although this system is
lightweight and easy to use, feedback to students is not a system feature.

The tool MinimUML [TPE05] takes a similar approach and only provides
a subset of UML notation with a focus on high-level abstract design. The
developers of this tool noted that some existing simple tools were lacking
some of the desirable features that more complex systems have and created
a system that supports features like printing and undo/redo. The system
also supports annotations that allows instructors to provide feedback, but
automated feedback is not supported.

DiagrammER [GM20] is another simplified educational tool, however, it
is a web-based application which allows users to avoid installation of the
tool altogether. This system allows beginner computer science students to
create and interact with ER diagrams by dragging and dropping elements in
the diagram creation area. A novel feature of the system allows instructors
to upload example questions with the corresponding correct ER diagram for
students to retrieve and view. Unfortunately, automated feedback is not
a feature that is implemented in the system; however, it is planned future
work.

EERTutor [Zak04] is a tutoring system for ER design that provides inter-
active diagram construction and tutorials to help students during diagram
creation. When an error is made, the toolbar and editing area are disabled
and a dialogue with common-sense feedback is presented to the student.
There are multiple levels of feedback available. The first level of feedback
simply informs the student whether the answer is correct. Students can then
choose the option for a “hint” or a “detailed hint” for more detailed infor-
mation about the error and guidance to improve their answer. If the student
is still unable to answer the question, they can request to view the solution
diagram. These prompts help the students identify and correct errors when
they may not have enough experience or knowledge to do so on their own.
This level of in-depth feedback is beneficial for formative assessments, but

6

2.2. AUTOMATED EVALUATION

may not be appropriate for summative evaluation.

2.2 Automated Evaluation

Providing automatic feedback and evaluation for modeling and design
tasks has received increased attention in recent research. Similar to grad-
ing and evaluation systems for questions on programming [Lee21, MNS+20,
EP08, MSR21], providing real-time feedback to students allows for formative
learning, increased engagement, and consistency and efficiency in evaluation.
Automatic evaluation of design diagrams must match student solutions with
one or more instructor solutions while handling issues with naming, struc-
tural, and semantic differences.

There are several approaches for automatic grading and feedback for
diagrams.

2.2.1 Pattern Matching

Marking of student drawn ER diagrams and other diagram types us-
ing image processing techniques and recognizing patterns that match with
answers was discussed in [TWS06, STW13]. This approach does not re-
quire systems that enforce precise diagrams, meaning diagrams where the
names of diagram components are pre-defined. To perform the evaluation,
the student diagram and the answer diagram are compared for similarity
by identifying components that convey specific meaning in that domain and
comparing them to the matching components in the solution. Similarity be-
tween entities is measured by the weighted sum of their label identifiers and
attributes and similarity between relationships is measured by the weighted
sum of the labels of objects they relate and their cardinalities. The result
is used to generate a grade and feedback for the student. Thresholds must
be defined to determine whether two components are sufficiently similar to
be considered a correct match. Challenges of using pattern matching with
imprecise student diagrams include accurately grading images due to miss-
ing or extra information, and inconsistent terminology including synonyms,
abbreviations and misspelling, and determining optimal thresholds for sim-
ilarity.

2.2.2 Machine Learning

In [SvdPSC19], machine learning was used to grade UML class diagrams.
In their approach, multiple classification models and a regression model

7

2.2. AUTOMATED EVALUATION

were trained with extracted features from student answer files from a single
assignment along with associated grades from expert markers. Experiments
were done using both a 10-point scale (with grades ranging from 1-10) and
a 5-point scale. Results showed that accuracy was not sufficient with a top
accuracy of 42% with the 10-point scale and 46% with the 5-point scale.

Machine learning automatic assessment in [BMM20] produced grading
by letter grade. This research compared five common machine learning
models trained with student answers along with grades produced from a
heuristic string parsing grading algorithm. The output was then compared
to manual instructor-graded solutions. Results showed that both Logistic
Regression and Naive Bayes models were accurate within a letter grade to
the baseline. However, only letter grades were provided, and there was
no feedback for improvement to students. Another big drawback was that
the dataset had to be extensively manually cleaned to correct misspelling,
missing syntax, and duplicate entries in order to be used with the simple
heuristic algorithm.

2.2.3 String Comparison

Most commonly, student and instructor diagrams are compared using a
string representation of the diagram contents.

UMLGrader [Has11], which is based on UMLint [HR11], a tool used to
identify defects in UML diagrams, is a web-based application that evaluates
UML class diagrams developed using IBM Rational Rose. Each diagram
in Rational Rose has an associated model file that describes the diagram
in text. Using the model files from a solution diagram and a student dia-
gram, the text is compared using string comparison. For the comparison,
spaces and underscores are stripped and capitalization is ignored. Entity
names require exact matches, and attributes and associations require par-
tial matches with the associated names from the solution. Because students
manually enter component names for the diagrams into the system, they
are required to name their diagram precisely otherwise it may be marked as
incorrect. The system does flag common errors like misspelling and invalid
multiplicities using UMLint, however, the tight constraints of the system
along with manual name entry pose some challenges to the auto-evaluation
system.

[SBP+10] presents a similar UML database design tool allowing students
to create diagrams with string comparison auto-marking. This tool records
all of the parameters of an answer into a file and compares it directly with
the solution file. In this system, specific attribute names, denoted with

8

2.2. AUTOMATED EVALUATION

parenthesis, must appear in the problem description to be valid for use in the
problem. This addresses one of the challenges present in UMLGrader, but
also unfortunately eliminates the exercise of the identification of attributes
for the student. The constraint of manually entering exact names of entity
classes is still present in this system.

Another system using string comparison for automatic evaluation is
MonstER park [Sch20]. This tool uses gamification to encourage student
learning by interactively developing a diagram corresponding with a story.
As the game is played, both a visual diagram display for the student and
an underlying structure comprising of JavaScript arrays that represent the
elements of the ER diagram are built. The user inputs are normalized by re-
moving all non-alphabetic characters and then converted to lowercase text.
The auto-evaluation is performed by comparing the string contents of the
answer arrays to the strings in solution array. Although exact matching is
required for this system as well, there are a number of acceptable matches
in each solution array to allow for slightly more flexibility in the student’s
answer.

A system was developed [BAK19] that attempts to address the problem
of exact naming in auto-grading software. This tool use syntactic, structural,
and semantic matching of string representations of UML diagrams to allow
students to enter a wide range of answers that may be evaluated as correct by
the system. The system uses the Levenshtein distance [L+66] to determine a
syntactic match for component names. Names are also semantically matched
using a combination of three algorithms to determine a similarity score.
The classes are then subject to a structural match by comparing component
names and the matched classes are then compared and graded. To evaluate
the auto-grading system, 20 diagrams were graded manually by an instructor
and then assessed again with the tool. The automated grades were within
14% of the instructor’s grades.

The auto-grading accuracy was improved by further customized grading
criteria [BAK20]. In this study, experiments were conducted on two differ-
ent groups to measure the auto-grading effectiveness of the system compared
to manual evaluation. There were two sets of evaluations done. First, the
diagrams were graded without the marking customization. Then, they were
evaluated again with the instructor’s custom grading criteria. In the first
evaluation, the first group had results that had an average difference of
6.5% to the instructor’s grading and the other group’s results had an av-
erage difference of 24.6%. After adding the custom marking configuration,
the difference in the first group was reduced to 4.8% and the difference in
the second group was reduced to 13%. This addition to the system in-

9

2.3. GENERATING QUESTIONS

creased accuracy for the auto-grader to be within 5 to 15% of instructor
grades. However, although this seems to be relatively high accuracy, any
grade deviation from the instructor’s grade is undesirable and because of
the variation of inputs accepted into the system, higher marking accuracy
may be difficult to achieve with this approach.

2.3 Generating Questions

A barrier to providing a large quantity of database design questions to
allow students to practice concepts to mastery is that instructor-generated
questions and marking criteria are time-consuming to produce. The capabil-
ity to generate question variants based on parameters is valuable as shown by
domain independent systems such as PrairieLearn [WHZ15] and Web-CAT
[EP08]. Generated question variants support repetitive student learning and
are useful in evaluation situations to reduce student collaboration and copy-
ing [CWZ18]. To the author’s knowledge, there has been no prior research
done in the specific area of database design question generation.

2.4 Limitations on Submissions

Auto-grading systems provide students the opportunity to utilize feed-
back to help guide their answers while practicing new concepts. However,
if a system does not have a submission policy to limit attempts, students
may develop an over-reliance on the feedback which may negatively impact
their learning. Most automated assessment systems support either unlim-
ited submissions or a maximum number of attempts per question as the
default. Systems may also enforce a time limitation between submissions
[EP08]. Another technique is to penalize mistakes where a student’s submis-
sion receives a lower mark than the previous submission, called a regression
[BZHH21]. Limiting the number of submissions is widely used to counteract
poor behaviors. Students are less likely to guess and more likely to spend
more time thinking about a problem with limits applied. The goal of sub-
mission policies is to encourage independent student learning and reflection
and reduce reliance on feedback and hints provided by the system. Auto-
mated assessment systems have the potential to improve positive student
metrics [LSTA21] such as performance, engagement, learning, and retention
and decrease procrastination and failures. Prior results have discussed how
students may use feedback to change their solution without thinking about
the problem and stop working on a question once the mark is “good enough”

10

2.4. LIMITATIONS ON SUBMISSIONS

[HBTN21]. Systems vary the amount of feedback and hints provided to re-
duce reliance on the system. Submission policies are also a key component
in insuring positive outcomes.

Edwards [Edw04] argues for encouraging students to move from trial-
and-error strategies to reflection in action. Prior research by Malmi et al.
[MKKN05] demonstrates how introducing limits on attempts versus unlim-
ited submissions encouraged students to spend more time on each submis-
sion and their first attempts had higher performance. Students often use
trial-and-error near the end of an assessment to improve their grade but
not their learning. In [KKM06], students were classified into five categories
based on their number of submissions and final grade: passers - few at-
tempts/low grades, ordinaries - few attempts/medium grades, talented - few
attempts/high grades, ambitious - high attempts/high grades, and iterators -
high attempts. This classification did not consider the time between student
submissions or any grade difference between submissions. The classification
goal was to identify user profiles and trial-and-error behaviour.

Detecting and penalizing regressions in student submissions that resulted
in lower marks was explored in [BZHH21]. In this study, student perfor-
mance on automatically graded programming assignments with an imposed
regression penalty in a software engineering course were compared with the
same assignments from the previous year without the regression penalty.
Introducing the regression penalty was shown to dramatically reduce the
number of submissions by 50%, decrease regressions by 90%, and increase
the time between submissions. Regression penalties encouraged students to
spend more time thinking about their answers before submission. However,
it should be noted that some students indicated a perceived compromise to
their grades as well as increased stress-levels related to the penalties. Further
to that, the overall average grade fell by 10% and analysis on the assign-
ment submissions revealed a reduced number of submissions after students
achieved a high, but not perfect mark. A number of students reported that
stopped submitting on the assignment after achieving 95% out of concern
of lowering their grade.

The key challenge is identifying the appropriate submission policy that
leads to desirable outcomes. Unlimited attempts and flexibility are common
for formative assessments [MBF+18] where the focus is on student practice
and learning. Appropriate feedback allows students to improve their under-
standing [MBF+18], increases engagement [MGF+20], and reduces bias and
variation in grading. For formative assessments, the submission strategy
should discourage poor behaviors [Auv15, MDP20] such as the trial-and-
error strategy and procrastination. Students may be more likely to “game

11

2.5. DISCUSSION

the system” [Pie13] compared to learning the material with an automated
system compared to instructor grading. Multiple attempts improve student
performance in summative assessments [FGF21] but determining the num-
ber of attempts may be a harder issue to address. A survey of assessment
systems [IAKS10] explicitly mentions limiting the number of submissions
and the amount of feedback as considerations for these systems, but there
is a lack of recommendations and best practices.

2.5 Discussion

As noted above, there are several tools for pedagogical diagram creation
and evaluation, however, no existing system contains all of the features that
is presented in this work. Like a number of the tools described above, Au-
toER is a simplified database diagram creation tool that is easy to use,
requires no installation, and is free for student use. It also provides auto-
mated feedback to students that can be requested at any time. This work
is different from the aforementioned tools in two main regards:

1. Students do not manually enter component names. Instead, they inter-
act with the question text directly to identify the diagram elements.
This ensures that the system’s string comparison approach to auto-
evaluation of diagrams is accurate and precise. Since the class names
and attributes are predefined in the question, there is no need for syn-
tactic or semantic matching which means that student answers can be
directly compared with solutions without ambiguities and the marking
will match the instructor’s rubric exactly.

2. The AutoER system also is capable of automatically generating UML
diagram design questions and the associated solution diagrams. To
the author’s knowledge, this is a novel feature that is not present in
any other database design learning system.

12

Chapter 3

AutoER System
Development and Design

3.1 System Overview

The AutoER system supports students learning database design dia-
grams by providing real-time visualization and feedback during question
answering. It is a simplified diagram creation tool that targets users first
learning the design concepts and process of extracting model elements from
written text. Students can answer instructor-created or randomly gener-
ated questions by interacting with the question text to develop the design
(see Figure 3.5). Unlike other existing UML design software, the student
selects the modeling construct to add (entity, attribute, relationship) from
the question text but does not directly draw the construct on the diagram
itself. The diagram is drawn based on the student answer dynamically. Be-
cause the answer is built with predefined keywords, the system is able to
accurately and precisely evaluate the student’s answer by string comparison
to instructor solutions, avoiding the need for syntactic and semantic match-
ing and other types of normalization on element names. In addition to this,
there are also no other current systems that allow for the auto-generation of
UML diagram design questions and solutions, which makes direct compar-
isons between AutoER and other existing systems difficult.

The key features are:

− Ability to create a question type that represents a particular question
structure

− Support for uploading user interface code file and marking code file
for a question type

− Creation of generated questions with solutions using uploaded code

− Storing, evaluating, retrieving student questions and answers

− Ability to optionally enforce attempt limiting submission policies

13

3.2. SYSTEM ARCHITECTURE

From the instructor perspective, the AutoER system is completely con-
figurable including the user interface presented to students, the evaluation
and feedback, and the parameters and approach for question generation.
The system consists of a backend web server and database for generating,
evaluating, and storing questions and answers. The JavaScript/Hypertext
Markup Language (HTML) user interface allows students to interact with
questions on any browser or Learning Management System (LMS), avoiding
the hassle of program installation on their systems.

