
A Low Overhead and Consistent Flash
Translation Layer for Embedded

Devices Utilizing Serial NOR Flash
by

Scott Ronald Fazackerley

B.Sc. Hons., The University of British Columbia, 2008
M.Sc., The University of British Columbia, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE COLLEGE OF GRADUATE STUDIES

(Interdisciplinary Studies - Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

July 2016

c© Scott Ronald Fazackerley, 2016

The undersigned certify that they have read, and recommend to the
College of Graduate Studies for acceptance, a thesis entitled: A Low Over-
head and Consistent Flash Translation Layer for Embedded
Devices Utilizing Serial NOR Flash submitted by Scott Ronald
Fazackerley in partial fulfillment of the requirements of the degree of
Doctor of Philosophy

Supervisor, Professor (please print name and faculty/school above the line)

Supervisory Committee Member, Professor (please print name and faculty/school above
the line)

Supervisory Committee Member, Professor (please print name and faculty/school above
the line)

University Examiner, Professor (please print name and faculty/school above the line)

External Examiner, Professor (please print name and faculty/school above the line)

(Date Submitted to Grad Studies)

Additional Committee Members include:

(please print name and faculty/school above the line)

(please print name and faculty/school above the line)

ii

Abstract

In today’s world, embedded devices are playing an ever increasing and
important role in daily life. Recent interest has focused on how data from
embedded devices can be harnessed. Whether it is complex environmental
parameters or the average temperature in our homes, devices store and
process data. Due to the vast amount of data that is generated by devices,
the ability to process data on device is beneficial as it reduces the amount
of data that must be transferred off the device. Flash memory is the
most commonly found storage medium on embedded devices but presents
challenges for developers. Flash memory is managed through the use of a
flash translation layer (FTL) to address the physical limitations of memory.
No FTL is currently available for the smallest of devices due to resource
limitations. This thesis examines the features that are currently used in FTLs
and highlights their shortcomings for use with resource constrained devices.
In response to these challenges, this work introduces an FTL architecture
with a minimal RAM footprint that is robust and fault-tolerant for resource
constrained embedded systems. Utilizing attributes of the Adesto serial NOR
Dataflash memory, a unique flash translation layer for use with serial NOR
flash has been developed. Key features focus on minimizing data transfer
between host and flash while maintaining persistent address translation.
In addition to a low overhead and robust flash translation layer, the FTL
contains a deterministic garbage collection and wear levelling strategy. This
work introduces the technique of masked overwriting for NOR flash, which
demonstrates the use page overwriting for modification of specific data in
place. This technique offers savings in terms of write times, page erases
and complexity in managing data pages, resulting in a novel FTL strategy
suitable for resource constrained devices.

iii

Preface

The following items have already appeared in print:

− The results in Section 4 are joint work with my supervisor Dr. Ra-
mon Lawrence and Wade Penson and appear in the paper “Write
Improvement Strategies for Serial NOR Dataflash Memory” [SFL16]
and were published in the proceeding of the 29th annual IEEE Canadian
Conference on Electrical and Computer Engineering.

− The basis for the algorithms shown in Chapter 5 were published with
my supervisor Dr. Ramon Lawrence in the paper “A Flash Resident
File System for Embedded Sensor Networks” [FL11] and were published
in the proceeding of the 24th annual IEEE Canadian Conference on
Electrical and Computer Engineering.

iv

Table of Contents

Abstract . iii

Preface . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

List of Symbols and Abbreviations xi

Dedication . xiii

Chapter 1: Introduction . 1

Chapter 2: Storage Architectures 8
2.1 Embedded Devices . 9

2.1.1 Wireless Sensor Networks 10
2.2 Memory Stores . 11

2.2.1 EEPROM . 17
2.2.2 Flash . 18
2.2.3 Other Storage Technologies 30

Chapter 3: Data Persistence Strategies 33
3.1 Data Management Strategies 33
3.2 Flash Aware File Systems . 34

3.2.1 Log Based File Systems 35
3.2.2 Logging Based File Systems for Flash 39

3.3 Flash Translation Layers . 42
3.3.1 FTL Taxonomies . 43

v

TABLE OF CONTENTS

3.4 FTL Schemes . 49
3.4.1 Page Level FTL Schemes 50
3.4.2 Page Based Logging Schemes 52
3.4.3 Block Based Logging Schemes 57
3.4.4 Block Set FTL Schemes 61
3.4.5 State Based FTL Schemes 62
3.4.6 FTL Improvement Schemes 65
3.4.7 Suitability of FTL Schemes for Serial NOR Memories 72

3.5 Open Research . 73

Chapter 4: Write Strategies for Serial NOR Flash 76
4.1 Write Strategies for Improved Performance with Serial NOR

Dataflash . 78
4.1.1 Write Operations for Serial NOR Flash 79

4.2 Hypothesis about Rewrites 82
4.3 Experimental Results . 83
4.4 Use Cases . 88

4.4.1 Data Logging . 88
4.4.2 Bit Vectors . 89

4.5 Comments on Overwriting . 90

Chapter 5: Flash Translation Layer for Serial NOR Flash . . 91
5.1 Serial NOR Dataflash . 91
5.2 The Flash Resident FTL . 100

5.2.1 A Fully Associative Mapping Strategy 101
5.2.2 Read and Write Operations for FlaReFTL 101
5.2.3 Architectural Overview 105
5.2.4 Address Translation 109

5.3 Consistency and Recovery with Zero-Overhead Logging . . . 120
5.3.1 Keystoning . 120
5.3.2 Record Modification 122
5.3.3 Consistency and Recovery 126
5.3.4 Operation Cost Summary 129
5.3.5 In-Place Writes . 131

5.4 Frontier Advance Wear Levelling and Garbage Collection . . 132
5.5 Conclusions . 142

Chapter 6: Conclusion . 144
6.1 Conclusions and Future Work 144
6.2 Summary of Contributions . 144

vi

TABLE OF CONTENTS

6.3 Future Work . 145

Bibliography . 147

Index . 163

Appendix . 165
Appendix A: FTL Algorithms . 166
A.1 FTL Schemes . 166

A.1.1 Block Based Logging Schemes 166
A.1.2 State Based FTLs . 177

A.2 Comparison of FTLs . 184
Appendix B: The FlaReFTL Interface 191
B.1 FTL Instances . 191

B.1.1 System Control Functions 191
B.1.2 Page Management Functions 192
B.1.3 Read Functions . 192
B.1.4 Write Functions . 193
B.1.5 Buffer Management Functions 194

vii

List of Tables

Table 2.1 A Comparison of Memory Stores for Embedded Systems. 32

Table 3.1 A Comparison of Flash Aware File Systems. 41

Table 4.1 Write State Truth Tables for a NOR Memory Cell. . . 81
Table 4.2 Least Squares Coefficients for Writing Techniques . . . 85
Table 4.3 Timing Comparison of Overwriting and Erase-Before-

Write Operations . 87
Table 4.4 Comparison between raw SD storage and serial NOR

Dataflash (SNDF) using masked overwrite strategy. . . 89

Table 5.1 Load, Store and Data Transfer Costs for FlaReFTL
Operations . 129

Table 5.2 Comparison of Load and Store Costs for FlaReFTL
Write Operations . 132

Table A.1 Summary of FTL Schemes for Flash Memory 190

viii

List of Figures

Figure 2.1 The Structure of a MOSFET 12
Figure 2.2 Conduction Channel Formation in a p-type MOSFET 12
Figure 2.3 Static RAM Memory Cell 14
Figure 2.4 Floating Gate MOSFET Configurations 15
Figure 2.5 Impact on Charge on a Floating Gate MOSFET . . . 16
Figure 2.6 Memory Cell Alignment for NOR and NAND Flash