3.2 System Architecture

The server is implemented using Django, React, Traefik, and PostgreSQL
as a stand-alone system deployed using Docker Compose. Porting the server
functionality to use other question systems such as [WHZ15, EP08] is future
work.

The system is comprised of four Docker containers: Student Frontend,
Backend, Database, and Reverse Proxy as shown in Figure 3.1. These con-
tainers and their functionality are discussed below.

Figure 3.1: AutoER System Architecture

14

3.2. SYSTEM ARCHITECTURE

3.2.1 Student Frontend

The Student Frontend container hosts a React JS website that primarily
handles and renders the question interface. After a user is authenticated, a
React page retrieves and displays the instructor-defined template and ques-
tion associated with the Uniform Resource Locator (URL). It then attempts
to retrieve the last answer submitted by the authenticated user and associ-
ated auto-grading information for the question. If no answer is found, it will
send an empty object to the displayed page denoting that it is the user’s
first attempt.

When a student submits an answer for evaluation, it sends the student’s
answer information to the Django component for evaluation and then awaits
the marking information to send to the page for display.

This container also allows for course administrator authenticated access
to pages that offer in-depth details about specific student answers and allows
administrators to access a student’s last answers for each question.

3.2.2 Backend

The Backend container hosts a Django application to handle the server-
side processing for the AutoER system. The server’s duties include the struc-
turing of data, interfacing with the PostgreSQL database, communicating
with the Frontend container, executing the auto-marking code, executing
the question generation code, and providing the interface for administrators
to manage questions and users.

REST API

This application allows for communication with the Frontend container
through its Representational state transfer (REST) Application Program-
ming Interface (API) built with the Django REST Framework. The fron-
tend site will initiate a communication with an authenticated GET request
at the server’s /api endpoint and the server will respond by transferring the
requested data as a JavaScript Object Notation (JSON) object.

Auto-Marking Answers

When the server is requested to evaluate a student’s answer, it will re-
trieve the question, the custom Python auto-marking code associated with
the question, and all the possible answers from the database. It will then
compile and execute the code using the question and answers as arguments

15

3.2. SYSTEM ARCHITECTURE

and return a JSON object containing the evaluation results. The resulting
grade information is then stored in the database and the results are sent as
part of the API’s response JSON object.

Question Generation

The process for question generation is slightly more complex. When the
server receives a request for a generated question type, it will first attempt
to retrieve the generated question associated with the user and question
type denoted by the URL from the database. If it does not exist, then the
question generation code will be run. The steps are as follows:

− Generate a random seed for the question to ensure uniqueness.

− Retrieve the associated generation type information from the database.
This contains the generated code description (i.e., midterm exam ques-
tion, final exam question, practice question, etc.), a reference to the
associated question template, the maximum grade that the generated
code should allow, and the custom Python question generation code.

− Execute the question generation code, passing the seed as an argument.

− Store the resulting generated question to the database using the seed
as a title.

− Store the resulting answer to the database with a reference to the
associated question.

− Add an associative entry to the database containing a reference to the
question type, a reference to the generated question, and the current
user.

− The generated question is sent as part of the API’s request fulfillment.

Administration Interface

Currently, course administrators use Django’s integrated administrator’s
interface to upload and update questions, question templates, and update
all other question related information. Figure 3.2 shows an example of ques-
tion creation in the administration portal. They also use the administration
interface to create and update student user profiles. Future work includes
building a custom course administrator’s front-end to increase administra-
tors’ ease of use.

16

3.2. SYSTEM ARCHITECTURE

Figure 3.2: Administration Interface Question Creation

3.2.3 Database

The Database container hosts a PostgreSQL database server. As shown
in Figure 3.1 this container only interfaces with the Backend container be-
cause Django effectively manages all the incoming and outgoing data using
Object Relational Mapping.

Figure 3.3 shows the design diagram of the AutoER system.

3.2.4 Reverse Proxy

The Reverse Proxy container hosts a Traefik reverse proxy server. This
server is the entry point into the AutoER system’s multi-container envi-
ronment and is the only accessible container from outside Docker. This
container will map external URLs to internal Docker container services and
route inbound traffic to the correct container.

The URL https://autoed.ok.ubc.ca/ is the student endpoint and
any requests made to that address will be routed to the Student Fron-
tend container. The API and administration interface endpoint is the URL
https://autoed.ok.ubc.ca/api/ and the reverse proxy server will route
those respective requests to the Backend container.

17

https://autoed.ok.ubc.ca/
https://autoed.ok.ubc.ca/api/

3.2. SYSTEM ARCHITECTURE

Figure 3.3: AutoER Design Diagram

18

3.3. FEATURES

3.3 Features

3.3.1 Login

A student accesses an AutoER question through a question URL that is
provided by the instructor as part of an assignment or quiz. Each question
has its own unique URL. Before they have access to any question, they must
enter their preassigned username and password into the secure login screen,
as shown in Figure 3.4. Any failed attempts will redirect the user back to the
login screen with a notification of the incomplete sign-in. After a successful
login, an authentication token is stored in local storage to allow the student
a persistent logged in state.

Figure 3.4: AutoER Login Screen

3.3.2 Question Interface

Once logged in for the first time, the student will see the question text
and an empty diagram. The question text contains markup that allows stu-
dents to select particular words and phrases to add to the diagram. Context-
sensitive pop-up menus allow for adding entities and attributes. Figure 3.5
shows the user interface and a student answering the question. As the stu-
dent builds the diagram, it is dynamically updated in real time. Diagrams
are drawn using the open source nomnoml library1.

There are two side menus that allow for editing entities and relationships
between entities. The manage entities menu enables users to remove entities
and attributes and add or edit key properties on attributes. Figure 3.6 shows
a user using the manage entities menu to indicate a particular attribute is
a key for an entity.

1https://nomnoml.com/

19

3.3. FEATURES

Figure 3.5: AutoER User Interface

Figure 3.6: Adding a Key to an Attribute

20

3.3. FEATURES

Relationships can be added and edited between entities using the manage
relationship menu. Relationships can be between two distinct entities or
can be self-referential. The following cardinalities can be optionally added
to relationships: zero or one (0..1), one (1..1), zero to many (0..*), and one
to many (1..*). An example of a user editing a relationship between entities
can be seen in Figure 3.7.

Figure 3.7: Editing a Relationship between Entities

When a student wants to request feedback, they click on the Check Mark
button in the top left-hand corner as shown in Figure 3.5. This submits a
text representation of the diagram for evaluation to the server and feedback
is returned immediately to the student. The granularity of the feedback,
marking strategy, and number of times a student can submit are control-
lable by the instructor. An example of feedback provided to students is
shown in Figure 3.8. This high-level feedback provides only grading infor-
mation at the level of diagram components (entities, relationships, etc.). It
is suitable for exam situations, whereas feedback on specific errors may be
more appropriate for formative assessments.

3.3.3 Submission Policies

A recent improvement on the AutoER system is the addition of new
submission policies to limit the number of submissions per student. The
attempts can be limited by either restricting the number of attempts or
with a grade regression penalty. This is chosen by the instructor during
question creation.

When the restricted number of attempts policy is enforced, the system
will increment the attempt number after each submission made by the stu-
dent. When the maximum number of attempts has been reached, the system
will disable editing of the diagram and show the student the mark of the
most recent attempt. The maximum number of attempts is customizable

21

3.3. FEATURES

Entity name marks: 1.2 / 1.2
Entity attribute marks: 0.5 / 0.6
Entity primary key marks: 0.8 / 1.2
Weak entity key marks: 0.5 / 1.0
Extra entities: 3.0 / 4.0
Total entity marks: 3.0 / 4.0
Relationship entity marks: 2.5 / 3.5
Relationship cardinalities marks: 2.5 / 3.5
Extra relationships: -0.25
Total relationship marks: 4.75 / 7.0
Total marks: 7.75 / 11.0
Total scaled marks: 7.05 / 10.0

Figure 3.8: Example Student Feedback

by the instructor.
The regression penalty submission policy, based on the regression penalty

introduced in [BZHH21], applies a permanent penalty to the student’s grade
when a student submits an answer that is graded lower than the previous
attempt. Where P is the previous higher mark and C is current lower mark,
the regression penalty R is calculated as:

R =
(P − C)

2
(3.1)

For example, if a student’s mark decreased from 94 to 90 from one sub-
mission to the next, then the regression penalty is 2 marks. The highest
mark they would be able to receive would be limited to 98. Any regres-
sion penalty accrued is permanent and cumulative. The regression penalty
could also be modified with different values, which may be investigated in
future work. Although the regression penalty policy allows for an unlimited
number of attempts by the student, it is intended to limit trial and error
submissions.

During question creation, the instructor can choose from the following
possible schemes:

− Unlimited attempts

− Restricted number of attempts

− Regression penalty

− Allow the student to choose regression penalty or limited attempts

22

3.4. AUTOER QUESTION CREATION

− Randomly assign a limited number of attempts set by the instructor
or a regression penalty

In previous iterations of the system only the unlimited attempts submis-
sion policy was offered. As discussed in the results chapter, during the initial
evaluation of the system, a high average number of submissions by students
was noted. These policies were developed to limit undesirable submission
behaviour.

3.3.4 Student Mark Retrieval

Instructors and TAs are able to access a detailed breakdown of the eval-
uation of a student’s submitted answer. Figure 3.9 shows an example of
the course administrator’s view of a student’s answer. This page shows the
student’s final mark, the text representation of their answer, the visual rep-
resentation of their answer, the feedback the student received, and a Marker
Feedback section with more in-depth information about the grading not
available to the student.

The Marker Feedback section lists any missed or incorrect entities, at-
tributes, relationships, and cardinalities and shows the correct diagram con-
structs from the answer. This allows any course administrator to verify the
auto evaluation done by the AutoER system and answer student inquiries
about their automated grade on a question.

3.4 AutoER Question Creation

Instructors define questions in the Django administration portal. Course
administrators can also upload custom evaluation code, question generation
code, and user interfaces. Table 3.1 summarizes the different customizable
components involved in question creation and customization and the overall
design of the database is shown in Figure 3.3.

Two types of database design questions can be created in the system:
instructor designed questions and generated questions.

Instructor Defined Questions

Existing UML questions that have been written by instructors are con-
vertible for use in the AutoER system. The steps for developing instructor-
created database design questions are:

23

3.4. AUTOER QUESTION CREATION

Figure 3.9: Evaluation Details of a Student’s Submitted Answer

24

3.4. AUTOER QUESTION CREATION

Question Component Description

Question Type The type of question in the system. Cur-
rently, the system only accepts UML
database diagram design type questions,
but support for other types of questions is
future work.

Question Template The user interface for questions. Each ques-
tion template also holds the marking code
and the marker’s feedback page and is as-
sociated with a question type.

Question The marked-up text of a question, maxi-
mum grade, penalty type, and other ques-
tion details. Each question is assigned to
an existing question template.

Answer An answer to an associated question. There
may be multiple answers for one question.

Generated Question Type A description for a question that may be
randomly generated by a user and the code
for generation. Every generated question
type created has a URL for a user to visit
to generate a random question. Each gen-
erated question type is associated with an
existing question template.

Generated Question Detail Details regarding a question that has been
automatically generated including the gen-
erating user, date, and a reference to the
generated question.

Table 3.1: AutoER Question Components

− The UML database design question texts are marked up with AutoER
notation.

− The answers to the questions are converted to the required string rep-
resentations.

− If the proper template does not already exist, a question type and
template is created in the AutoER system using the administration
interface. Each template contains the customizable code for: the ques-
tion interface page, the auto-marking code, and the marker feedback

25

3.4. AUTOER QUESTION CREATION

page.

− The database design question is created in the system referencing the
associated question template. Each question contains the marked up
question text and specific marking criteria.

− The answers are created in the system referencing the associated ques-
tion. Each answer contains the converted string representations of the
answer diagram.

− The question is then made available to students using the question
URL https://autoed.ok.ubc.ca/questions/{question_id} allow-
ing access with any web browser or integration into a LMS. The system
supports multiple question URLs that students can visit anytime.

Automatically Generated Questions

In addition to instructor-designed questions, AutoER is capable of au-
tomatically generating question variants. They allow students to generate
any number of questions to allow them to practice until mastery. Generated
questions are also useful for online exams to combat academic dishonesty as
each student will be assigned a unique variant.

The steps for developing automatically generated database design ques-
tions are:

− If the proper template does not already exist, a question type and
template is created in the AutoER system using the administration
interface. Each template contains the customizable code for: the ques-
tion interface page, the auto-marking code, and the marker feedback
page.

− A generated question type is created in the system referencing the
associated question template. Each generated question type contains
the description of the question, the maximum grade for the generated
question and the customizable code for the generation of a database
design question.

− A question is made available to students using the question URL
https://autoed.ok.ubc.ca/generatedQuestion/{gen_ques_id} al-
lowing access with any web browser or integration into a LMS.

26

https://autoed.ok.ubc.ca/questions/{question_id}
https://autoed.ok.ubc.ca/generatedQuestion/{gen_ques_id}

3.4. AUTOER QUESTION CREATION

3.4.1 Question Markup

In many cases, instructors already have a selection of questions that they
would like to assign their students. These pre-defined questions can be used
with AutoER with the proper formatting.

A question can be converted for use by the system by marking up key-
words that should be selectable by the student with square brackets. The
set of marked-up keywords must include all of the entities and attributes
that should be present in the final answer. It should be noted that every
marked-up keyword can be added by the user as a possible entity and a
possible attribute to any and all entities so other keywords that are not part
of the answer can be marked up to increase the difficulty of the question.
If there are keywords that are not appropriate for the graph (i.e., long key-
words, multiple word keyword, etc.) alternate words can be substituted by
including them in parentheses after the keyword entry. Figure 3.10 shows a
pre-defined question before conversion and Figure 3.11 shows the question
after conversion for use with the AutoER system.

Figure 3.10: Question Base

Figure 3.11: Question Markup

The question is loaded into the system by creating a question in the
administrator’s portal. The instructor is able to upload a formatted ques-

27

3.4. AUTOER QUESTION CREATION

tion, set the total marks for the question (which will scale automatically),
set the type of limiting penalty to be used and the maximum attempts if
necessary. The question needs to reference the associated question template
during question creation.

3.4.2 Answer Format

Every question entered into the AutoER system must have at least one
associated answer. Multiple correct answers are also accepted by the system.
Answers, which are typically in diagram form, must be converted into a
string representation with the following rules:

− An entity is represented by enclosing the name in square brackets.