Structure . 19
Figure 2.7 Read circuit for NOR-architecture flash memories . . 20
Figure 2.8 Read circuit for NAND-architecture flash memories . 21
Figure 2.9 Flash Memory Functional Block Diagram 25
Figure 2.10 Flash Page Organization 26
Figure 2.11 Architecture of a NAND Flash Memory 27
Figure 2.12 Dual Buffer Serial Dataflash 27

Figure 3.1 Rotating Magnetic Hard Disk Drive 35
Figure 3.2 A Log Structured File System 37
Figure 3.3 Sprite-LFS Space Management Strategies 38
Figure 3.4 Page Mapping Scheme for Flash Address Translation 44
Figure 3.5 Block Mapping Scheme for Flash Address Translation 47
Figure 3.6 Hybrid Mapping Scheme for Flash Address Translation 49
Figure 3.7 The Mistubishi FTL Scheme 53
Figure 3.8 The ANAND and FMAX FTL Scheme 56
Figure 3.9 The BAST FTL Scheme 59
Figure 3.10 The STAFF State Machine 64
Figure 3.11 PORCE Block Validation 66

Figure 4.1 Memory Cell alignment for NOR and NAND Flash . 79
Figure 4.2 Overwriting strategies for data movement from SRAM

buffer to flash page for Serial NOR Dataflash 80
Figure 4.3 Memory Cell Write Transition States for Serial NOR

Dataflash . 81

ix

LIST OF FIGURES

Figure 4.4 A timing comparison of overwriting techniques for
serial NOR Dataflash. 85

Figure 4.5 Distribution of Single Byte Write Times with Masked
Overwritting. 86

Figure 5.1 Serial NOR Dataflash Data Read and Write Timing
Sequences . 93

Figure 5.2 Serial NOR Dataflash Write Operations 95
Figure 5.3 Serial NOR Dataflash Read Operations 96
Figure 5.4 FlaReFTL Data Movement During Read Operations . 102
Figure 5.5 FlaReFTL Data Movement During Write Operations 103
Figure 5.6 FlaReFTL Core Architecture 105
Figure 5.7 Memory Allocation Overview 106
Figure 5.8 The Management of Page State with Bit Vectors . . . 108
Figure 5.9 FlaReFTL Address Resolution Using Master Transla-

tion Table . 111
Figure 5.10 FlaReFTL Address Resolution Using Secondary Trans-

lation Table . 113
Figure 5.11 FlaReFTL Updating Master Translation Table 115
Figure 5.12 FlaReFTL Updating Secondary Translation Table . . 119
Figure 5.13 FlaReFTL Updating Master Translation Table 122
Figure 5.14 Updating Records in Data Page with MTTP 123
Figure 5.15 Updating Records in Data Page with STTP 124
Figure 5.16 Allocation of a Logical Page 125
Figure 5.17 Recovery in the Event of a Failure 127
Figure 5.18 Frontier Advance Wear Levelling and Garbage Collec-

tion Operations . 135
Figure 5.19 Write Amplification Overhead During FAWL 137
Figure 5.20 System Resource Overhead with Respect to Write

Frontier Extent Size 139
Figure 5.21 Results of the Wear Levelling Policy 142

Figure A.1 The FAST FTL Scheme 168
Figure A.2 The EAST FTL Scheme 172
Figure A.3 The STAFF FTL Scheme for In-Place Operations . . 179
Figure A.4 The STAFF FTL Scheme for Out-of-Place Operations 180

x

List of Symbols
and Abbreviations

Abbreviation Description Definition

CHE Channel Hot Electron 22
CS Chip Select 92
EBW Erase-Before-Write 33
EEPROM Electrically Erasable Programmable Read Only

Memory
18

FAFS Frontier Advance Wear Leveling 132
FTL Flash Translation Layer 34
FN Fowler Nordheim 17
GC Garbage Collection 42
LPN Logical Page Number 46
LBN Logical Block Number 46
MISO Master In Slave Out 92
MLC Multi-Level-Cell 24
MOSFET Metal-Oxide Semiconductor Field Effect Transistor 13
MOSI Master Out Slave In 92
OOB Out Of Bounds 25
PBN Physical Block Number 26
POR Power Off Recovery 42
PPN Physical Page Number 47
PPP Partial-Page Programming 26
SCLK Serial Clock 92
SLC Single-Level-Cell 24
SOC System on Chip 10
SPI Serial Peripheral Interface 92
WL Wear Leveling 29
WSN Wireless Sensor Network 10

xi

Acknowledgements

I would like to thank and acknowledge Dr. Ramon Lawrence for his
ongoing motivation, support, vision and for the opportunity to study and
learn under his supervision. The value of Dr. Lawrences ongoing guidance,
feedback and friendship is immeasurable. His belief in you as a person only
makes you want to excel to a higher level. Without his passion for research
and belief in a vision, this work would not have been possible.

I would like to thank my wife Amy, and son Liam for their ongoing
support, patience and perseverance. Most of all, I am forever grateful for
their belief in me. I would also like to thank my family, friends and colleagues
for being patient and the encouragement and support in my choosing to take
this path.

I wish to extend my gratitude to committee members Dr. Yves Lucet,
Dr. Jason Loeppky and Dr. Ramon Lawrence for the patience and guidance.
I would also like to thank Dr. Craig Nichol for words of encouragement and
support and gaining the understanding of done.

I would like to acknowledge the support of Dr. Ramon Lawrence, the
Natural Sciences and Engineering Research Council of Canada (NSERC),
and the University of British Columbia College of Graduate Studies for
financial support which contributed to the success of this work.

xii

Dedication

For Amy and Liam. Without your ongoing support, love, patience and
understanding this journey would not have been possible.

xiii

Chapter 1

Introduction

The more that you read, the
more things you will know. The
more that you learn, the more
places you’ll go.

Dr. Seuss (1904-1991)

In today’s world, embedded devices are playing an ever increasing and
important role in daily life. An individual interacts with hundreds of devices
in a single day, which all generate data. Recent interest has focused how
this data can be harnessed and what underlying intelligence is contained
within it. Whether it is simple environmental parameters such as the average
temperature in our homes or complex data such as real time location and
situational data [RR12], devices need to be able to store and process data.
The emergence of the Internet of Things (IoT) has been gaining ground and
momentum. This concept involves enabling common embedded devices such
as wireless sensor networks and mobile computing platforms to be able to
interact and intercommunicate with each other [GIMA10]. It is anticipated
that by the end of this decade there will be between 30 and 50 billion devices
participating in the IoT [Wit13]. One of the key aspects of the Internet of
Things is the sensing and sharing of data and environmental parameters
automatically in numerous domains [AIM10].

Due to the vast amount of data that is generated by devices, the ability
to process data on device is beneficial as it reduces the amount of data that
must be transferred off the device. IoT vendors such as Cisco anticipate the
direct sharing of data between devices, driving the need for local storage and
processing [Eva01]. Devices such as the Telos, Btnode, and MicaZ [BPC+07]
platforms have been previously used as research and development platforms
but the Arduino [Sev14] family of devices has driven low cost development
and exploration. These devices are typically small 8-bit devices [ASSC02]
with power, persistent storage and run-time memory constraints [DNH04]
with less than 2 Kbytes of SRAM. While larger devices such as 32-bit ARM
architectures are appearing in the embedded market space, 8-bit processors

1

Chapter 1. Introduction

are still dominant due to low cost, low pin count and complexity [Mur15].
While more complex processors are required in the realm of arithmetically
complex operations, data collection and logging applications are still well
suited to the 8-bit processor which is being driven by a growing number
of IoT systems utilizing this technology [Mur15]. The 8-bit architecture
is still the most commonly used device today accounting for almost 40%
of all microcontroller device sales in 2014 [TBHR15]. In all cases, energy
availability and secondary storage are key factors for consideration.