− Attributes are associated with an entity by adding a pipe character
(‘|’) after the entity name and listing the attributes delimited by semi-
colons.

− Keys are denoted after the attribute name with either a {PK} or
{PPK}, representing a primary key or partial primary key respec-
tively.

− Define relationships between entities by specifying the two entities in
square brackets and separating them with a dash.

− Cardinality constraints can be added to a relationship by including
them on the appropriate side of the dash. Acceptable cardinalities are
0..1, 1..1, 0..*, and 1..*.

− Flexible cardinality constraints are also supported for questions with
multiple correct answers. AutoER’s flexible cardinality constraints are
0@1, identifying that either 0..1 or 1..1 is correct and * identifying that
either 0..* or 1..* is correct.

Figure 3.12 shows an example of an answer before conversion into the
AutoER answer format. Figure 3.13 shows the AutoER string represen-
tation of that answer. The answers are loaded into the system by creating
answers with reference to the associated question in the administrator’s por-
tal. Future work includes the creation of an instructor front-end that would
allow a question-and-answer string to be built dynamically by interacting
with context menus, similar to the student question interface.

28

3.4. AUTOER QUESTION CREATION

Figure 3.12: Original Answer

Figure 3.13: String Representation of the Answer

29

3.4. AUTOER QUESTION CREATION

3.4.3 User Interface Template

The customizable user interface template of AutoER is implemented in
a single JavaScript/HTML file. It is formatted as a single file to allow for
simple uploading to the server.

When the file is first loaded by a browser, the file receives a marked-up
question, any previous grade information and answer strings for the current
user from the backend API via the React application. It will then parse
the received marked-up question and reformat it with HTML for AutoER
functionality. The question will be rendered with event-listeners on the key-
words to add the interactivity with the question. If it is not the student’s
first attempt on the question, the last submission information will be dis-
played, and the previous attempt’s diagram will be drawn to the HTML
canvas element. Otherwise, the text “Your ER Diagram is empty” will be
displayed on the canvas and it will display that it is the user’s first attempt.

The system uses the nomnoml library to draw the visualizations to the
canvas HTML based on a string representation of the answer. As the user
interacts with the text of the question and menus, the program builds the
answer string dynamically. After any updates to the string, the graph visu-
alization is redrawn.

When the user clicks on the check mark button, as shown in Figure 3.14,
the page submits the user’s information to the Backend API via the React
application for auto-evaluation and awaits the response. When the response
is received, it displays the mark and feedback for the student. If there are
remaining attempts, the template file allows the student to continue editing
their diagram.

Figure 3.14: Check Mark Button

3.4.4 Automatic Question Evaluation

When a student requests feedback on a design question, the text repre-
sentation of their answer is sent to the server for evaluation. The evaluation
process performs the following steps:

− Matches entities in the student answer by name with instructor solu-
tion(s).

− For each entity, matches attributes within the entity.

30

3.4. AUTOER QUESTION CREATION

− Detects relationships in student answer matching instructor solution
using names of entities and cardinality constraints (0..1, 1..1, 0..*,
1..*). Flexible cardinality constraints are supported for questions with
multiple correct answers.

− Verifies cardinality constraints match solution.

− If more than one instructor solution is available, student receives high-
est mark when comparing with each solution.

The automatic question evaluation using the text representation of the
answer has similar characteristics as other systems [BAK20, Has11]. Marks
are assigned based on a student answer matching the solution’s diagram ele-
ments (entities, relationships, attributes), and the instructor assigns weights
to each of the diagram elements. The default marking scheme assigns equal
weight for all elements of the same type (e.g., all entities have same mark
value), but instructors are free to modify marking criteria. Assigning marks
equally makes it more efficient for instructors creating marking criteria. The
system automatically scales the mark to a target question mark. An in-
structor can configure the weights of diagram elements, and even modify
the Python code for individual questions for specific use cases.

The matching process has very high precision as the names and labels in
the diagram are extracted from the question markup rather than free-form
entry by students. This avoids issues with naming conflicts and matching
ambiguity that reduce accuracy in other systems. The disadvantage is that
the question markup provides students hints on the key information in the
question. Instructors control the question markup and are encouraged to add
markup for words that are not part of the solution to increase the difficulty
of the question. Given a particular markup word phrase, the student must
perform the key design activity of determining how to model as an entity,
attribute, or relationship.

3.4.5 Automatic Question Generation

AutoER is capable of automatically generating question variants given
parameters such as the number of entities, attributes, and relationships.
Python code generates the question text and question answer using these
parameters. Randomization allows different diagrams to be generated for
each student.

Question generation has the steps:

31

3.4. AUTOER QUESTION CREATION

− Generate a random number of entities in range [min,max] given by
instructor.

− Generate a random number of weak entities.

− Generate relationships of particular association cardinalities (0..1, 1..1,
0..*, 1..*). Rules limit the number of relationships between entities and
number of recursive relationships.

− Names of entities, attributes, and relationships used in the answer and
question text are randomly generated. Figure 3.15 shows an example of
an automatically generated question with letter placeholders for entity
and attribute names. Other placeholders, like “gibberish” words, may
be used instead.

− Vary question text by randomizing phrase descriptions. For example,
a 0..* relationship between entities A and B may be described as “A
may be related to many B” or “A has multiple relationships with B”
or other similar phrases.

− Question text statements are re-ordered to mimic real questions. For
example, relationship information may appear near the associated en-
tities or later in the description.

The server supports generated questions by allowing the upload of a code
file for question generation. When the student accesses the question URL,
the generation code is run to create a random question specific for that user
that is stored in the database. Then the student interacts with the question
as if created by an instructor.

32

3.4. AUTOER QUESTION CREATION

Figure 3.15: Generated Question Example with Letter Placeholders

33

Chapter 4

Case Studies: Undergraduate
Database Course

The AutoER system was evaluated in two sessions of the same under-
graduate database course, COSC 304 Introduction to Databases, at the
University of British Columbia Okanagan.

4.1 Participant Recruitment

The first session was in the summer 2021 term with 44 students enrolled,
and the second session was in the fall 2021 term with 180 students enrolled.
After receiving consent from the instructor (see Appendix A.1), the students
were given an introduction to the system at the beginning of the course
by the author and were given the choice to participate in the study. The
students that were interested in participating were asked to read and sign
the consent form (see Appendix A.2). Although this study took place in a
Computer Science course at the University of British Columbia Okanagan,
no course administrators or participants of the study were involved in the
development of the system or in the investigation of the studies. Specifically,
the author or supervisor were not involved as instructors in the course.

4.2 System Use Data Collection

The database design module is about 20% of the COSC 304 course con-
tent and is taught after students have learned Structured Query Language
(SQL) and the relational model. Students have limited prior experience with
UML, which they are exposed to briefly in prior programming courses.

Data Collected

The following is a list of all the data collected from each submission to
the AutoER system:

34

4.2. SYSTEM USE DATA COLLECTION

− User ID

− Question ID

− Submission number

− Student answer

− Automatically assessed grade

− Generated feedback for the student

− Detailed feedback for course administrators

− Date and time submitted

− Source Internet Protocol (IP) address

− Penalty type (second study only)

− Regression penalty (second study only)

Marking Scheme Used

Although the marking scheme is customizable, each diagram question in
the study was marked with the following default marking scheme:

− 0.2 marks for each correct entity name

− 0.1 marks for each correct attribute list for an entity

− 0.2 marks for identifying each primary key

− 0.5 marks for identifying each weak entity

− -0.25 marks for each extra entity in diagram

− 0.5 marks for identifying relationship between two entities

− 0.25 marks for identifying each correct cardinality on relationships

− -0.25 marks for each extra relationship in diagram

35

4.2. SYSTEM USE DATA COLLECTION

If the total marks did not match the instructor defined mark of the
question, the question’s total calculated score was automatically scaled to
match.

A question in AutoER may also be subjected to a submission policy of
either a regression penalty, which applies a permanent penalty to a student’s
marks when a submission with grade decrease occurs, or a maximum attempt
limitation. Like the marking scheme, the number of maximum submissions
is customizable, but the default maximum number of submission used in
the system for the policy was seven. The maximum attempt limitation of
seven submissions was chosen as a baseline as it was a reasonable number
designed to limit guessing but fewer attempts could be investigated in future
comparison and study.

4.2.1 Assignments

In the course, there are two assignments involving design questions, a
question on an online midterm exam, and a question on an online final
exam. Students participating in the study were given the option of using
the AutoER system for any of these components, or they could continue to
answer the questions on paper or using the UML software previously used
in the course. The assignments consisted of human generated questions
consistent with prior years. The instructions and questions were presented
on GitHub with a link to AutoER and also links to other software that
students may choose to use to complete the questions.

The fall session study added some additional experimentation from the
initial summer session study. In the second study, there were additional
submission policies enforced in the system that were not present in the first
study. This allowed for further analysis on the submission behaviour noted
in the summer.

The first assignment was done in pairs and consists of two database
design questions. Each question was marked out of 10. Figure 4.1 shows the
first question of the first assignment and the associated solution diagram.
See Appendix C for the detailed assignment questions and solutions used in
the study.

The second assignment (Appendix C.2) was the first deliverable of the
course project developing a database-driven, online store and was done in
groups of up to four students. The second assignment has an advanced
database design question involving multiple weak entities for the first ques-
tion, and a large design question (11 entities, 13 relationships) for the sec-
ond question. This assignment also requires using data types for attributes

36

4.2. SYSTEM USE DATA COLLECTION

(a) Question 1

(b) Question 1 Answer

Figure 4.1: Assignment 1 Question 1

and mapping to the relational model, which are not supported by AutoER.
Students using AutoER must manually convert their diagrams into SQL
CREATE TABLE statements. The AutoER portion of the questions were
worth 10 marks and 21 marks respectively.

37

4.2. SYSTEM USE DATA COLLECTION

The participants in the fall study and summer study both had unlimited
attempts with no penalties on the assignment questions.

4.2.2 Midterm Exam

The midterm exam question used the random question generation from
the AutoER system, but students were still able to answer the question
however they wished. In COSC 304, the midterm exam is 90 minutes, open
book, and students may use any software and course resources. Overall,
50% of the exam marks are related to database design with the other half
on database programming. The randomly generated question was worth
20% of the exam.

In the summer study, participants who chose to use the system had
unlimited attempts with no penalties on the midterm question. Student
participants in the fall study were randomly assigned a submission policy
of either a maximum of seven attempts or regression penalty. However, due
to an error with the exam deployment on the learning management system,
the split was not even. 29% of participants were assigned the maximum
attempts limitation and 71% were assigned the regression penalty. As this
was the first usage of the submission policies in the system, it is difficult to
gauge the impact of the uneven split.

Before the summer exam, a practice midterm with an automatically gen-
erated question was available with the same format. For the fall exam, a
practice midterm with three automatically generated questions were avail-
able: a practice question with a regression penalty, a practice question with
a maximum of seven attempts limitation, and a practice question where the
students could choose the submission policy.

4.2.3 Final Exam

In both sessions, the final exam was open book, and the final exam
question in the AutoER system was an instructor defined question used in
previous offerings of the course. Figure 4.2 shows the final exam question
used in both studies. The question was presented on the online exam web
page with a link to AutoER as well as instructions to upload an image of
the diagram.

In the summer, the final exam was 3 hours and the database design
question was worth 10% of the exam. Participants who chose to use the
AutoER system had unlimited attempts with no penalties. A practice exam
was available with the same format.

38

4.3. STUDENT SURVEY

The final exam was 2.5 hours in the fall, and the database design question
was worth 12% of the overall exam. For this exam, participants were able to
choose the submission policy: they could either have a maximum of seven
attempts or they could have unlimited attempts with a regression penalty.
They were also able to choose their submission policy on the practice exam.

4.3 Student Survey

Students were asked to complete a survey (see Appendix B.1) after work-
ing with the system for several weeks. The survey contained the questions
from the System Usability Scale (SUS) [Bro96], an established and widely-
used questionnaire that measures ease of use in systems. It is comprised
of 10 questions with Likert scale answers. To calculate a SUS score, each
answer is converted into numerical data with the following scoring:

− Strongly Disagree: 0 points

− Disagree: 1 point

− Neutral: 2 points

− Agree: 3 points

− Strongly Agree: 4 points

Each score is adjusted by subtracting 1 from each odd-numbered score
and subtracting each even-numbered score from 5. The sum of the adjusted
scores is computed and multiplied by 2.5 to get the standard SUS score
which will be in the range of 0-100. Equation 4.1 shows a more concise way
of calculating the SUS score.

SUS = 2.5((SUS01 + SUS03 + SUS05 + SUS07 + SUS09)− 5)

+(25− (SUS02 + SUS04 + SUS06 + SUS08 + SUS10)))
(4.1)

Results of empirical evaluation of the System Usability Scale [BKM08]
indicate that systems that score between 60 - 70 on the scale can be consid-
ered marginally acceptable and systems that score above 70 are considered
acceptable, with better systems scoring in the high 70s and above.

The student survey also contained a multiple-choice question about their
use of the system and five open-ended questions asking about why they used

39

4.4. COURSE ADMINISTRATOR SURVEY

the software, positives and negatives with the software, and general com-
ments. The survey was made available after the midterm and was completed
by 27 students out of 44 students (61%) in the summer offering and was
completed by 50 out of 180 (28%) in the fall session.

4.4 Course Administrator Survey

Instructors and TAs were asked to complete a survey (see Appendix
B.2) after the end of the course. This survey was designed to gauge the
effectiveness of the system from the course administrator’s perspective. It
was comprised of 4 multiple choice questions and 6 open-ended questions
about their decision to continue to use the system, what they liked about
the system, what they thought could be improved, and general comments.

40

4.4. COURSE ADMINISTRATOR SURVEY

(a) Final Exam Question

(b) Final Exam Question

Figure 4.2: Final Exam Question and Answer

41

Chapter 5

Results

The results from the evaluations of the AutoER system are broken into
two sections, System Evaluation and Student Performance Evaluation. In
Section 5.1, the evaluations are focused on perceived system usability and
student system preference. Section 5.2 focuses on student academic per-
formance and submission behaviour patterns within the system. Common
metrics used in the evaluations and their descriptions are listed in in Table
5.1.

Metric Description

Users The count of the users interacting with the
AutoER system.

% of Participants The percentage of total participants per
study.

Submits The average number of submissions per user
to the AutoER system.

AutoER Grade The average top grade of diagrams created
and evaluated with AutoER.

Grade The average grade of all participant’s dia-
grams including grades of diagrams created
with AutoER and all other methods.

Regressions The average number of grade regressions per
user. A grade regression occurs when a stu-
dent submits a diagram that is graded lower
than the previous attempt.

Seconds The average number of seconds between sub-
mission to the AutoER system per user.

First Mark The average grade of the first submission to
the AutoER system.

% of Users The percentage of total users interacting with
the AutoER system.

Table 5.1: Description of Common Metrics in AutoER Evaluations

42

5.1. SYSTEM EVALUATION

5.1 System Evaluation

5.1.1 System Use

The first analysis looked at if students prefer using AutoER compared
to paper and other design software. The summary of usage for the two
assignments and midterm and final exams is in Table 5.2.

Assign 1 Assign 2 Midterm Final
S F S F S F S F

Users 30 141 27 130 43 172 41 172

% of Participants 67% 78% 61% 72% 98% 96% 93% 96%

Submits 83 32 108 37 25 5 57 6

Table 5.2: AutoER Usage Metrics

Students collaborated in groups for both Assignment 1 and 2. As a
result, the number of system users for the assignments was lower than the
number of users during the examinations. This is because groups of students
would interact with the system using a single student account. Table 5.3
shows the number of students that uploaded diagrams created with AutoER
as their final answer compared to the number of students that uploaded
diagrams created by hand or with other systems. The number of students
using AutoER was determined by counting all students in a group if the
group submitted an answer created with AutoER.

Most students used AutoER for the first assignment, with an 89% up-
load rate in the summer and an 87% upload rate in the fall. AutoER does
not support mapping to the relational model as required for the part of the
second assignment, so usage was expected to be lower. Interestingly, the us-
age was still high as students appreciated checking their design model before
adding data types and conversion. The average number of submissions for a

Assign 1 Assign 2
S F S F

Created with AutoER 39 157 34 170

% of Participants 89% 87% 77% 94%

Created with Other Methods 2 14 10 4

% of Participants 5% 8% 23% 2%

Table 5.3: Assignment Upload Metrics

43

5.1. SYSTEM EVALUATION

question per user was high, and individual student traces indicated students
used the feedback to improve their understanding and performance on the
questions that would not have happened with a single evaluation point. This
was also common for the large ER diagram in assignment 2.

98% of students in the summer and 96% in the fall used the AutoER
system for the database design midterm exam question. A higher number
was expected given that the system generated the question. Even though
students did not have to use AutoER to answer the question, almost all did
for reasons of efficiency and marking feedback.

Although the final exam question was an instructor-defined question and
students were given the choice to complete this question manually or to use
any diagram software, this question saw a similar usage to the midterm, with
93% and 96% usage in the summer and fall, respectively. This indicates the
students’ strong preference for the software and the ability to submit multi-
ple times and have their answers automatically evaluated during the exam.
Note that the number of submissions allowed during the exam depends on
the policy enforced. This is discussed in detail in Section 5.2.5.

5.1.2 System Usability

The next analysis evaluated the system’s usability and efficiency. The
responses to the SUS questions are in Table 5.4. A SUS score reflects a user’s
subjective ranking of a system’s usability. A score greater than 70 indicates
a system is moderately user-friendly [BKM08]. AutoER had a SUS score of
77.01 in the summer study and a SUS score 76.95 in the fall study, showing
that the system had good usability.

5.1.3 Free-form Survey Results

The free-form survey answers had a relatively small sample size and var-
ied in depth of detail and because of this, the coding of feedback was deemed
unnecessary. Instead, a subjective and qualitative analysis was performed
to identify perceived strengths of the tool and to help guide improvements
to the system.

The feedback contained many positive comments about the ability to
build a diagram by interacting with the question text rather than drawing
directly. Students indicated this helped them understand how to extract
key concepts and add them to the model (which is a critical aspect of the
design task). The majority of the feedback involved positive comments on
AutoER’s ease of use, which is a critical factor for learning design software

44

5.1. SYSTEM EVALUATION

SD D N A SA
Question S F S F S F S F S F
I think I would
like to use this
tool frequently.

4% 2% 0% 4% 8% 16% 27% 38% 62% 40%

I found the tool
unnecessarily
complex.

50% 32% 31% 56% 12% 8% 0% 2% 8% 2%

I thought the
tool was easy to
use.

0% 2% 4% 0% 4% 10% 35% 46% 58% 42%

I think that I
would need the
support of a
technical person
to be able to use
this system.

65% 54% 12% 34% 8% 4% 0% 4% 15% 4%

I found the vari-
ous functions in
this tool were
well integrated.

4% 2% 8% 6% 19% 10% 35% 50% 35% 30%

I thought there
was too much
inconsistency in
this tool.

31% 24% 31% 52% 15% 12% 8% 8% 15% 2%

I would imagine
that most peo-
ple would learn
to use this tool
very quickly.

4% 2% 4% 2% 4% 10% 27% 44% 62% 42%

I found the tool
very cumber-
some to use.

35% 26% 31% 58% 19% 4% 4% 6% 12% 2%

I felt very con-
fident using the
tool.

0% 2% 12% 4% 12% 4% 31% 50% 46% 38%

I needed to learn
a lot of things
before I could
get going with
this tool.

54% 16% 15% 50% 15% 22% 8% 6% 8% 6%

Table 5.4: System Usability Scale survey results
Categories - SD: Strongly Disagree, D: Somewhat Disagree, N: Neutral, A:
Somewhat Agree, SA: Strongly Agree

45

5.1. SYSTEM EVALUATION

[ALS19]. Students also commented that the marking feedback helped them
learn from and fix their mistakes, and several students indicated a desire for
more detailed feedback when practicing.

A selection of quotes from students when asked what they found useful
in the software include:

− “It was easy to use, especially in exams.”

− “It really helped me grasp the content.”

− “It was a good way to get feedback on diagrams.”

− “I think having AutoER is extremely useful and beneficial to students
as it is helpful being able to interact with the diagram and receive real
time feedback.”

Areas for improvement included the display of the diagrams, especially
positioning of cardinalities on relationships, improved display of recursive
relationships, the ability to add other types of relationships, and the ability
to re-arrange diagrams.

A selection of quotes from students when asked what additional features
they would like to see in the system:

− “I think it would be helpful to be able to drag the relationships into
different order. This would make it easier to get a better looking
diagram.”

− “Sometimes the cardinality gets harder to read as the number of enti-
ties increase. If this is solved that’ll be great!”

− “A better implementation of the way the relationships link up, a lot of
the time the multiplicities are actually hidden behind entities. Other
times when you make a relationship between 2 items the relationship
line freaks out.”

− “More tools for testing relational algebra, sql, json, xpath.”

5.1.4 Administrator Evaluation

The survey for course administrators indicated that the software was
found to be very useful and easy to use by participants. Administrators also
commented positively about the time saved because of the grading precision
of the software.

46

5.2. STUDENT PERFORMANCE EVALUATION

Reflecting similar feedback from the student survey, administrators gen-
erally suggested improvements in the display of the diagrams. They also
would like the ability to search student attempts and a more robust marker
feedback page.

5.2 Student Performance Evaluation

There were several metrics evaluated including the percentage of stu-
dents using the software, the mean number of submissions per user, average
time between submissions, and average final mark. A summary of the per-
formance metrics is in Table 5.5.

Student performance was compared to the course offering in winter 2020
with 180 students that used the same instructional content, assignments,
and final exam, but was taught by a different instructor.

Assign 1 Assign 2 Midterm Final
S F S F S F S F

Users 30 141 27 130 44 172 41 172
AutoER Grade 91% 89% 76% 71% 95% 94% 91% 69%
Grade 93% 92% 94% 96% 93% 92% 88% 75%
Regressions 18.39 6.33 22.13 6.57 3.43 0.41 10.24 1.22
Submits 83 32 108 37 25 5 57 7
Seconds 1445 17276 808 10446 120 N/A2 327 804

Table 5.5: AutoER Performance Metrics

5.2.1 Assignment Performance

The 2020 offering of COSC 304 had performance on both assignment 1
and 2 of 85%. The performance using AutoER was higher for both assign-
ments in both studies. Only a portion of assignment 2 involves designing ER
diagrams with the rest of the assignment requiring mapping to the relational
model. Assignment 2 was the first lab for the project involving designing
and building a database, so it is less predictive of AutoER’s usability.

This course was taught by a different instructor, creating a different
instructional environment, which prevents making a conclusive statement
regarding student performance.The number of assignment submissions cre-
ated with other methods was not sufficient for comparison with submissions

2The average time between submissions per user has been removed from the analysis
due to a deployment error.

47

5.2. STUDENT PERFORMANCE EVALUATION

created with AutoER. However, it is evident that student performance was
equivalent or slightly improved from 2020, as students actively engaged with
the system through multiple submissions, and survey feedback indicated a
strong preference for using AutoER compared to Astah or other UML tools
used previously.

5.2.2 Midterm Generated Question Performance

Performance on the generated midterm question was high, with an av-
erage grade of 93% and 92% on the summer and fall midterms, respectively.
In the 2020 offering of the course, there was no comparable design question
on the exam, however, the average grade from the 2019 COSC 304 midterm
question was 70%. Unfortunately, the summer and fall midterms are also
not directly comparable with the question from the 2019 midterm as that
question was an instructor defined paper exam question.

The effectiveness of the auto-generated questions and marking were also
informally evaluated by TAs after manually marking each midterm question
submission. They noted that each student’s answer requires about two min-
utes to grade manually when submitting on paper or using other software,
whereas the AutoER tool did it instantly.

The AutoER system’s auto-marking eliminated bias, mistakes, and vari-
ation between TAs which often occurs for large classes. The system provides
detailed marking feedback to the TAs to verify correctness. This feedback
can also be provided to students after the exam is complete.

5.2.3 Final Exam Performance

The final exam question used in both studies was an instructor-defined
question that had been used in the previous offering of the course. In that
previous offering, the average grade on the final exam question was 74%.
The summer study’s final question average grade was 88% which was an
increase of 14% from the previous offering. The performance on the fall
final question was significantly lower at 75%, though still slightly higher
than the 2020 offering.

It is difficult to compare the final exam question results between the
summer and fall studies as there were substantial differences in exam en-
vironments. In addition to the enforced submission policies not present in
the summer, the students were only given 2.5 hours to complete the fall
final exam versus the summer exam’s 3-hour time limitation. The mark
weightings were different between the exams as a result of this.

48

5.2. STUDENT PERFORMANCE EVALUATION

5.2.4 Summer 2021 Study

Further data analyzed relates to student performance and submission
behaviour during the exam. In the summer study, students were allowed
unlimited submissions to measure how they interact with the system with no
restrictive submission policies enforced. The initial profile analysis compared
the average number of submissions per question to the top grade achieved.

Figure 5.1 displays student performance by number of submissions with
quartile groupings by total number of submissions during the midterm exam.
First quartile students submitted the lowest number of times and achieved
near perfect marks. These students solved a substantial amount of the
problem before checking their answers. The fourth quartile of students had
at least 31 submissions and demonstrated some undesirable behaviour such
as trial-and-error. In the diagram, the dot represents the cut-off point of
number of submissions to be in that quartile. The graph line continues to
the end to make it easier to compare across quartiles. For example, the
cutoff for the first quartile is 13 submissions.

Although categorizing students by their average number of submissions
per question showed interesting results, it was determined that the average
number of regressions (grade from submission decreases from last submis-
sion) per question better classified the students into submission behaviour
profiles.

Figure 5.1: Student Performance Grouped By Total Submissions. Marker
shows maximum quartile submissions cutoff.

49

5.2. STUDENT PERFORMANCE EVALUATION

Student Profiles

There are several distinctive student profiles (see Tables 5.6 and 5.7)
that are visible in the data, and sample traces for each profile are shown
in Figure 5.2. The profiles are distinguished by the number of regressions
that were present in their answers. Note that although students are catego-
rized by number of regressions, during the summer study, regressions were
not displayed to the user and did not limit how the student answered the
question. The regressions were calculated during post-analysis. While these
categories are based on the number of regressions present in the submission
history, other behavioural patterns emerged from the analysis. Most notably,
some students demonstrated behaviours like nearly completing the question
before the first submission, iterative development, and others showing less
desirable trial and error exploration.

Category Midterm % Final % Description

1 25.0 14.6% No regressions
2 25.0 17.1% 1 to 2 regressions
3 25.0 17.1% 3 to 5 regressions
4 25.0 51.2% 6+ regressions

Table 5.6: Student Profile Categories

Figure 5.2: Example Student Performance Profiles

The top students in Category 1 achieved high scores with few attempts

50

5.2. STUDENT PERFORMANCE EVALUATION

1 2 3 4
Mid Final Mid Final Mid Final Mid Final

Users 11 6 11 7 11 7 11 21
AutoER Grade 99.6% 99.4% 95.0% 81.4% 92.5% 93.3% 91.5% 91.0%
First Mark 53% 48% 22% 24% 32% 11% 34% 14%
Regressions 0.00 0.00 1.45 1.29 4.00 4.14 8.27 18.19
Submits 8 12 17 17 30 37 45 90
Seconds 273 1854 68 257 73 103 79 62

Table 5.7: Summer Student Profile Metrics

with one student achieving 100% on the first attempt on the midterm, and
two students achieving 100% on the first attempt on the final exam. These
students would have similar performance if the number of attempts were
reduced, or regression penalties were introduced [BZHH21]. Students in
Category 2 have a low number of regressions, however, they may or may
not have a low number of submissions. As shown in Figure 5.2, the example
student in Category 2 used iterative development and feedback from the
auto-grader to verify they are on the right track, and only had one regression.
In Category 3, more regressions are present, which typically occur near
the middle and the end of the problem. For the database design problem,
identifying entities and attributes is the logical first step, and regressions in
the middle may have allowed students to use trial-and-error along with the
marking feedback to finalize the entities first. Regressions near the end seem
to indicate that students may be using the same trial-and-error behaviour to
find small mistakes (often missing relationships and incorrect cardinalities)
before completing the question.

Category 4 students demonstrate numerous regressions throughout their
attempts, in no particular area of the problem. This seems to indicate these
students are using trial-and-error to solve the entire question rather than
relying on course knowledge. All the highest submitting students were in
Category 4.

Overall, the data and student profiles from the summer study validate
research in [BZHH21] on reducing the number of submissions or introducing
regression penalties to limit guessing. This motivated the development of
the limiting attempts constraints for the system introduced in the fall study.