While rotating magnetic disk storage has prevailed for years in general
purpose computing, it is unsuitable for use with embedded devices due
to high power consumption and low mechanical robustness. Older solid
state technologies exist, but until the advent of NAND and NOR flash
memory, capacities were not large enough to be of any significant use for large
volume data storage. Flash memory operates under fundamentally different
principles than that of disk based storage. This presents significant challenges
for accessing devices. The Flash Translation Layer (FTL) functions as an
interface to allow flash memory to be accessed in a similar fashion to disk
based storage. While various schemes have been developed for flash memory,
almost all of the work has focused on NAND flash. Unfortunately, NAND
flash is not suitable for use with all embedded devices. NOR flash is still the
most popular flash memory for use with embedded devices.

With the introduction of low-cost, micro-processing hardware and sensors,
wide spread data collection is becoming more common for real-world use. In
today’s marketplace, embedded devices and wireless sensor networks require
persistent storage due to the end user’s desire for increased functionality and
increased memory capacities balanced against its ever falling cost. There
are a variety of reasons why data persistence is becoming an issue of critical
concern. With the increased mobility of devices, the transmission of data is
not always possible. Data must be cached for future dissemination in some
form of transient, temporary storage. In other cases, data may be stored
for backup and local processing, communicating only small subsets of data
until further requests are made [Giu13]. Additionally, on-device processing
is orders of magnitude less expensive that transmission [PK00].

With the different capacities and types of memories available on devices,
one of the key challenges faced by users is how to handle the large amounts
of data in an efficient fashion so that data persistence is achieved with
the required degree of reliability and robustness. Traditionally, data has
been stored in a raw format in some form of non-volatile memory. Data
visualisation and analysis has not been possible on device due to how data is
stored physically on the device, limited by both architectural and performance

2

Chapter 1. Introduction

constraints. For users to visualise and analyse data, sample points must
be moved off the device. This may prove to be infeasible in cases where
devices are connected as part of a wireless sensor network; large amounts of
data being transmitted in a wireless sensor network can lead to premature
failures of the network and loss of data. In general, it has been found that
local processing of data can be orders of magnitude more efficient than
transmitting data across the network. Unfortunately, challenges exist with
local processing. This is primarily due to how data is stored on embedded
devices.

Until recently, data has been stored in small scale non-volatile storage
such as EEPROM as presented in Section 2.2.1, but this technology is limited
to very small data storage, typically in the order of 1 to 100 Kb, and has sig-
nificant power performance constraints. New sensors and hardware as well as
increased demand for sensed data has increased the need for higher sampling
rates and volumes. In response, new strategies for storing large amounts of
data on small devices has been explored. These technologies utilize flash
memory, which is a non-volatile storage medium that exhibits similar charac-
teristics to other non-volatile file storage mediums but introduces significant
challenges due to its physical structure and layout. Two architectures of flash
have emerged which are categorized as NOR and NAND flash as presented
in Section 2.2.2. While both share the same core architecture for the base
memory cell, they differ significantly in the implementation with each having
their own unique costs and benefits. Regardless of the type of flash memory,
the technology offers some unique challenges that can limit the lifespan of
the device as well as how a system interacts with it. The raw device is not
a direct replacement strategy for current technologies such as EEPROM or
rotating magnetic storage. As a result, new algorithms and strategies need
to be developed in order to utilize and manage flash memory correctly such
that the devices will have extended longevity and use in the field.

Traditionally, embedded systems have stored data in a raw or custom
format where a single failure in the system can lead to an extensive loss of
data. Unless considerable effort is put into development of the system, results
will have uncertain data consistency and limited recoverability guarantees.
This is due to the fact that the efforts are often time consuming and cost
prohibitive. Additionally, it is often difficult to verify the correctness of the
method, leaving developers with a system that appears to function correctly
under certain conditions, but without absolute guarantees. Additionally,
it requires the developer to have a high degree of technical understanding
of the underlying technology in order to deal with the architectural con-
straints such as erase-before-write requirements, block level erasures and

3

Chapter 1. Introduction

wear considerations.
While NAND devices are commonly found in devices of all sizes and

are well supported through extensive research on Flash Translation Layer
FTL and wear levelling strategies, there are significant barriers for the use
of this device on power and pin constrained embedded devices. Application
assistance is also available through the use of flash specific file systems which
are designed to work in conjunction with an operating system on a general
purpose computing platform but are infeasible to use on smaller devices due
to lack of operating system support, advanced memory management units
and memory requirements. NAND devices also offer significant challenges
due to their large pin count which causes issues for small pin count embedded
processors. Additionally, NAND devices require the use of error correcting
codes to manage bit level errors that commonly occur due to the design of
the NAND device.

NOR devices are still the preferred choice for embedded systems [ZSI11]
even through the capacities are lower that those offered by NAND devices.
Low capacity devices can reasonably be used as a replacement for EEPROM
devices as some devices offer byte addressability but require the implementa-
tion of a different software interface. Unlike NAND flash, the architecture of
the device is more robust in terms of data correction and does not require
the use of error correcting codes. This simplifies the overall implementation,
but this feature does impact the overall performance of the device compared
to NAND flash. NOR flash still has the same architectural limitations as
NAND flash [MCO08] as well as having high pin counts. Serial NOR flash
memories offer significant performance advantages over parallel NAND flash
as they do not need error correcting codes. Serial NOR also has a smaller
footprint and pin count than parallel NOR, making it more suitable for small
embedded applications. While previous works have extensively examined
the performance and optimisation of flash translation layers for NAND flash,
none have examined the performance of these systems on serial NOR flash.

One significant limitation with all flash memory is the erase-before-write
constraint. As a result of the physical limitation that a page must be set
to the erase state before being written, data cannot be modified in place
as it is done with rotating magnetic media. Systems utilizing flash memory
as a drop in replacement for other memory stores are often architecturally
limited from erasing the target data in-place. To accommodate this, systems
will read the target data, modify and then rewrite the data to a free area
of memory that has previously been erased. The challenge is to keep track
of the physical addresses of the data as they are rewritten in such a fashion
that the application is unaware of any changes. Research has focused on

4

Chapter 1. Introduction

using a Flash Translation Layer FTL (Section 3.4) to swizzle the physical
address as data is moved and map it to a logical address that remains
unchanged from the application’s perspective. While this allows current
systems that are designed to work with rotating magnetic media to seamlessly
inter-operate with flash devices, it presents limitations in terms of efficient
operation. Another common approach is to use a flash aware file system that
incorporates the logical to physical translation directly into the file system
as well as possibly exploiting other attributes of flash memory to gain an
advantage over non-flash aware file systems utilizing an FTL.

Numerous open research problems exist in dealing with the architectural
limitations of flash memory. One key area deals with the management and
storage of the flash translations layer. Depending on the design of the FTL, if
the complete table can fit in RAM, translations can occur very quickly as seen
with page level mapping schemes (Section 3.3.1). Unfortunately, for most
systems it is infeasible to store the complete table in RAM due to the ever
increasing flash memory sizes. If the translation table can fit completely into
memory, the issue of FTL persistence must still be addressed. If the system
encounters a reset condition, the translation table would be lost and data
would be orphaned. In order to become fault tolerant, the FTL must have
some degree of persistence and recoverability. One strategy is to periodically
flush the existing FTL to flash memory in order to guarantee durability but
this can introduce a significant overhead in the system depending on the size
of the translation table and as such is generally considered to be infeasible. As
an alternate strategy, cache models for mapping tables have been investigated
both at the page level where only part of the total mapping table is stored
in RAM based on temporal and spatial frequency. Block level mapping
(Section 3.3.1) utilizes the same strategies but with an increased level of
granularity offering a trade-off between FTL flushing and addressable block
size in memory as it generally requires pages within a block to be written to
fixed addresses which can introduce challenges with non-uniforming writes. A
third strategy is the hybrid page/block method (Section 3.3.1) that combines
aspects of the page level FTL and block level FTL. It provides block level
granularity for blocks of data but allows flexible data placement within the
block, thus removing the issue associated with non-uniform writes.

A similar strategy to the hybrid scheme is the log-page or log-block
scheme (Section 3.4.3). It is often categorized incorrectly as a hybrid FTL
but is fundamentally different in terms of operation. While it maintains two
different mapping granularities, its design is related more to a log based file
system [RO92] than to a hybrid FTL and is intended to improve flexibility
and performance under different write conditions. Data that is to be written

5

Chapter 1. Introduction

to the system is placed in a log structure in flash in a sequential fashion.
Once a certain occupancy threshold is reached the log is flushed which allows
logically aligned data elements that are currently in the log to be updated
at the same time with target data that is currently in flash. The log is
maintained as a small page mapped structure mapped limited size area
that is reserved for frequently accessed data; as data in the log ages, it will
eventually be moved out of the log to an area of flash that utilizes the block
level mapping.

Regardless of the strategy used for managing access to flash memory, key
issues exist. It is critical to ensure robust data persistence; that is having a
storage solution that will ensure the consistency of data regardless of faults.
Decisions as to the type of FTL, where to store the FTL and how frequently
to commit the FTL are key open issues that dictate the suitability of a
solution to a given problem. The primary goal of the majority of works is to
reduce the number of erase operations, leading to higher write performance
and indirectly, a longer service life. Other issues exist in terms of fault
tolerance and recoverability, which most system do not address. Additionally,
previous works have examined key issues with flash memory storage systems
and proposed numerous solutions targeted for NAND flash. These solutions
will not work with embedded devices that utilize serial NOR flash as their
primary storage medium due to the architectural differences.

This work presents a novel flash translation layer for serial NOR flash
that offers tunable consistency, a low memory footprint and a high degree
of robustness allowing it to be suitable for use on constrained devices. The
research has produced a fault tolerant flash translation layer for use with
serial flash memories specially designed for resource constrained 8-bit systems.
The work also introduces an overwriting strategy for NOR flash that can be
used to reduce the cost of specific classes of writes as well as reducing the
number of erase and garbage collection operations. The work simulates and
tests on device an innovative FTL that provides good performance with a
minimal host SRAM footprint as well as offering consistency guarantees. The
system utilizes unique attributes of the Adesto (formerly Atmel [Atm04])
Rapid-S serial NOR Dataflash memory to provide a unique strategy for
minimizing erase/write costs.

The key contributions of this work are a serial NOR Dataflash FTL with
the features:

− Minimal SRAM memory footprint flash translation layer for NOR
Dataflash

− A fault tolerant and robust flash translation layer

6

Chapter 1. Introduction

− A consistent and recoverable data management system

− A deterministic, low overhead garbage collection mechanism

− A low overhead wear levelling algorithm

− Efficient buffer management through the use of direct reads

− A general write-in-place writes for energy and device conservation.

Key basic components of FlaReFTL have been examined under simulation
in [FL11] as the basis for a file system for embedded devices. This work
expands and completes the migration to a stand alone system for use in
memory constrained devices.

This thesis examines the current requirements for data persistence solu-
tions in embedded devices and the performance and architectural differences.
Chapter 2 presents a background on storage technologies, concentrating
on NOR and NAND flash. Chapter 3 examines current data persistence
strategies at both the file system and flash translation layer through the
development of log based storage. Chapter 3 concludes with a summary of
the limitations with current data persistence strategies specifically in regards
to their suitability with resource constrained devices as well as highlight-
ing open research questions. Write strategies for serial NOR Dataflash are
presented in Chapter 4, which examines overwriting techniques to improve
write performance and reduce erasures for specific write patterns. Chapter 5
presents a robust and consistent FTL designed for resources constrained
devices with a minimal SRAM footprint. The FTL exploits overwriting
techniques to reduce specific overhead operations. The work closes with
Chapter 6, which summarizes the contributions of this work and concludes
with a discussion of future research directions.

7

Chapter 2

Storage Architectures

Give them the third best to go
on with; the second best comes
too late, the best never comes.

Robert Alexander Watson-Watt
(1892 - 1973)

With the advancement and pervasiveness of mobile embedded devices
in our daily lives and environment, we have become more interested in
harnessing the power of these devices to capture and understand information
about the surrounding environment. Whether it is simple environmental
parameters such as the average hourly temperature in our homes or complex
data such as real time location and situational data [RR12], devices need to be
able to store and process data. Mobile embedded devices with high resolution
sensors and the desire to share the data, have rapidly driven the need for
larger capacity data stores. Additionally, a new paradigm called the Internet
of Things (IOT) has been gaining momentum in research communities. This
concept involves enabling common embedded devices such as wireless sensor
networks and mobile computing platforms (such as smart phones) to be
able to interact and intercommunicate with each other [GIMA10]. One of
the key aspects of the Internet of Things is the sensing and sharing of data
and environmental parameters automatically in numerous domains [AIM10].
Understanding what can be done with data only drives forward the need for
improved data persistence strategies.

In terms of storage options, early adopted solid state technologies such as
EEPROM, while suitable for small sets (both in terms of size and data rates),
are limited in terms of capacity, speed, and power required. As a result,
EEPROM’s suitability as a data persistence device in today’s environment
has fallen due to our ever increasing need for capacity and device lifetime
(through maximum power management). While suitable in terms of capacity,
rotating magnetic media fails to offer suitable performance in terms of power
consumption and physical robustness.

8

2.1. Embedded Devices

The emergence of solid state flash memory from Toshiba in the
1980’s [PH12, p.6.14-4], presents new opportunities for improved data per-
sistence strategies due to significantly larger storage capacity compared to
EEPROM, long term storage stability, acceptable bandwidth and latency
(particularly when matched with data I/O speeds of processors) as well as
suitable power draw requirements. The evolution of flash occurred in two
phases [PH12, p.6.14-4]. The first device to enter the market was NOR flash
in 1984 with NAND flash following in 1989. The first commercial use of NOR
and NAND flash was in digital cameras [PH12, p. 6.14-4]. NOR flash was
adopted quickly in embedded applications due to the fact that some devices
had the ability to be written at the byte level (with the precondition that
the memory was already erased) and hence became a suitable replacement
for EEPROM memory [SCKS08]. It maintained market dominance over
NAND flash until 2005 by measure of market revenue [AA11]. The adoption
of NAND flash did not move at the same rate due to the significantly more
complex write patterns due to the block structure of the device [SCKS08].
While NAND flash has found numerous applications such as mobile handsets
and primary storage solutions, NOR flash is still the primary choice for use
in embedded applications [ZSI11] primary due to its low read latencies and
data integrity.

2.1 Embedded Devices

Embedded devices are pervasive due to their low cost, low power re-
quirements and small size, both in terms of physical footprint and memory.
This makes them desirable for numerous applications where the end cost
is a critical parameter. A microcontroller forms the computing core of an
embedded device with the core, typically being an 8 or 16-bit device. A
microcontroller differs significantly from a microprocessor, which forms the
foundation of general purpose computing. A microprocessor contains only a
processing core and lacks memory, peripheral devices, and timing circuity.
A microcontroller contains all components on a single die; it only requires
software to be added to make the device functional [Hea02, p.11].