51

5.2. STUDENT PERFORMANCE EVALUATION

Midterm Final
S F Chg S F Chg

Grade 93% 92% -1% 88% 75% -13%

Regressions 3.43 0.41 -88% 10.24 1.22 -88%

Submits 25 5 -82% 57 7 -88%

Seconds 327 804 146%

Table 5.8: Limiting Attempts Change

5.2.5 Fall 2021 Study

Submission Policy Impact

The first study revealed that some of the students that used the AutoER
system in the summer seemed to be utilizing trial-and-error for solving ques-
tions. In response to that, submission policies as discussed in [BZHH21] were
introduced to the system for the fall study. These policies were only enforced
for the AutoER examination questions. For the fall midterm question, the
students were assigned either the regression penalty or were limited to 7 at-
tempts on the question. For the fall final exam, they were given the option
of choosing either of the two policies.

Table 5.8 shows an overview of the changes to the submission behaviour
of the users of the system. The number of average grade regressions de-
creased by 82% and the number of regressions dropped 88% on the fall
midterm. The regressions and submissions were reduced by 88% and the
average seconds between submissions per user was increased by 146% on
the final exam question.

These changes demonstrate that students in the second study were more
thoughtful about how they approached submitting answers, ensuring that
the answer is as accurate as possible before submission rather than repeat-
edly checking and changing their answers during development. This in-
dicates that adding limitation constraints positively affect how users ap-
proached solving problems in the system.

Submission Policy Impact By Profile

The data was categorized into the same regression profiles as examined
in the summer study for comparison. The result of the analysis is shown in
Table 5.9. One of the most obvious changes between the studies is that the
percentage of students in Category 1 (0 regressions) was increased by over
180% for both the midterm and final fall exam. The number of students in

52

5.2. STUDENT PERFORMANCE EVALUATION

Category 1
Midterm Final

S F Chg S F Chg
Users 11 127 6 69
% of Users 25.0% 73.8% 195.3% 14.6% 41.3% 182.1%
AutoER Grade 99.6% 95.2% -4.4% 99.4% 69.4% -30.1%
First Mark 52.6% 81.2% 54.3% 48.3% 53.6% 11.0%
Regressions 0.0 0.0 0.0% 0.0 0.0 0.0%
Submits 8 3 -65.1% 12 3 -73.1%
Seconds 1854 1211 -34.7%

Category 2
Midterm Final

S F Chg S F Chg
Users 11 40 7 80
% of Users 25.0% 23.3% -7.0% 17.1% 46.5% 172.4%
AutoER Grade 95.0% 92.4% -2.7% 81.4% 71.7% -11.9%
First Mark 21.9% 70.7% 222.3% 23.5% 49.2% 109.3%
Regressions 1.45 1.20 -17.5% 1.29 1.41 9.9%
Submits 17 7 -57.3% 17 6 -63.4%
Seconds 257 589 129.3%

Category 3
Midterm Final

S F Chg S F Chg
Users 11 4 7 20
% of Users 25.0% 2.3% -90.7% 17.1% 11.6% -31.9%
AutoER Grade 92.5% 82.7% -10.6% 93.3% 61.3% -34.3%
First Mark 32.4% 37.9% 17.0% 11.1% 36.3% 225.5%
Regressions 4.0 4.0 0.0% 4.1 3.5 -15.5%
Submits 30 26 -13.8% 37 14 -62.0%
Seconds 103 360 247.5%

Category 4
Midterm Final

S F Chg S F Chg
Users 11 1 21 3
% of Users 25.0% 0.6% -97.7% 51.2% 1.7% -96.6%
AutoER Grade 91.5% 87.2% -4.7% 91.0% 62.6% -31.3%
First Mark 34.1% 67.8% 98.9% 14.0% 28.2% 101.8%
Regressions 8.3 7.0 -15.4% 18.2 8.7 -52.4%
Submits 45 25 -44.3% 90 38 -57.3%
Seconds 62 104 68.9%

Table 5.9: Comparison of Profiles Across Studies

53

5.2. STUDENT PERFORMANCE EVALUATION

Category 2 (1 to 2 regressions) was increased by over 170% for the final fall
exams. The users that were classified into these categories during the first
study showed desirable behaviours in their approach to solving questions in
the system. Similarly, most users in these top categories in the fall seem
to use strategies that demonstrate topic knowledge rather than relying on
guessing.

When examining the individual performances in Category 2, there seems
to be a behaviour change in that most users seem to no longer be using it-
erative development but are behaving more similarly to a Category 1 users
from the summer, demonstrating a high first mark with few submits. The
only difference between the two categories in the second study is that there
are one or two grade regressions present in a Category 2 user’s answer his-
tory. Sample traces for each profile in the fall study are shown in Figure
5.3.

Figure 5.3: Example Fall Student Performance Profiles

The positive changes were not limited to the top categories as users
in every category show improvement in some metrics. All categories show
a decrease in the average number of submissions and an increase to the
average of the first mark submitted, as shown in Table 5.9. The decrease
in Category 4 (6+ regressions) users is the most substantial, with a 98%
decrease on the midterm and a 97% decrease on the final exam. However,
upon examination of individual submissions, the trial-and-error behaviour
seems to be still visible in the submission history for a few students.

The individual submission history for users in Category 3 (3 to 5 re-

54

5.2. STUDENT PERFORMANCE EVALUATION

gressions) tend to display an iterative development procedure, like the first
study. However, they also seem to display a more randomized regression
pattern indicating the possibility of more guessing at answers rather than
relying entirely on prior knowledge.

One surprising finding was that Category 1 users’ final exam grade av-
erages were lower than Category 2 users in the second study. Upon more
in-depth analysis, there was a new behaviour not noted in the first study’s
examinations: an increase of one attempt submission histories. The analysis
of one-attempt submissions is shown in Table 5.10. This behaviour could
be a result of the 30-minute decrease in time given for the final exam with
a similar number of questions. This increase of one-attempt submission his-
tories lowers the overall grade average of users in Category 1 from 70.0% to
69.4%, however, it does not entirely explain the finding as the grade average
from the Category 2 users is 71.7%.

Users AutoER Grade

Summer Midterm 1 100%

Summer Final 1 100%

Fall Midterm 45 96.3%

Fall Final 19 68.1%

Table 5.10: User Count and Grades with One Submission

Overall, there is strong evidence that limiting attempts in the system
alters user behaviours in positive ways, from reducing grade regressions and
number of submission attempts to increasing time spent on answers.

Comparing Submission Policies

The submission policies attempt to solve the problem of over-reliance
on the automatic marker with different approaches. The maximum attempt
limitation allows the instructor to set a maximum number of attempts on a
question, while the regression penalty imposes a permanent cost on submit-
ting answers that are graded lower than the previous submission.

The data was analyzed to examine which of the two submission policies
is more effective at limiting trial-and-error behaviour with the least impact
on student performance. Comparisons of means from the collected data
were performed using two-sample t-Tests assuming unequal variances with
significance level α = 0.05, and the p-values are provided.

Table 5.11 shows that the difference between the midterm grades was
not significant (p = 0.84) between the two strategies, but the final exam

55

5.2. STUDENT PERFORMANCE EVALUATION

data shows that students who had the maximum attempts submission policy
achieved a grade that was nearly 10% higher (p = 0.04). The students who
used the maximum attempt policy also have a statistically significant lower
average submits and longer submit times, possibly indicating that those
users spent more time taking into consideration the quality and quantity of
their answers before submission.

Midterm Final
MaxAtt Regr MaxAtt Regr

Users 50 122 137 35

AutoER Grade 95% 94% 71% 62%

Regressions 0.320 0.451 0.934 2.314

Submits 3 5 5 14

Seconds 854 607

Table 5.11: Performance Comparison of Submission Policies

Interestingly, the number of regressions is higher when the question is
marked with a regression penalty. This makes sense for several reasons. If
there is a limited number of attempts, then there are a limited number of
regressions that can happen. It also stands to reason that if the user knows
that they have an unlimited number of submissions, they may be more likely
to submit with a trial-and-error strategy. The fact that the average number
of submissions and the average number of seconds between submissions was
higher for the users with the maximum attempts policy also support this
argument.

Submission Policies Across Student Profiles

The average grade of students in each category was lower for the regres-
sion penalty compared to maximum attempts limitation. The first submis-
sion mark was generally considerably lower as well. Pie charts comparing
the number of students per category for unlimited submissions, maximum
attempts policy, and regression penalty for the midterm and final exams are
in Figures 5.4 and 5.5 respectively.

Examining the submission policies over student profiles further illus-
trates the maximum attempts restriction’s effectiveness. Table 5.12 shows
the comparison of submission policies across student profiles. The average
first submission mark was higher in Category 1 and Category 3 with the
maximum attempt limitation. It varied between exams in Category 2 with

56

5.2. STUDENT PERFORMANCE EVALUATION

(a) Unlimited Attempts (b) Regression Penalty (c) Maximum Attempts

Figure 5.4: Midterm Exam Students by Category and Submission Policy

(a) Unlimited Attempts (b) Regression Penalty (c) Maximum Attempts

Figure 5.5: Final Exam Students by Category and Submission Policy

10% lower average grade for the first attempt on the midterm and 20%
higher first grade on the final exam. The average seconds between attempts
in Category 2 were also lower, while the average time was higher for both
Category 1 and Category 3. Overall, most measures favour the maximum
attempt restriction over the regression penalty.

The maximum attempt policy with the restriction of 7 submissions also
prevented any user from being classified as Category 4 with either the
midterm or final exam. This is because it would be improbable for a user
to have 6 regressions with a maximum of 7 submissions.

Visualizations of student submission profiles are in Figures 5.6 and 5.7.
The lines are colored based on the category the student was assigned to
(category 1 - green, category 2 - blue, category 3 - yellow, and category

57

5.2. STUDENT PERFORMANCE EVALUATION

Category 1 Category 2 Category 3 Category 4
MaxAtt Regr MaxAtt Regr MaxAtt Regr MaxAtt Regr

Midterm
Users 39 88 11 29 0 4 0 1
AutoER Grade 95% 95% 93% 92% 83% 87%
First Mark 92% 77% 64% 73% 38% 68%
Regressions 0.00 0.00 1.45 1.10 4.00 7.00
Submits 2 3 6 8 26 25

Final
Users 58 11 69 11 10 10 0 3
AutoER Grade 70% 66% 73% 61% 63% 59% 63%
First Mark 55% 44% 52% 32% 52% 20% 28%
Regressions 0.00 0.00 1.41 1.45 3.10 3.90 8.67
Submits 3 4 6 10 7 21 38
Seconds 1249 1014 584 621 424 296 104

Table 5.12: Limiting Attempts Across Student Profiles

4 - red). Note that the Figure 5.6a has been reduced from showing 91
submissions to showing a maximum of 60 and Figure 5.7a has been reduced
from 199 to 120. An obvious impact of the submission policy is the dramatic
reduction in the number of submissions. There was a hard cutoff of seven
submissions for the maximum attempt policy, and many students did not
reach that cutoff. Although the regression penalty reduces the number of
submissions, there was still a percentage of students with a high number of
submissions (and regressions). There were more regressions for students that
had a regression penalty versus a limited number of submissions. This is an
interesting result as the regression penalty on the student’s grade was only
applied for students in the regression penalty submission policy. The results
were similar for both exams. The final exam with submission penalties had
a much more significant reduction in submissions and regressions.

Student Preference

The analysis examined what the fall students chose for their final exam
submission policy given the policy that they were assigned for the midterm.
The results are shown in Table 5.13. Overall, given the choice of the max-
imum attempts restriction or the regression penalty, 80% of students chose
the maximum attempt policy. The students that chose this for the final
exam did 10% better overall on the exam question in the AutoER system.
Interestingly, students that chose this option for the final exam also tended
to do better in the course, scoring 2% higher on the randomly assigned,
automatically generated midterm question, and 3% higher overall.

Further analysis revealed that 74% of users that were assigned the

58

5.2. STUDENT PERFORMANCE EVALUATION

(a) Unlimited Submissions

(b) Regression Penalty

(c) Maximum Attempts

Figure 5.6: Midterm Exam Students by Category and Submission Policy

59

5.2. STUDENT PERFORMANCE EVALUATION

(a) Unlimited Submissions

(b) Regression Penalty

(c) Maximum Attempts

Figure 5.7: Final Exam Students by Category and Submission Policy

60

5.3. DISCUSSION

regression penalty during the midterm chose to use maximum attempts lim-
itation on the final exam. Nearly all the users that were assigned the maxi-
mum attempts policy on their midterm chose that same policy on the final
exam. It appears that although users could have unlimited attempts with
feedback on a final exam question with a regression penalty, the maximum
attempts submission policy may have been considered to be the safer option
as it doesn’t penalize the overall marks for mistakes along the way.

Users % of Users Mid Final Dif Course
Regr Choice 34 20% 92% 61% -31% 81%
Regr ->Regr 31 18% 92% 61% -32% 81%
MaxAtt ->Regr 3 2% 89% 65% -24% 79%
MaxAtt Choice 137 80% 94% 71% -23% 84%
Regr ->MaxAtt 90 53% 94% 70% -24% 83%
MaxAtt ->MaxAtt 47 27% 95% 73% -21% 85%
Total 171 100% 94% 69% -25% 83%

Table 5.13: Limiting Attempts: Student Preference and Performance

5.3 Discussion

The AutoER system is a simple pedagogical tool designed to reinforce
learned concepts in an introductory database design course. For a learning
tool to be deemed effective, there must be some motivation for students
to choose to use the system over traditional methods. The first research
question (RQ1) examined whether students preferred to use the AutoER
system compared to paper or other existing design software. Because of the
unique features of AutoER, there was no direct experimental comparison
with other existing software, however, students were given the option to
use paper or any other system for all database design questions. The usage
data demonstrates that the students preferred using the AutoER system
compared to other options with a high number of users for all assignments
and examination questions.

Another metric to gauge a learning tool’s effectiveness is the perceived
usability of the system. A usable system is easy to learn and allows the
student to focus on the task at hand, rather than having to spend time
familiarizing themselves with the tool itself. AutoER’s usability was ex-
plored with the second research question (RQ2). The system usability sur-
vey [Bro96] completed by the students revealed that the system had SUS
scores of around 77% in both studies. The free-form comments were also

61

5.3. DISCUSSION

positive, highlighting that interacting with text rather than drawing helped
them learn concepts, especially with feedback. Although there were areas
for improvement noted, such as issues with the display of relationships of
the diagram, overall, the survey results indicate that the system has good
usability and that the students perceived the tool to be effective and helpful.