A recent trend has seen the growth of microprocessor based embedded
systems [Hea02] specifically with the introduction of the low power ARM
architecture [PH12, p.2.20-4]. Patterson and Hennessy [PH12, p.2.20-4] note
that one of the first embedded computers to use the ARM processor was the
Apple Newton, a revolutionary personal digital assistant. While the device
failed in the market place, Patterson and Hennessy note that because of

9

2.1. Embedded Devices

Apple’s choice of processor, subsequent vendors were confident in making
a similar choice. The ARM core is now found in numerous commercial
embedded devices but most notably in communications devices. In 2008, it
was estimated that over 3 billion ARM cores shipped [PH12]. Building on
the ARM core which lacks peripheral devices, core memory and a timing
system for embedded applications, designers are now producing systems-on-
chip (SOC) which allow the combination of a microprocessor core and other
devices fabricated onto a single silicon substrate and package. While suitable
for applications where physical size, cost and power consumption play less of
a design role, embedded microprocessors have yet to displace the 8/16-bit
microprocessor for low cost and power limited resources.

In addition to the growth of wireless consumer devices, there has been
significant interest in using low power and low cost devices to form an Internet
of Things [GIMA10, AIM10] where embedded devices can interconnect,
interact and share data. One of the key components in this paradigm is
the wireless sensor network [GIMA10] which is the key backbone for data
collection and sharing.

2.1.1 Wireless Sensor Networks

Wireless sensor networks are an efficient way to gather sensed data from a
large physical area without the need for hard wired infrastructure [ASSC02].
A wireless sensor network consists of a series of wireless sensing devices that
have the ability to measure parameters regarding their physical environment.
Devices are typically small 8-bit devices [ASSC02] that are constrained in
terms of power, persistent storage and run time memory [DNH04]. Numer-
ous hardware platform choices are available with the majority of research
being conducted on the Telos, Btnode and MicaZ platforms [BPC+07]. De-
vices intercommunicate using a wireless link [ASSC02]. Although there are
many different communication paradigms, IEEE 802.15.4 [BPC+07, IEE07]
has emerged as the dominant choice. It allows for low data rate, and low
power communications between devices. These devices have been extensively
used for data collection in military, environmental, agricultural and indus-
trial applications [ASSC02, MCP+02, BTB04, SOP+04, CCS+07, WCS+07,
MFM+08, PE08, BCDV09, GSS09, LSS+09, Riq09, MGZ+09, RGA+09,
GPSZ10, FL10, JRO+11, RUJ+11, FCTL12]. In these applications, it is
critical to be able to store data locally on device to prevent data loss due
to the inconsistent nature of wireless networks. While they collect vast
amounts of information, only a small subset is of interest and usually per-
tains to a specific transitory or periodic event in the sampling space. Recent

10

2.2. Memory Stores

work suggests that transmitting data over the wireless link is the largest
component of a device’s energy budget and that the lifetime of a network
can be increased substantially by minimizing the amount of data being
transferred [RSPS02, CL10]. Mather et al. [MDGS06] suggest that locally
processing of data utilizing NAND flash is two orders of magnitude more
efficient in terms of energy usage. In a study of transmission costs, Pottie
and Kaiser [PK00] demonstrate that the amount of energy to transmit 1
kilobyte over a link of 100 meters is equivalent to a processor executing 3
million instructions at 100 MIPS/Watt. As a result, research is focusing
on developing improved data handling mechanisms in an effort to reduce
network load [PK00, ASSC02, CL10, HSW+00, FL11].

The management of data can be handled by a custom application [FL10]
or by one of the over 37 different operating systems available for wireless
sensing devices [DTV09]. In the existing systems, local data storage has not
been a focus. Sensed results are pushed unprocessed back to the sink or a
collection point. With the increased availability of low cost flash memory
($0.003 per kilobyte), it is now possible for nodes to maintain results locally.
Recent work has investigated how to efficiently store data in flash [GT05b].
To augment the existing operating systems, other work has investigated
using flash specific operating systems to abstract the physical storage away
from the application while taking advantage of the architecture of the flash
memory [DNH04, GT05a, MDC+09].

2.2 Memory Stores

The operating nature of embedded systems is inconsistent due to power
faults, programming errors or other factors. Devices require persistent mem-
ory stores to withstand these events. Rotating magnetic storage [PH12,
p.22] is not suitable for embedded systems due to numerous factors such as
physical size, robustness, interface complexity, bandwidth, and power con-
sumption [DZ11][IFV11, p.219]. As a result, embedded designers have turned
their attention to alternative re-writable, non-volatile memory technologies.

One of the earliest options used for embedded systems was the battery
backed up SRAM which is based on the SRAM memory cell.

Definition 2.1. The memory cell is the basic storage element and stores
1-bit of information.

Definition 2.2. Programming is the act of writing data to or changing the
state of a memory cell.

11

2.2. Memory Stores

Figure 2.1: The Structure of a MOSFET. Reproduced from MOSFET Struc-
ture by Brews Ohare, available under the Creative Commons Attribution-
Share Alike 3.0 Unported at https://commons.wikimedia.org/wiki/File:
MOSFET_Structure.png

(a) p-type Enhancement-type MOSFET

(b) Channel Formation for p-type MOSFET

Figure 2.2: Conduction Channel Formation in a p-type MOSFET. Repro-
duced from MOSFET Functioning Body by Sketerpot (derivative work),
from original work by Olivier Deleage and Peter Scott, available under
the Creative Commons Attribution-Share Alike 3.0 Unported at https:

//commons.wikimedia.org/wiki/File:MOSFET_functioning.svg

12

https://commons.wikimedia.org/wiki/File:MOSFET_Structure.png
https://commons.wikimedia.org/wiki/File:MOSFET_Structure.png
https://commons.wikimedia.org/wiki/File:MOSFET_functioning.svg
https://commons.wikimedia.org/wiki/File:MOSFET_functioning.svg

2.2. Memory Stores

SRAM is based on the metal-oxide semiconductor field effect transistor
and is used in almost every modern computing device utilizing CMOS
technology. The MOSFET is a power efficient transistor device that can
allow current to flow through the device based on a control signal. While
available in two different formats, memory cells are constructed using an
enhancement-type MOSFET, which when not powered will have a very high
resistance and thus not conduct current when in the off state [BN92, p.231].
Figure 2.1 shows the typical construction of a p-type enhancement-type
MOSFET. The device is constructed of a p-type semiconductor substrate
with two n-doped regions that form the drain (D) which is the entry point
for conventional current and the source (S) which is the exit point for
conventional current. Over top of the p-type substrate and the source and
drain is placed a high dielectric insulating layer on which the control gate
(CG) is placed. When no voltage is present on the gate relative to the
source (Figure 2.2a), the p-type substrate between the source and drain is
impervious to current flow. Once a bias voltage is placed on the control gate
relative to the voltage at the source gate (Figure 2.2b), an electric field is
created between the p-type substrate and the control gate. The presence
of the electric field creates a depletion zone beneath the control gate and
insulating layer in the p-type substrate. The size of the depletion zone is
dependent on the voltage potential present at the control gate and once
the voltage reaches a prescribed threshold, the depletion zone will form a
conduction channel between the source and drain. While acting like an
electronically controlled switch, the MOSFET is essentially an analogue
device such that the voltage placed on the control gate will regulate the
flow of current between the source and drain of the device. While there is a
minimum threshold voltage required to create the conduction channel, once
it has been established applying a greater voltage will increase the size of the
channel and allow more current to flow. In SRAM, a flip-flop memory cell is
constructed with a group of MOSFETs such that a bit of data can be stored
in the structure (Figure 2.2). The memory cell requires two control lines in
order to read or write data, typically presented in a two dimensional matrix
(row and column) format. The word (or address) (WL) line is used to couple
a given cell to a bit line (BL) which is used to sense the state of the cell.
This is accomplished by connecting the word line to the control gate of the
output MOSFETs and the bit line to the source of the same MOSFET. If
a logic ‘1’ is present in the cell, current will flow to the bit line, inducing a
voltage that can then be read [Sta13, pp. 162-163]. While a power efficient
structure, the major drawback to the structure is that power is constantly
required for data persistence. As soon as power is lost, the data stored in

13

2.2. Memory Stores

Figure 2.3: Static RAM Memory Cell

the system will be lost.
To address the issue of data persistence for systems that require long

term stability with uncertain power, SRAM can be continuously powered
by either an external or internal battery enabling the state to be retained
even while the host processor is off. This technology is still in use today in
computer BIOS and is available as a discrete memory component for use
with embedded systems and is refereed to as battery backed-up SRAM or
NVSRAM (non-volatile SRAM). While interactions with battery backed-up
SRAM are straightforward and transparent, numerous drawbacks exist with
the technology, most notable being the fact that if the battery were to
fail, data would be lost. Additional challenges limit its implementation in
embedded systems due to the high cost compared to other technologies.

While generally suitable for applications where power conservation or size
was not an issue, battery backed-up SRAM is not suitable for most embedded
computing applications. As a result, research investigated utilizing a class of
memory called NVRAM, enabled by a technology called the floating gate
MOSFET which has a similar architecture to the MOSFET used in SRAM.
Unlike the MOSFET, the floating gate MOSFET can encode a persistent
state for a long period of time without the requirement that it be continually
powered.

Definition 2.3. NVRAM is a memory device that exhibits read and write
characteristics similar to other RAM devices, but maintains a degree of
persistence with respect to the power state of the device. If the power is
removed from an NVRAM device, the data that is stored in the device will
not be immediately lost as it is with SRAM.

While a broad category, NVRAM generally includes electronically erasable

14

2.2. Memory Stores

and re-writable devices also known as electrically erasable and programmable
read only memory (EEPROM). While a misnomer, as the devices can be
erased and re-written like RAM, the name has persisted; Stalling points out
that historically the memories have been mostly read-only [Sta13, p.164].

(a) Configuration of the Floating Gate MOS-
FET

(b) Comparison of the MOSFET and Floating
Gate MOSFET Schematic

(c) Floating Gate MOSFET
Memory Cell

Figure 2.4: Floating Gate MOSFET Configurations

The floating gate MOSFET was first proposed by Kahng and Sze [KS67]
as a device suitable to form a memory cell in 1967. The device is very
similar in construction to the MOSFET but introduces a fourth gate into the
architecture called the Floating Gate (FG) (Figure 2.4a). The floating gate is
located between the control gate and the channel substrate. It is electrically
isolated from all other parts of the circuit and acts as a barrier between
the control gate and the channel substrate. The floating gate MOSFET
is schematically different from the MOSFET with an additional line being

15

2.2. Memory Stores

(a) Presence of Charge Present on a Float-
ing Gate MOSFET

(b) Absence of Charge on a Floating Gate
MOSFET

Figure 2.5: Impact on Charge on a Floating Gate MOSFET

added to the image between the control gate and substrate (Figure 2.4b).
Due to the property of the floating gate being electrically isolated from other
components of the device, it has the unique ability to hold charge for long
periods of time (years to 10’s of years) [BCMV03] but will overtime dissipate
charge and loose the data encoded in the device [SCKS08].

When a charge is present on the floating gate, it will block the electric field
from the control gate which is normally capacitively coupled to the channel
substrate preventing the formation of the conduction channel [BCMV03].
Unfortunately, it is not a binary effect; the charge level present on the floating
gate modifies the threshold voltage needed to be induced on the control
gate in order to form a conduction channel [BCMV03]. This characteristic
is used to form the basic element of NVRAM memory cell. Consider the
circuit in Figure 2.4c. If charge is present in the float gate (Figure 2.5a)
when the word line is activated to read from the cell, the bit line will not see
a current flow which is interpreted as a logic ‘0’ [BCMV03, CMMS08]. This
is due to the fact that the electric field from the control gate to the channel
substrate is being shielded by the floating gate. If no charge is present when
a voltage is induced at the control gate (Figure 2.5b), a conduction channel
will be formed allowing for current to flow which is interpreted as a logic
‘1’[BCMV03, CMMS08]. While the readability of the device is similar to
other memories, technical challenges exist with writes and erases on the
device as charges need to be introduced or removed from the electrically
isolated floating gate [BCMV03, CMMS08, MMR08a, MMR08b] which is
the fundamental difference between the non-volatile technologies utilizing

16

2.2. Memory Stores

floating gate MOSFETs and other technologies. Additionally, different
configurations of the floating gate MOSFET utilize different sensing methods
for determining current flow. In Section 2.2.1 and 2.2.2 the different methods
will be introduced as they relate to the specific architecture.

With the floating gate MOSFET architecture, erasure is accomplished
using Fowler Nordheim (FN) tunnelling [BCMV03, CMMS08] which in-
volves applying a strong electric field between the source and control gate.
This generates a quantum mechanical tunnel through the oxide insulation
layer through which the electrons trapped in the floating gate can be re-
moved [BCMV03]. As Bez et al. [BCMV03] note, the advantage of this
method is that large tunnelling currents can be applied without destroying
the dielectric properties of the insulator. The induced voltage difference
needs to be on the order of 18 V [CMMS08] which can not be typically
generated from the low supply voltages normally used with memory devices.
The voltage levels are generated with on-chip charge pumps, which represents
a significant source of power consumption in the overall operation of any
floating gate MOSFET device.

One significant limitation with all floating gate MOSFET devices is the
accumulation of charge over time in the electrically isolated floating gate.
With continual erase cycles over time, charge builds up on the floating gate
affecting the forward threshold voltage required at the gate, which impacts
the devices ability to conduct current. As a result, the device will eventually
become stuck in a non-conducting state.

2.2.1 EEPROM

The first true non-volatile readable and programmable memory was
developed by George Perlegos at Intel in 1978 [Ros02]. Unlike battery
backed memories, this technology required no internal or external battery to
maintain state and was called an Electrically Erasable Programmable ROM
and was based on the floating gate MOSFET. While it still had limitations in
terms of capacity due to the architecture and high voltage requirements for
erasing [Ros02], it was a significant step in data persistence technologies. A
microprocessor could have a small attached non-volatile storage that had no
mechanical parts, low power consumption compared to previous technologies
and eliminated the risk of accidental battery failure leading to unwanted
data loss. This technology became so pervasive that it ushered in a new
class of microprocessors during the early 1990’s that allowed quick in-circuit
reprogramming. This was a significant step forward as up until this point
processor memories required erasure through exposure to ultraviolet radiation

17

2.2. Memory Stores

which required external hardware [DB07] and took a lengthy period of time.
Two distinct types of electrically erasable and programmable ROM’s are
available [DB07]. The first is EEPROM which groups memory cells into
blocks for erasures. The second is E2PROM , which is byte erasable. With
both types of memories, writes must be preceded with an erase operation
leading to a two step process to update a value in memory. The target
location must first be erased before it can be written which is common to all
floating gate MOSFET based memories. EEPROM uses FN tunnelling for
both the reading and writing process [BCMV03].

2.2.2 Flash

Flash memory is a type of electronically erasable and reprogrammable
read only memory EEPROM [DB07] that was invented by Dr. Fuji Masuoka
in 1980 [KRKC11]. It is considered to be a low power consumer compared
to other EEPROM technologies and is shock resistant, small in footprint and
has a data persistence period greater than 10 years [Atm04, Inc08]. It offers
increased capacity and speed in addition to lower energy usage [MDGS06,
ZYLK+05] when compared to other types of solid state devices making
it particularly attractive for energy constrained devices such as wireless
sensor nodes and embedded microprocessor systems. Similar to EEPROM
technologies, it uses the floating gate MOSFET as the fundamental element
for a memory cell.