The third research question (RQ3) investigated if the AutoER system’s
automatic grading approach increased student performance on assignments.
In both studies, student performance on assignment questions was higher
than the previous offering. The average assignment grades were in the range
92-96% compared to about 85% in the 2020 fall offering of the course. How-
ever, due to the differences in instructional environments, a definitive answer
could not be reached. Although there was evidence of increased performance
and high system usage, further study is required to make a conclusive state-
ment.

The question auto generation capability is a unique feature not available
in any other system to the author’s knowledge. Although question genera-
tion in general has been extensively researched, the domain-specific area of
database design diagrams has been overlooked. RQ4 investigated whether
this novel feature was effective for use in exam evaluations. More than 95%
of students chose to use AutoER for the midterm exam question in both
studies. Teaching assistants manually validated each question generated
and the associated auto-marking, and they noted that there were no issues
with unsolvable questions or marking that was inconsistent with established
guidelines. They also remarked that each student answer requires about
two minutes to grade manually when submitting on paper or using other
software. The auto-marking saved time as the evaluation is immediate, and
it eliminates bias, mistakes, and variation between TAs which often occurs
for large classes. This indicates that AutoER’s question generation feature
and auto evaluation approach is effective for use in examinations.

The data from the first study revealed some distinctive behaviour pat-
terns in the submission history of the users. These users were categorized
into 4 profiles based on the number of regressions in the answers. Students
in the Category 1 displayed positive submission behaviours such as high
marks on their first submission and a low number of overall submissions.
Users in Category 4 had a higher number of average submissions and re-
gressions throughout their history, potentially demonstrating trial-and-error
behaviour. To attempt to limit this type of reliance on the auto-grader, at-
tempt limiting submission policies were added to the system for the second
study. The hypothesis that student submission behavior would be positively
affected by submission limiting policies is confirmed by the collected data.

62

5.3. DISCUSSION

Both strategies of either using a maximum number of submissions or a re-
gression penalty are effective at reducing the number of submissions and
regressions by 82% to 88% and increasing the time between submissions by
146%. There is strong evidence supporting RQ5 on improving student be-
haviors when interacting with automatic assessment systems. Specifically,
the amount of trial-and-error behavior is greatly reduced.

Comparing students based on regressions rather than submissions is a
better approach, regardless if the system penalizes students for regression
mistakes. Since a regression occurs when a student’s mark goes down, poor
student behaviors of trial-and-error, exploiting system feedback, and random
guessing are much more likely when a student makes a mistake. If a student
has multiple submissions, but the grade continues to increase, it is an in-
teresting debate whether that is a poor behavior that should be prevented.
However, many regressions clearly indicate a pattern of not understanding
the question sufficiently to improve the mark after every submission. The
number of regressions is closely related with the number of submissions and
is a better indicator of student mistakes.

The sixth research question (RQ6) was designed to identify what sub-
mission limiting policy is the most effective. Although both maximum at-
tempts and regression penalty show positive improvements overall, the max-
imum attempt policy data displayed higher student performance and better
submission behavioural patterns. Student performance on the final exam
was 10% higher with the maximum attempts limitation, and these students
had lower number of attempts and regressions. There were students with
the regression penalty limitation that still had a high number of regressions
and submissions, which are behaviours that should be avoided.

High performing students excel on either submission policy as they use
very few submissions with limited mistakes. As more submissions are per-
formed, more regressions occur for all students. However, the bounded num-
ber of submissions results in students spending more time between submis-
sions which decreases the chance of regressions.

However, it should be noted that the difference in behaviour and per-
formance was more notable in the final exam, where students chose their
policy, than in the midterm exam, where students were assigned their pol-
icy. This indicates the possibility of a selection effect, where more of the
higher performing students may have chosen the maximum attempt policy
and more of the weaker performing students may have chosen the regression
penalty. It is possible that stronger-performing students may have viewed
the possibility of a permanent penalty to their final mark as a riskier choice,
while weaker performing students may have viewed unlimited attempts as

63

5.3. DISCUSSION

a better strategic choice. If this is the case, it could have lead to the higher
performance and improved behavioural patterns viewed in the data for the
maximum attempt policy compared to the regression penalty policy for the
final exam.

When considering the load on the automatic assessment system, a maxi-
mum attempts policy is the clear winner as students make fewer submissions
overall and the absolute number of submissions is bounded. These results
are in-line with the results in [BZHH21] that studied the impact of regres-
sions for reducing the load on the assessment system. The additional results
comparing with maximum attempts and student preference are important
contributions.

The final research question (RQ7) tested student preference for the sub-
mission policy. Given the choice on a high stakes final exam where their
marks were directly impacted, the vast majority (80%) selected maximum
attempts as their preferred submission policy. It appears the maximum at-
tempts restriction may have been perceived to be less risky by the students
as it doesn’t permanently penalize the overall marks, however, there was
no survey data collected to confirm this assumption. Although it can be
definitively stated that the students prefer the submission policy of maxi-
mum attempts over the regression penalty, more research is required on the
exploration of the motivation of the preference.

Overall, the results demonstrate that the AutoER system is an easy to
use, effective database design learning tool with novel features. Allowing
students to interact with question text directly to build diagrams ensures
that the system is able to provide consistent, accurate, and immediate eval-
uation of diagrams regardless of class size. The ability to generate random
domain-specific questions is also beneficial as it allows for the creation of
unique variants of questions in an examination where the potential of aca-
demic dishonesty is high, particularly during online exams. The addition
of attempt-limiting submission policies to the system encourages students
to be thoughtful about their diagram creation and reduces over-reliance on
the automatic grader. Of the two submission policies implemented in the
system, limiting the number of attempts has shown to be more effective
and preferred by students, although both policies have a positive impact on
student behaviour.

64

Chapter 6

Conclusion

This thesis sought to demonstrate that utilizing the AutoER system
in an introductory database course for UML design questions can support
student learning and improve course administrators’ efficiency by provid-
ing automated real-time feedback to students. A general background on
the challenge of learning diagram creation and software for database de-
sign used in classrooms in database courses was explored in Section 2.1.
Database design can be difficult for students at first as they must learn the
proper syntax and learn to translate the written text into the appropriate
diagram elements. Diagram creation can use ER or UML notation and can
be drawn on paper or created with the help of diagram software. Surveys
of UML software indicate the preference for easy-to-use systems focusing
on learning rather than commercial products used by experts. Whether
designed on paper or created with the help of software, consistent manual
evaluation of the diagrams can be time-consuming, particularly for large
classes, because students can use inconsistent naming and labels, can have
trouble understand fundamental modeling constraints, and can misinterpret
the question.

As discussed in Section 2.2, automatic diagram evaluation with real-time
feedback allows for increased student engagement and increased consistency
and efficiency in grading for course administrators. Automatic generation of
questions allows practicing until mastery and for online exams to reduce aca-
demic dishonesty. Prior work examined automatic diagram marking using
image processing, structural and semantic analysis, and machine learning.
Although evaluation with some systems can be accurate to supplied an-
swers within about 10%, challenges remain with achieving higher accuracy.
Currently, there is no support for auto-generation of questions within these
systems.

The AutoER system architecture and available features are described
in Chapter 3. The web-based system allows students to build diagrams by
interacting with question text directly rather than drawing diagram com-
ponents manually. This improves speed and guarantees consistent naming
for precise marking. As the student is building their answer, the system

65

continuously generates a visual representation of their answer.
AutoER supports both instructor-created and automatically generated

questions and is flexible allowing modification to its user interface, marking
and feedback, and question generation parameters. The marking process
is precise as students use standardized names when building a diagram and
the feedback from the auto-grader is provided to a student by request at any
time. Randomized questions are generated given parameters on the number
of entities, attributes, and relationships. The randomized questions have
a single URL for use in a testing system, but each student gets their own
question variant. To combat relying on the auto-grader to answer questions,
two types of penalties that restricted attempts were added to the system:
maximum attempts, which limits the number of submissions and a regression
penalty, which allows unlimited attempts but applies a permanent penalty
whenever a student’s mark goes down.

The system was evaluated in two offerings of an undergraduate database
course in 2021 at the University of British Columbia Okanagan. Presented
in Chapter 4, the studies collected course data from two assignments, an
automatically generated question on a midterm exam, and an instructor-
defined question on the final exam. Students could use the AutoER for
any of these questions or answer questions on paper or with other UML
software previously used. The first study allowed for unlimited attempts on
all questions. The second study randomly assigned either maximum attempt
limitation or regression penalty submission policy on the midterm question
and allowed the student to choose their submission policy on the final exam.
After using the system for several weeks, students completed a usability
survey and provided feedback (see Appendix B.1) regarding their choice to
use the system.

The results of the studies were examined in Chapter 5. The usage and
survey data demonstrates high student satisfaction compared to traditional
UML design question formats and a preference for using the software to
improve their learning outcomes. The generation of question and automatic
evaluation proved to be effective for use in examinations with TAs noting
that the system reduced time spent marking and ensured consistency and
accuracy in evaluation.

Data from the first study revealed some distinctive behavioural patterns
in the submission history of the users with some students demonstrating
an over-reliance on the auto-grader denoted with a high number of submis-
sions and grade regressions. To attempt to limit this type of behaviour,
two types of submission policies were added to the system, a regression
penalty and a maximum attempt limitation, for the second study. With the

66

6.1. LIMITATIONS AND THREATS TO VALIDITY

submission policies enforced, the average number of regressions and sub-
missions decreased significantly indicating that the users were being more
thoughtful about their answers, relying on course knowledge rather than Au-
toER’s evaluation feedback to answer questions. A comparison between the
two submission policies revealed that student performance was higher and
trial-and-error behaviour was lower when the students used the maximum
attempt limitation. The data also revealed that the majority of students
chose the maximum attempt submission policy when given an option.

6.1 Limitations and Threats to Validity

The research evaluation was designed to determine the usability of Au-
toER for question generation and evaluation. The SUS evaluation demon-
strated good usability metrics. There was no comparator tool taught in the
course or an evaluation with any other auto-grading UML software. Sur-
vey results demonstrate that the students perceived AutoER to be effective,
but there is no data to determine how it compares to other auto-grading
systems. Further, it is not possible to directly compare with such systems
as AutoER allows students to build answers using consistent terminology
rather than drawing the diagram and entering their own names. This ap-
proach to question answering ensures precise marking according to criteria
unlike other approaches that have more matching ambiguity.

Although the system statistics indicate a high number of student sub-
missions and strong overall performance on the assignments and exams, this
data is insufficient to argue conclusively there is increased engagement and
learning. Students clearly preferred using AutoER, and their grades were
higher than the previous offering without it. However, the differences in
instructional environments may have had an impact on this result.

To evaluate the impact of the AutoER system on learning and engage-
ment, students from the same environment could be randomly separated
into two groups for two assignments: For the first assignment, one group
could be designated an experimental group utilizing the AutoER system for
diagram creation and evaluation and the other a control group using tradi-
tional methods as a baseline. For the second assignment, the groups could
swap roles. For each of the assignments, a pre-test and post-test could be
conducted to measure the learning gains of the assignment. This could allow
for a more conclusive assessment of learning with the AutoER system. How-
ever, this type of experimentation may offer an unfair advantage to some
students and was deemed unsuitable for these studies.

67

6.2. FUTURE WORK

The evaluation of submission policies was designed to determine the
effect of submission limits in realistic student experiences. The compar-
ison between maximum attempts and regression was done within a single
course section allowing for an identical instructional environment. Although
the random assignment between the two submission limits on the midterm
exam was not equal due to an error, there were sufficient numbers of stu-
dents in both categories. Allowing students to select their approach on the
final exam was fair and did not affect grouping in any way, however, it may
have led to a selection effect, where higher performing students and lower
performing students chose different policies based on their needs. The stu-
dent self-selection data allows for statements on student preference in an
actual situation, but without a survey after the final exam there is no data
to determine why students selected one technique over the other.

Comparing the data collected from the second course section with sub-
mission limits with the first section with no limits is reasonable, with the
acknowledgement that the two course sections are not identical instructional
environments. Although the instructor and all materials were the same, the
first course section had a smaller class size. Ideally, some students may have
been randomly selected to have no submission limits in the second course
section, but this was determined to be an unreasonable advantage compared
to other students.

6.2 Future Work

Future work will extend the evaluation for more course offerings and
integrate the system into learning management systems using the Learning
Tools Interoperability (LTI) standard. The system will be improved by the
addition of an instructor’s frontend to allow for easier question creation.
The question interface will also be improved to allow for more editing of
the diagrams and improved visual representation. Although the system was
tested for database design diagrams using UML, it is also applicable to other
database diagram notations and UML diagrams for other use cases such as
developing an object-oriented class diagram. Other planned work includes
development of interfaces for the aforementioned use-cases, explorations of
different types of feedback, and the examination of variants of the submis-
sion limits such as combining regressions and maximum attempts, and the
exploration of different maximum attempt limits.

Further evaluation of student submission behaviour in discipline-agnostic
auto-grading systems is also future work planned beyond the further devel-

68

6.2. FUTURE WORK

opment of the AutoER system. Proposed work includes researching the
impact of different types of submission limitations on varying problem types
across academic disciplines and exploring the correlation of performance and
student submission policy preference.