Flash is available in two distinct types: NOR and NAND configurations.
While both share common characteristics, the physical implementation of
each type is very different and offers different performance benefits. NOR
flash was first commercialized by Intel in 1988 [KRKC11] and initially offered
read and write units of one byte. The cell size for NOR flash is 2.5x larger
than NAND [SCKS08] due to additional circuitry required for reading the
state of cells. It is considered to be suitable and well designed for applications
that require random access to data but due to its larger cell size, NOR was
not initially adopted as a suitable candidate for read/write storage [DZ11].
The evolution of NOR flash is now increasing its suitability as a storage
candidate. It is now commonly available in page oriented fashion similar to
NAND flash [Ade15, Atm04, Inc08]. NOR flash is the most popular format
for embedded devices [ZSI11], being found in millions of embedded devices.
NOR flash is typically less dense and less energy efficient but is available in
either a parallel or serial access format [MDGS06]. The majority of research
with NOR flash has focused on parallel versions which have traditionally
been used for code images and not run-time data storage. It offers other

18

2.2. Memory Stores

(a) NOR Flash Memory Cell
Alignment

(b) NAND Flash Memory
Cell Alignment

Figure 2.6: Memory Cell Alignment for NOR and NAND Flash Structure

advantages in terms of device organization as it may be byte, word or page
orientated.

NAND flash is the most commonly found format [ZBT09], and is char-
acterized by fast access for sequential byte access and high density and
durability. However, it exhibits high latency in start up and can be prone
to bit errors due to the physical cell interconnects and architecture leading
to increased operational complexity. Data is only accessible in a page for-
mat [MDGS06, ZYLK+05] which limits the types of read and write actions.
NAND flash is typically accessed in a parallel fashion, requiring a high pin
count commitment from the host processor which makes it unsuitable for
small, low pin count devices.

At the most basic level, flash memory consists of memory units called
cells that will encode a bit or bits of information depending on the fabrication
technique used. Due to the electronic design of flash memory, an erase cell
will have the state of a logic ‘1’. When programmed, the cell value will
be set to a logic ‘0’ [MCO08, p.29]. The cells are connected together in
matrix using the wording line for addressing and the bit line for sensing,
allowing the encoding of data as a byte. The most significant difference
between the architecture of NOR and NAND flash is how the state of a
cell is determined [BCMV03][MCO08, p.30] as shown in Figure 2.6. With
the NOR architecture (Figure 2.6a) each element in the matrix has its
control gate connected to the word line and the bit line connected to the
drain [BCMV03, MMR08b]. This allows the matrix to address a single
element in the memory array without disturbing any other element. NAND
flash shares a similar configuration in terms of the word line which is used to

19

2.2. Memory Stores

Figure 2.7: Block scheme of a circuit used to compare two currents, used
for reading for NOR flash. Reproduced from Memories in Wireless Systems,
Nonvolatile Memories: NOR vs. NAND Architectures, 2008, p. 31, Crippa,
L., Micheloni, R., Motta, I. and Sangalli, c©Springer-Verlag Berlin Heidelberg
2008 “With permission of Springer”

activate the control gate of the element or elements being read. The single
largest difference in the architecture difference between NAND and NOR is
how the bit line is connected. Unlike in NOR memory, the source and drains
of the memory cells in NAND flash are linked together (Figure 2.6b) in a
daisy chain fashion where the source of one gate is connected to the drain of
the next [BCMV03, MMR08a].

The method by which the state of a NOR cell is determined is very
different from the method by which the state of a NAND cell is determined
and leads to a significant size difference between the two architectures.
The NOR architecture uses a voltage and current comparator to measure
the state of a cell (Figure 2.7) were MMAT is the matrix cell being read
and MREF is a reference cell used for comparison. To read a cell, the
corresponding word line for the cell being testing is activated. If there is
no charge present on the floating gate, a current in the order of microamps
will flow [BCMV03]. The output from the bit line is passed through a
current to voltage converter [CMMS08] which converts the current flow into
a corresponding voltage. This is done to simplify measurement techniques
and results in a system that can use a well understood voltage comparator
circuit known as a sense amplifier [MMR08b]. The value is measured against
the output from the reference cell which will compare the two voltage levels
using a differential comparison method and generate a voltage that will
correspond to the logic level stored in the cell. On modern NOR flash
memories, this technique is robust and fast with read times in the order of

20

2.2. Memory Stores

Figure 2.8: Read circuit for NAND-architecture flash memories. Reproduced
from Memories in Wireless Systems, Nonvolatile Memories: NOR vs. NAND
Architectures, 2008, p. 37, Crippa, L., Micheloni, R., Motta, I. and Sangalli,
c©Springer-Verlag Berlin Heidelberg 2008 “With permission of Springer”

10 to 20 nanoseconds [CMMS08, p.33]
In the configuration of the NAND architecture where cells are connected

in series [CMMS08] unlike NOR flash were one specific cell can be targeted.
The value of the cell being read must be disambiguated from the remaining
cells in the chain. In addition to correctly selecting the word line for a cell,
each group of cells contain a switching device that will connect the group
to the bit line being tested. The remaining cells not being read need to
be biased so a sense current can flow through the target cell (Figure 2.8).
This is accomplished by driving the word lines on the remaining cells in the
group past the conduction threshold voltage such that each cell will conduct
regardless of the charge level on the floating gate, thus effectively rendering
the devices as pass through transistors [CMMS08, p.34][MMR08a, p.86].

A read in NAND flash is accomplished through the measurement of
parasitic capacitance [MMR08a, p.87] and charge integration [MMR08a,
p.89], unlike NOR flash were current is directly measured. In addition to
biasing the other gates in the chain correctly, the bit line is pre-charged
before the read which represents a very power intensive operation [MMR08a,
p.87]. In order to evaluate the state of the target cell, the charged bit line
is allowed to dissipate through the string of over biased cells to the cell
under evaluation during what is called the evaluation phase. If there is a
charge on the floating gate of the target cell, the charge on the bit line will
remain constant whereas if there is no charge on the floating gate, the cell
will absorb charge causing the bit line charge to decrease which will impact
the bit line voltage with respect to time. After a fixed amount of time, the
bit line voltage is measured and used to determine the state of the target

21

2.2. Memory Stores

cell [MMR08a, pp.87-89][CMMS08, pp. 35-37]. This technique is more prone
to errors and spurious effects as the current encountered with reads in NAND
flash are very small (typically 200 nanoamps) [CMMS08, p.36]. Due to the
very small currents used for read operations, NAND flash cannot use the
differential comparator used in NOR flash. Once the evaluation phase has
been completed, the voltage level is latched in volatile memory structure
(Figure 4.1b), which can then be read out.

Both methods are not without there positive and negative attributes.
While the NAND flash read configuration results in a smaller physical
footprint, it offers some draw backs in terms of timing. In an effort to be
cognizant with respect to peak current capacity, the bit line pre-charge is
typically 2 to 6 microseconds [CMMS08, p.35] with the evaluation phase
typically being between 5 and 10 microseconds [CMMS08, p.36].

While based on the same core memory cell, NAND and NOR flash are pro-
grammed using different techniques [MMR08a] that accounts for a fundamen-
tal difference in operation. With NAND flash, programming is accomplished
using Fowler-Nordheim tunnelling which is a quantum-effect electron tunnel
generated in the presence of a strong electric field [MMR08a]. A channel
tunnel is created when an electric field is generated between the substrate
and control gate to overcome the potential barrier of the insulating oxide.
This allows electrons to pass into the floating gate [CMMS08, MMR08a].
The level of charge that can be induced onto the floating gate is proportional
to the strength of the electric field generated. As a result, it is necessary
to have a high voltage source to generate the strong electric field which
improves programming performance [CMMS08] but presents a challenge in
terms of available power. The shortcomings with the method is that the
programming time is considerably longer than compared to the method
used with NOR flash [Bri97, CMMS08] but overall realizes higher number
of programmed bits per second due to the parallel architecture utilized.
NAND flash memory will also suffer from high voltage induced tunnel oxide
degradation which impacts the overall endurance of the device [CMMS08].
On the plus side, the technique is desirable when a large number of cells
are required to be programmed as it uses very low currents (on the order of
nanoamps) [CMMS08].