69

Bibliography

[AL17] Luciane Telinski Wiedermann Agner and Timothy C. Leth-
bridge. A survey of tool use in modeling education. In 20th
ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems, MODELS 2017, Austin, TX,
USA, September 17-22, 2017, pages 303–311. IEEE Computer
Society, 2017. → pages 4

[ALS19] Luciane Telinski Wiedermann Agner, Timothy C. Lethbridge,
and Inali Wisniewski Soares. Student experience with software
modeling tools. Softw. Syst. Model., 18(5):3025–3047, 2019. →
pages 4, 46

[Auv15] Tapio Auvinen. Harmful study habits in online learning en-
vironments with automatic assessment. In 2015 International
Conference on Learning and Teaching in Computing and En-
gineering, pages 50–57, 2015. → pages 11

[AV03] Carl Alphonce and Phil Ventura. Quickuml: a tool to support
iterative design and code development. In Companion of the
18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOP-
SLA 2003, October 26-30, 2003, Anaheim, CA, USA, pages
80–81. ACM, 2003. → pages 6

[BAK19] Weiyi Bian, Omar Alam, and Jörg Kienzle. Automated grad-
ing of class diagrams. In 22nd ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems
Companion, MODELS Companion 2019, Munich, Germany,
September 15-20, 2019, pages 700–709. IEEE, 2019. → pages
1, 9

[BAK20] Weiyi Bian, Omar Alam, and Jörg Kienzle. Is automated grad-
ing of models effective? assessing automated grading of class
diagrams. In Proceedings of the 23rd ACM/IEEE International

70

https://doi.org/10.1109/MODELS.2017.1
https://doi.org/10.1007/s10270-018-00709-6
https://doi.org/10.1007/s10270-018-00709-6
https://doi.org/10.1145/949344.949359
https://doi.org/10.1145/949344.949359
https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1145/3365438.3410944
https://doi.org/10.1145/3365438.3410944
https://doi.org/10.1145/3365438.3410944

Bibliography

Conference on Model Driven Engineering Languages and Sys-
tems, MODELS ’20, page 365–376, New York, NY, USA, 2020.
ACM. → pages 9, 31

[BE15] Kevin Buffardi and Stephen H. Edwards. Reconsidering auto-
mated feedback: A test-driven approach. In Proceedings of the
46th ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE 2015, Kansas City, MO, USA, March 4-7, 2015,
pages 416–420. ACM, 2015. → pages 1

[BKM08] Aaron Bangor, Philip T. Kortum, and James T. Miller. An
empirical evaluation of the system usability scale. International
Journal of Human–Computer Interaction, 24(6):574–594, 2008.
→ pages 39, 44

[BMM20] Younes Boubekeur, Gunter Mussbacher, and Shane McIntosh.
Automatic assessment of students’ software models using a
simple heuristic and machine learning. In MODELS ’20:
ACM/IEEE 23rd International Conference on Model Driven
Engineering Languages and Systems, Canada, 18-23 October,
2020, Companion Proceedings, pages 20:1–20:10. ACM, 2020.
→ pages 1, 8

[Bro96] John Brooke. Sus: A quick and dirty usability scale. In Usabil-
ity Evaluation in Industry, pages 189–194, 1996. → pages 39,
61

[BZHH21] Elisa L. A. Baniassad, Lucas Zamprogno, Braxton Hall, and
Reid Holmes. STOP THE (AUTOGRADER) INSANITY: re-
gression penalties to deter autograder overreliance. In Mark
Sherriff, Laurence D. Merkle, Pamela A. Cutter, Alvaro E.
Monge, and Judithe Sheard, editors, SIGCSE ’21: The 52nd
ACM Technical Symposium on Computer Science Education,
Virtual Event, USA, March 13-20, 2021, pages 1062–1068.
ACM, 2021. → pages 10, 11, 22, 51, 52, 64

[Che76] Peter P. Chen. The entity-relationship model - toward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, 1976. →
pages 4

[CWZ18] Binglin Chen, Matthew West, and Craig B. Zilles. How much
randomization is needed to deter collaborative cheating on

71

https://doi.org/10.1145/2676723.2677313
https://doi.org/10.1145/2676723.2677313
https://doi.org/10.1145/3417990.3418741
https://doi.org/10.1145/3417990.3418741
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1145/3231644.3231664

Bibliography

asynchronous exams? In Proceedings of the Fifth Annual ACM
Conference on Learning at Scale, London, UK, June 26-28,
2018, pages 62:1–62:10. ACM, 2018. → pages 10

[Edw04] Stephen H. Edwards. Using software testing to move students
from trial-and-error to reflection-in-action. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’04, page 26–30, New York, NY, USA,
2004. Association for Computing Machinery. → pages 11

[EP08] Stephen H. Edwards and Manuel A. Pérez-Quiñones. Web-
cat: automatically grading programming assignments. In Pro-
ceedings of the 13th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2008,
page 328. ACM, 2008. → pages 1, 7, 10, 14

[FGF21] Emily Faulconer, J. C. Griffith, and H. Frank. If at first you do
not succeed: student behavior when provided feedforward with
multiple trials for online summative assessments. Teaching in
Higher Education, 26(4):586–601, 2021. → pages 12

[GM20] Carlos R. Jaimez González and Jazmı́n Mart́ınez-Samora. Di-
agrammer: A web application to support the teaching-learning
process of database courses through the creation of E-R dia-
grams. iJET, 15(19):4–21, 2020. → pages 6

[Gro17] Object Management Group. Omg® unified modeling lan-
guage® (omg uml®), 2017. Retrieved: 2021-08-13. → pages
4

[Has11] Robert W Hasker. Umlgrader: an automated class diagram
grader. Journal of Computing Sciences in Colleges, 27(1):47–
54, 2011. → pages 8, 31

[HBTN21] Georgiana Haldeman, Monica Babes-Vroman, Andrew Tjang,
and Thu D. Nguyen. CSF: formative feedback in autograding.
ACM Trans. Comput. Educ., 21(3):21:1–21:30, 2021. → pages
11

[HR11] Robert W Hasker and Mike Rowe. Umlint: Identifying de-
fects in uml diagrams. In 2011 ASEE Annual Conference &
Exposition, pages 22.1558.1 – 22.1558.14, 2011. → pages 8

72

https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1080/13562517.2019.1664454
https://doi.org/10.1080/13562517.2019.1664454
https://doi.org/10.1080/13562517.2019.1664454
https://www.online-journals.org/index.php/i-jet/article/view/14745
https://www.online-journals.org/index.php/i-jet/article/view/14745
https://www.online-journals.org/index.php/i-jet/article/view/14745
https://www.online-journals.org/index.php/i-jet/article/view/14745
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
https://doi.org/10.1145/3445983

Bibliography

[IAKS10] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto
Seppälä. Review of recent systems for automatic assessment
of programming assignments. In Proceedings of the 10th Koli
Calling International Conference on Computing Education Re-
search, Koli Calling ’10, page 86–93, New York, NY, USA,
2010. Association for Computing Machinery. → pages 12

[KKM06] Ville Karavirta, Ari Korhonen, and Lauri Malmi. On the use of
resubmissions in automatic assessment systems. Comput. Sci.
Educ., 16(3):229–240, 2006. → pages 11

[L+66] Vladimir I Levenshtein et al. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady,
volume 10, pages 707–710. Soviet Union, 1966. → pages 9

[Lee21] Haden Hooyeon Lee. Effectiveness of real-time feedback and
instructive hints in graduate CS courses via automated grading
system. In SIGCSE ’21: The 52nd ACM Technical Symposium
on Computer Science Education, Virtual Event, USA, March
13-20, 2021, pages 101–107. ACM, 2021. → pages 7

[LSTA21] Madeleine Lor̊as, Guttorm Sindre, Hallvard Trætteberg, and
Trond Aalberg. Study behavior in computing education—a sys-
tematic literature review. ACM Trans. Comput. Educ., 22(1),
oct 2021. → pages 10

[MBF+18] Marina Marchisio, Alice Barana, Michele Fioravera, Sergio Ra-
bellino, and Alberto Conte. A model of formative automatic
assessment and interactive feedback for stem. In 2018 IEEE
42nd Annual Computer Software and Applications Conference
(COMPSAC), volume 01, pages 1016–1025, 2018. → pages 11

[MDP20] Samiha Marwan, Anay Dombe, and Thomas W. Price. Un-
productive help-seeking in programming: What it is and how
to address it. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education,
ITiCSE ’20, page 54–60, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. → pages 11

[MGF+20] Samiha Marwan, Ge Gao, Susan Fisk, Thomas W. Price, and
Tiffany Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to persist in

73

https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1080/08993400600912426
https://doi.org/10.1080/08993400600912426
https://doi.org/10.1145/3408877.3432463
https://doi.org/10.1145/3408877.3432463
https://doi.org/10.1145/3408877.3432463
https://doi.org/10.1145/3469129
https://doi.org/10.1145/3469129
https://doi.org/10.1145/3341525.3387394
https://doi.org/10.1145/3341525.3387394
https://doi.org/10.1145/3341525.3387394
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3372782.3406264

Bibliography

computer science. In Proceedings of the 2020 ACM Confer-
ence on International Computing Education Research, ICER
’20, page 194–203, New York, NY, USA, 2020. Association for
Computing Machinery. → pages 11

[MKKN05] Lauri Malmi, Ville Karavirta, Ari Korhonen, and Jussi Nikan-
der. Experiences on automatically assessed algorithm simu-
lation exercises with different resubmission policies. J. Educ.
Resour. Comput., 5(3):7–es, sep 2005. → pages 11

[MNS+20] Hamza Manzoor, Amit Naik, Clifford A. Shaffer, Chris North,
and Stephen H. Edwards. Auto-grading jupyter notebooks. In
Jian Zhang, Mark Sherriff, Sarah Heckman, Pamela A. Cut-
ter, and Alvaro E. Monge, editors, Proceedings of the 51st
ACM Technical Symposium on Computer Science Education,
SIGCSE 2020, Portland, OR, USA, March 11-14, 2020, pages
1139–1144. ACM, 2020. → pages 7

[MSR21] Mostafa Mohammed, Clifford A. Shaffer, and Susan H. Rodger.
Teaching formal languages with visualizations and auto-graded
exercises. In SIGCSE ’21: The 52nd ACM Technical Sympo-
sium on Computer Science Education, Virtual Event, USA,
March 13-20, 2021, pages 569–575. ACM, 2021. → pages 7

[Pie13] Vreda Pieterse. Automated assessment of programming as-
signments. In Proceedings of the 3rd Computer Science Ed-
ucation Research Conference on Computer Science Education
Research, CSERC ’13, page 45–56, Heerlen, NLD, 2013. Open
Universiteit, Heerlen. → pages 12

[SBP+10] Josep Soler, Imma Boada, Ferran Prados, Jordi Poch, and
Ramón Fabregat. A formative assessment tool for conceptual
database design using UML class diagram. iJET, 5(3):27–33,
2010. → pages 8

[Sch20] Johannes Schildgen. Monster park - the entity-relationship-
diagram learning game. In ER Forum, Demo and Posters 2020
co-located with 39th International Conference on Conceptual
Modeling (ER 2020), Vienna, Austria, November 3-6, 2020,
volume 2716 of CEUR Workshop Proceedings, pages 150–157.
CEUR-WS.org, 2020. → pages 9

74

https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/1163405.1163412
https://doi.org/10.1145/1163405.1163412
https://doi.org/10.1145/3328778.3366947
https://doi.org/10.1145/3408877.3432398
https://doi.org/10.1145/3408877.3432398
https://www.online-journals.org/index.php/i-jet/article/view/1402
https://www.online-journals.org/index.php/i-jet/article/view/1402
http://ceur-ws.org/Vol-2716/paper13.pdf
http://ceur-ws.org/Vol-2716/paper13.pdf

Bibliography

[STW13] Neil Smith, Pete G. Thomas, and Kevin G. Waugh. Automatic
grading of free-form diagrams with label hypernymy. In 2013
Learning and Teaching in Computing and Engineering, LaT-
iCE 2013, Macau, Macao, March 21-24, 2013, pages 136–142.
IEEE Computer Society, 2013. → pages 7

[SvdPSC19] Dave R. Stikkolorum, Peter van der Putten, Caroline Speran-
dio, and Michel Chaudron. Towards automated grading of
UML class diagrams with machine learning. In Proceedings of
the 31st Benelux Conference on Artificial Intelligence (BNAIC
2019) and the 28th Belgian Dutch Conference on Machine
Learning (Benelearn 2019), volume 2491 of CEUR Workshop
Proceedings. CEUR-WS.org, 2019. → pages 7

[TPE05] Scott A. Turner, Manuel A. Pérez-Quiñones, and Stephen H.
Edwards. minimuml: A minimalist approach to UML diagram-
ming for early computer science education. ACM J. Educ. Re-
sour. Comput., 5(4):1:1–1:28, 2005. → pages 6

[TWS06] Pete G. Thomas, Kevin G. Waugh, and Neil Smith. Using
patterns in the automatic marking of er-diagrams. In Pro-
ceedings of the 11th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2006,
Bologna, Italy, June 26-28, 2006, pages 83–87. ACM, 2006. →
pages 1, 7

[WHZ15] MatthewWest, Geoffrey L. Herman, and C. Zilles. Prairielearn:
Mastery-based online problem solving with adaptive scoring
and recommendations driven by machine learning. In 122nd
ASEE Annual Conference and Exposition, pages 26.1238.1 –
26.1238.14, 2015. → pages 1, 10, 14

[Zak04] Konstantin Zakharov. Feedback micro-engineering in eer-tutor.
2004. → pages 6

75

https://doi.org/10.1109/LaTiCE.2013.33
https://doi.org/10.1109/LaTiCE.2013.33
http://ceur-ws.org/Vol-2491/paper80.pdf
http://ceur-ws.org/Vol-2491/paper80.pdf
https://doi.org/10.1145/1186639.1186640
https://doi.org/10.1145/1186639.1186640
https://doi.org/10.1145/1140124.1140149
https://doi.org/10.1145/1140124.1140149

Appendix

76

Version: 1.1

June 29, 2021

1

Project Title: AutoER - ER/UML Diagram Designer and Evaluator
Human Ethics - H21-01600
Principal Investigator: Dr. Ramon Lawrence
Email: ramon.lawrence@ubc.ca
Department of Computer Science, Physics, Mathematics, Statistics UBCO
Co-Investigator: Sarah Foss
Email: sarafoss@mail.ubc.ca

INFORMED CONSENT: COURSE ADMINISTRATOR PARTICIPATION

Introduction
You are invited to participate in an evaluation of an experimental educational tool for generating and
assessing ER diagrams. As a participant in this study, you will be asked to complete a questionnaire and
interact with this tool as needed.

This statement contains information about the present study that is intended to help you decide whether
you wish to participate in it. You may refuse to sign this form and not participate in this study. You should
be aware that even after you signed, you are free to withdraw at any time. If you withdraw from this study,
it will not affect your relationship with this unit, the people involved in the study, the services it may provide
to you, or the University of British Columbia Okanagan. If you have any questions about this study before,
during, or after your participation, please feel free to direct them to:

Dr. Ramon Lawrence
Email: ramon.lawrence@ubc.ca

Study Objectives
The objective of this work is to explore the utility of allowing students to interact with entity-relationship
diagram questions in a visual way that will allow the system to generate a diagram that can be assessed
automatically and consistently.

Procedure: ER Diagram Designer and Evaluator
Total expected time: 3 hours

1. The co-investigator will visit your class to explain the study and the consent form to the students.
2. For the assignments and exams that require students to draw ER diagrams, you will log into the

tool and enter the questions for the assignment/exam and the answers in the required format.
3. As part of the course, your students will work on questions related to ER diagrams in the software

directly.
4. After their work has been submitted, you will retrieve their answer and manually grade the

student’s work as usual. If necessary, you may override the feedback or grades generated by
the system.

5. At the end of the course, you will be asked to complete a short questionnaire based on the utility
and usability of the tool. This is to help us identify what has been useful for you and what changes
we need to make in the future.

Appendix A

Consent Forms

A.1 Administrator Consent

77

Version: 1.1

June 29, 2021

2

Risks
There is a risk that the software will malfunction and negatively impact or delay student's grades. To
mitigate this, the course administrator will manually mark each submission and, if necessary, they will
have the ability to override marks and add feedback for the students in the software

Benefits
The student participants may gain a better understanding of the concepts of entity-relationship diagrams
through immediate visual representation. They will also benefit from consistent marking from the
software.
The course administrators will benefit from the time-reducing auto marking capabilities of the software.

Privacy and confidentiality
Questionnaires are anonymous. Questionnaire data, consent data, and information collected from the
system will all be encrypted and stored separately. Since we are only interested in average responses
and behaviors, reports about individual students will not be released.

Participants have a right to access their own results as long as their names and numeric tags are still
available. The data obtained from this study will be retained for at least 5 years after publication in
secured, electronic form, which only researchers associated with this research will have access to. No
audio or video tapes will be used. General results of the research study may be available through
publications. A summary of the results will be made available to participants upon request.

Concerns about participants’ rights
If you have any concerns or complaints about your rights as a research participant and/or your
experiences while participating in this study, contact the Research Participant Complaint Line in the UBC
Office of Research Ethics toll free at 1-877-822-8598 or the UBC Okanagan Research Services Office
at 250-807-8832. It is also possible to contact the Research Complaint Line by email (RSIL@ors.ubc.ca).
When doing so, include the study number H21-01600 when contacting their staff so they can better assist
you.

Participant Certification
I have read this Consent and Authorization form. I have had the opportunity to ask, and I have received
answers to, any questions I had regarding the study and the use and disclosure of information about me
for the study. I agree to take part in this study as a research participant. By my signature I affirm that I
have received a copy of this Consent form.

Participant Name: Date:

Participant Signature:

78

Version: 1.1

June 29, 2021

1

Project Title: AutoER - ER/UML Diagram Designer and Evaluator
Human Ethics - H21-01600
Principal Investigator: Dr. Ramon Lawrence
Email: ramon.lawrence@ubc.ca
Department of Computer Science, Physics, Mathematics, Statistics UBCO
Co-Investigator: Sarah Foss
Email: sarafoss@mail.ubc.ca

INFORMED CONSENT: STUDENT PARTICIPATION

Introduction

You are invited to participate in an evaluation of an experimental educational tool for generating and assessing ER

diagrams. As a participant in this study, you will be asked to complete a questionnaire and interact with this tool as

needed.

This statement contains information about the present study that is intended to help you decide whether you wish

to participate in it. You may refuse to sign this form and not participate in this study. You should be aware that

even after you signed, you are free to withdraw at any time. If you withdraw from this study, it will not affect your

relationship with this unit, the people involved in the study, the services it may provide to you, or the University of

British Columbia Okanagan. If you have any questions about this study before, during, or after your participation,

please feel free to direct them to:

Dr. Ramon Lawrence

Email: ramon.lawrence@ubc.ca

Study Objectives

The objective of this work is to explore the utility of allowing students to interact with entity-relationship diagram

questions in a visual way that will allow the system to generate a diagram that can be assessed automatically and

consistently.

Procedure: ER Diagram Designer and Evaluator

Expected course work time: 4 hours

Expected additional time: 0.5 hours

Total expected time: 4.5 hours

1. As part of the course, you will work on questions related to ER diagrams in the software directly.

2. After your work has been submitted and automatically graded, your instructor will also manually grade

your answers to verify they were marked correctly. If necessary, they are able to override the feedback or

grades.

3. At the end of the course, you will be asked to complete a short questionnaire based on the utility and

usability of the tool. This is to help us identify what has been useful for you and what changes we need to

make in the future.

Risks

There is a risk of the software malfunctioning and negatively impacting your grades in the course. To mitigate this,

the course administrator will also manually mark each submission and, if necessary, they will have the ability to

override marks and add feedback in the software.

There is a risk that you may become frustrated with the software. To mitigate this, you will have the option of

using traditional methods of creating entity-relationship diagrams at any time.

A.2. Student Consent

A.2 Student Consent

79

Version: 1.1

June 29, 2021

2

Benefits

You may gain a better understanding of the concepts of entity-relationship diagrams through immediate visual

representation. You will also benefit from consistent marking from the software.

Privacy and confidentiality

Questionnaires are anonymous. Questionnaire data, consent data, and information collected from the system will

all be stored separately and encrypted. Since the interest of this study is to identify average responses and behavior

of the entire group of participants, you will not be identified in any way in any written reports of this research.

Participants have a right to access their own results so long as their names and numeric tags are still available. The

data obtained from both components of the study will be retained for at least 5 years after publication in secured,

electronic form, which only researchers associated with this research will have access to. No audio or video tapes

will be used. General results of the research study may be available through publications. A summary of the results

will be made available to participants upon request.

Access to course work and associated grades

By checking the boxes below, you are providing consent for the researchers in this study to analyze your entity-

relationship diagram course work and associated grades. The grades will only be used for research analysis purposes

without including any of the participants’ personal information.

Concerns about participants’ rights

If you have any concerns or complaints about your rights as a research participant and/or your experiences while

participating in this study, contact the Research Participant Complaint Line in the UBC Office of Research Ethics

toll free at 1-877-822-8598 or the UBC Okanagan Research Services Office at 250-807-8832. It is also possible to

contact the Research Complaint Line by email (RSIL@ors.ubc.ca). When doing so, include the study number H21-

01600 when contacting their staff so they can better assist you.

Participant consent and signature

I have read this Consent form. I have had the opportunity to ask, and I have received answers to, any questions I

had regarding the study and the use and disclosure of information about me for the study. I agree to take part in this

study as a research participant. By my signature I affirm that I have received a copy of this Consent form.

 Yes No
I am willing to provide access to my submitted entity-relationship diagram

course work

 Yes No
I am willing to provide access to my course grades associated with the

submitted work.

Whether or not you choose to participate, you will receive the same assignments and exam questions in this course.

Your decision to participate or not participate in this study will in no way impact your grades or your relationship

with UBC.

Participant Name: Date:

Participant Signature:

80

Version: 1.2
July 27, 2021

1

Project Title: AutoER - ER/UML Diagram Designer and Evaluator
Human Ethics - H21-01600
Principal Investigator: Dr. Ramon Lawrence
Email: ramon.lawrence@ubc.ca
Department of Computer Science, Physics, Mathematics, Statistics UBCO
Co-Investigator: Sarah Foss
Email: sarafoss@mail.ubc.ca

Participant ID: _______________________________ Date: ___________________________

Questionnaire - AutoER – ER/UML Diagram Designer and Evaluator Software

Thank you for your voluntary participation in the AutoER - ER/UML Diagram Designer and Evaluator

research study under the direction of Dr. Ramon Lawrence.

In order to improve the software used in this study, this questionnaire has been developed to gather

feedback regarding your experiences using the software. We value your honest and detailed responses.

Your responses are confidential.

 Strongly
Disagree

Somewhat
Disagree

Neutral Somewhat
Agree

Strongly
Agree

1. I think I would like to use this
tool frequently.

2. I found the tool unnecessarily
complex.

3. I thought the tool was easy to
use.

4. I think that I would need the
support of a technical person to
be able to use this system.

5. I found the various functions in
this tool were well integrated.

6. I thought there was too much
inconsistency in this tool.

7. I would imagine that most
people would learn to use this
tool very quickly.

8. I found the tool very
cumbersome to use.

9. I felt very confident using the
tool.

10. I needed to learn a lot of things
before I could get going with
this tool.

Appendix B

Surveys

B.1 Student Survey

81

Version: 1.2
July 27, 2021

2

11. Select all that apply. I used the software for the following tasks:

- At least one lab

- More than one lab

- Midterm exam

- Final exam

- Did not use the software

12. If applicable, why did you choose to keep using the software?

13. If applicable, why did you choose to stop using the software?

14. What aspects of the software did you find helpful?

15. What additional features would you like to see with this software?

16. Please provide any general comments about the software and its use in the course.

82

Version: 1.1
June 29, 2021

1

Project Title: AutoER - ER/UML Diagram Designer and Evaluator
Human Ethics - H21-01600
Principal Investigator: Dr. Ramon Lawrence
Email: ramon.lawrence@ubc.ca
Department of Computer Science, Physics, Mathematics, Statistics UBCO
Co-Investigator: Sarah Foss
Email: sarafoss@mail.ubc.ca

Participant ID: _______________________________ Date: ___________________________

Questionnaire - AutoER – ER/UML Diagram Designer and Evaluator Software

Thank you for your voluntary participation in the AutoER - ER/UML Diagram Designer and Evaluator

research study under the direction of Dr. Ramon Lawrence.

In order to improve the software used in this study, this questionnaire has been developed to gather

feedback regarding your experiences using the software. We value your honest and detailed responses.

Your responses are confidential.

1. Select all that apply. I used the software for the following tasks:

- At least one lab

- More than one lab

- Midterm exam

- Final exam

- Did not use the software

2. Select one. I found the software easy to use.

- Strongly agree

- Somewhat agree

- Neither agree nor disagree

- Somewhat disagree

- Strongly disagree

3. Select one. I found the software useful.

B.2. Administrator Survey

B.2 Administrator Survey

83

Version: 1.1
June 29, 2021

2

- Strongly agree

- Somewhat agree

- Neither agree nor disagree

- Somewhat disagree

- Strongly disagree

4. Select one. The software reduced the time spent grading ER diagrams.

- Strongly agree

- Somewhat agree

- Neither agree nor disagree

- Somewhat disagree

- Strongly disagree

5. If applicable, why did you choose to keep using the software?

6. If applicable, why did you choose to stop using the software?

7. What aspects of the software did you find helpful?

8. What additional features would you like to see with this software?

9. Do you have an estimate on how much time the software saved for grading?

10. Please provide any general comments about the software and its use in the course.

84

Appendix C

Assignments

C.1 Assignment 1

Building ER diagrams using an UML modeling tool
This lab designs ER diagrams in UML notation. Students participating

in the AutoER study can use the AutoER Designer and Evaluator software
that performs real-time marking and feedback.

It is also possible to use a variety of drawing software such as astah.
Note: Astah no longer has a free community version. Request a student
license or use the 30-day trial. diagrams.net is an online drawing tool that
can also be used but it does not have as good support for database modeling
in UML.

85

C.1. Assignment 1

C.1.1 Question 1 (10 marks)

(a) Question

(b) Answer

Figure C.1: Assignment 1 Question 1

86

C.1. Assignment 1

C.1.2 Question 2 (10 marks)

(a) Question

(b) Answer

Figure C.2: Assignment 1 Question 2

87

C.2. Assignment 2

C.2 Assignment 2

C.2.1 Question 1 (15 marks)

Note: In addition to the diagram, submit a document containing the
mapping to the relational model. SQL CREATE TABLE statements are
not required. Just provide relation names, attributes, keys and foreign keys.

88

C.2. Assignment 2

(a) Question

(b) Answer

Figure C.3: Assignment 2 Question 1

89

C.2. Assignment 2

C.2.2 Question 2 (35 marks) - Project Deliverable

The project will build an online store like Amazon.com selling whatever
products you want. The first step is to develop a database design and convert
that design into SQL Data Definition Language (DDL).

Deliverables:

1. Draw the ER/UML diagram for this database. (21 marks)

2. Convert the UML diagram into SQL DDL. Make sure to define primary
keys and foreign keys. Your SQL DDL must run on either MySQL,
Microsoft SQL Server or Oracle APEX (preferable). (11 marks)

3. Determine what you are going to sell in your store. Write a mission
statement (1 mark) and executive summary paragraph (2 marks) de-
scribing your idea.

Items to submit: your UML diagram, a text file containing your SQL DDL,
a document with your mission statement and executive summary.

90

C.2. Assignment 2

(a) Question

(b) Answer

Figure C.4: Assignment 2 Question 2

91

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	Dedication
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Organization

	2 Background
	2.1 Database Design and Diagram Creation
	2.1.1 Simplified Educational Database Design Tools

	2.2 Automated Evaluation
	2.2.1 Pattern Matching
	2.2.2 Machine Learning
	2.2.3 String Comparison

	2.3 Generating Questions
	2.4 Limitations on Submissions
	2.5 Discussion

	3 AutoER System Development and Design
	3.1 System Overview
	3.2 System Architecture
	3.2.1 Student Frontend
	3.2.2 Backend
	3.2.3 Database
	3.2.4 Reverse Proxy

	3.3 Features
	3.3.1 Login
	3.3.2 Question Interface
	3.3.3 Submission Policies
	3.3.4 Student Mark Retrieval

	3.4 AutoER Question Creation
	3.4.1 Question Markup
	3.4.2 Answer Format
	3.4.3 User Interface Template
	3.4.4 Automatic Question Evaluation
	3.4.5 Automatic Question Generation

	4 Case Studies: Undergraduate Database Course
	4.1 Participant Recruitment
	4.2 System Use Data Collection
	4.2.1 Assignments
	4.2.2 Midterm Exam
	4.2.3 Final Exam

	4.3 Student Survey
	4.4 Course Administrator Survey

	5 Results
	5.1 System Evaluation
	5.1.1 System Use
	5.1.2 System Usability
	5.1.3 Free-form Survey Results
	5.1.4 Administrator Evaluation

	5.2 Student Performance Evaluation
	5.2.1 Assignment Performance
	5.2.2 Midterm Generated Question Performance
	5.2.3 Final Exam Performance
	5.2.4 Summer 2021 Study
	5.2.5 Fall 2021 Study

	5.3 Discussion

	6 Conclusion
	6.1 Limitations and Threats to Validity
	6.2 Future Work

	Bibliography
	Appendix
	A Consent Forms
	A.1 Administrator Consent
	A.2 Student Consent

	B Surveys
	B.1 Student Survey
	B.2 Administrator Survey

	C Assignments
	C.1 Assignment 1
	C.1.1 Question 1 (10 marks)
	C.1.2 Question 2 (10 marks)

	C.2 Assignment 2
	C.2.1 Question 1 (15 marks)
	C.2.2 Question 2 (35 marks) - Project Deliverable