Unlike NAND flash, NOR flash is programmed using Channel Hot Electron
(CHE) injection, which involves the generation of an electric field by a
differential voltage between the source and drain [CMMS08]. The electric field
provides enough energy to electrons through a collision mechanism [CMMS08]
such that electrons can freely pass through the oxide layer [BCMV03]. A
traversal electric field is then generated by the application of a voltage to the

22

2.2. Memory Stores

control gate which allows electrons to migrate to the floating gate [CMMS08].
One advantage of the channel hot injection programming method is that it
has a natural termination point due to the fact that as charge accumulates
in the floating gate impacting its electric potential; additional charge will be
less attracted and eventually programming will stop [CMMS08]. Compared
to the per cell programming speed of NAND flash, channel hot injection is
much faster [Bri97, CMMS08], but requires a much larger current. This can
pose a limitation to system resources especially when programming a large
number of cells in parallel. Design restrictions may limit the total current
available and thereby limit the total number of cells that can be programmed
in parallel.

While the programming methods for NAND and NOR flash are different,
both architectures employ a technique called program and verify. It is used
to verify that the correct charge has been induced onto the floating gate
thus creating a specific threshold voltage such that a cell can be considered
programmed [CMMS08]. If the target cells do not reach the correct threshold
voltages, the cells will be successively reprogrammed until the voltages are
correct. If the correct threshold voltage cannot be reached in a given number
of attempts, the system will generate an error that the programming operation
has failed.

Both NAND and NOR flash are erased in the same fashion. Due to
the architectural interconnections of memory cells, they must be erased
in blocks unlike other floating gate MOSFET memory technologies. This
was primarily done to conserve space and lower production cost. The
erase operation is performed using Fowler-Nordheim tunnelling [BCMV03,
MMR08a, MMR08b] where a high voltage is placed across the oxide layer.
This is accomplished by placing a high voltage erase pulse across the entire
block [CMMS08]. This allows the formation of a Fowler-Nordheim tunnel
between the gate and source allowing electrons to be removed from the
floating gate. The removal of the charge buildup in the floating gate now
allows for channel formation when the control gate is activated. One of the
fundamental limitations of flash memory arises from the erase operations.
Over time, the tunnel oxide will break down [CBCF94] leaving residual
charge on the floating gate which will eventually leave the memory cell locked
in one state. Another complication that arises from the charge build up is
that as the device wears the erase time per cell increases leading to a decrease
in performance over the lifetime of the device. In practise, memory devices
utilize complex erase algorithms to minimize this effect [BCMV03, CMMS08].
Both NAND and NOR memories utilize an erase verification algorithm that
is designed to ensure that block has been erased correctly, but due to

23

2.2. Memory Stores

the architectural differences between NAND and NOR memories the erase
algorithm involves different operations [CMMS08]. This leads to a significant
difference in erase times between NAND and NOR memories with NOR
flash erase times being three orders of magnitude greater that with NAND
memories [CMMS08, DZ11] due to the increased complexity and steps of the
erase algorithm. This erase time difference can limit the class of applications
a specific memory may be used for [DZ11].

With flash memory there are fundamental challenges that limit the oper-
ation of the device and are due to the methods used for programming and
erasure [Bri97, p.10-12]. Oxide stress and over erasing and programming can
affect long term data retention. Over time, charge starts to build up in the ox-
ide layer of the cell which causes both the required erase and program voltages
to increase with the number of times the device is cycled [CMMS08]. This
is known as tunnel oxide degradation [BCMV03, CCS+07]. In NOR flash,
the oxide degradation creates a “erase threshold window closer” [BCMV03]
where the voltage window between the erased and program states narrows.
In practise, the internal controller accommodates for this which results in
increasing programming and erase times as the device ages.

In an effort to increase the storage capacity per unit area of flash memory
cells without having to shrink the size of the memory cell, a single cell can
be used to encode more than one state of data. A cell that encodes only
one bit of data is called a Single-Level-Cell (SLC) whereas a cell that stores
more than one bit of information is called a Multi-Level-Cell (MLC) [DZ11].
A MLC increases the density of a cell by varying the charge level on the
floating gate to represent different bit states. This significantly increases the
complexity of the read circuitry as the system must now not only determine
the presence or absence of a current flow but now must interpret what the
value is to determine the value encoded by the cell [BCMV03]. With this
technique, a cell can now encode up to 8 different states allowing for 3-bits of
data to be stored [Lev08]. This technique allows MLC flash to have a lower
cost per bit and higher density [Lev08, DZ11] but this is not without cost.
MLC devices have considerable shorter lifespans due to oxide degradation
[Lai08] as well as increased read times. Read and write times for SLC NAND
flash can be on the order of three times faster than with MLC NAND flash
as well as having a considerably lower bit error rate [JKJ+10]. As a result,
SLC technologies have a longer service life, are more robust and faster, but
have a higher cost per density when compared to MLC devices.

Erase operations are slower than other operations on the device and must
occur in physical blocks or sectors, which can pose a memory management
problem for small microprocessors. Each page in the device has a limited

24

2.2. Memory Stores

Figure 2.9: Flash Memory Functional Block Diagram [Des10]

number of erase cycles (typically 100,000) before the device starts to fail. A
wear levelling algorithm [KNM95] can be used to amortize the cost of the
write/erase cycle across all pages to extend the effective life of the device.
Other devices maintain adjacent block erase/write restrictions which limits
the difference in erasures (from a time perspective) forcing the need for
periodic consecutive block erases [Atm04].

Flash memory groups cells into minimum read/write units called pages.
Figure 2.9 shows the general organization layout of flash memory. Confusion
is commonly generated by authors also referring to the minimum unit of
readable or writable data as a sector due to the fact that some manufacturers
use the term sector differently. Additional confusion is encountered as file
systems will also use sector to refer to the minimum unit of transmutable
data on rotating magnetic disk [Sta13]. In this discussion, the term page will
be used explicitly to refer to the minimum transmutable unit of data in flash
memory.

Definition 2.4. A page is a physical sequence of bytes in memory that share
a common page address and is the smallest unit of data that can be written
or read in the flash architecture. [CPP+09].

In addition to the main memory area of a page, which utilizes a 2n base
addressing scheme, a page contains limited additional memory which can be
used to store meta-information or error correction codes. This area is called
the out of bounds area (OOB) and is typically not used to store data. With
some NAND flash devices, the OOB area have the ability to support partial
rewrites, where the OOB area is broken into smaller subsections. This allows

25

2.2. Memory Stores

Figure 2.10: Flash Page Organization

for the OOB area for a single page to be re-written a limited number of times
before having to be erased [Inc06]. The characteristic is called Partial-Page
Programming (PPP).

Definition 2.5. Partial-page programming allows a single NAND flash page
to accommodate a limited number of write operations to distinct sub-divisions
of a page before the page is required to be erased.

Partial page programming does not allow previously written areas to
be re-written, but allows sections of a page to be written in isolation. The
number of sections is limited and this features is not available in all NAND
flash devices [Inc06].

Pages are grouped into blocks. A block is the minimum erasable unit
and can be identified with a physical block number. That is, if you wish to
erase the contents of a specific single page, the entire block that the page is
a member of must be erased.

Definition 2.6. A block is a contiguous set of pages in flash memory and is
manufacturer dependent. A block is the minimum unit of erasable data in a
flash device [CPP+09].

Depending on the specific implementation, a block many contain nu-
merous pages and the size of a block (in terms of the number of pages
contained within one block) depends on the device specifications set forth

26

2.2. Memory Stores

Figure 2.11: Architecture of a NAND Flash Memory [Des10, DZ11]

Figure 2.12: Dual Buffer Serial Dataflash

27

2.2. Memory Stores

by the manufacturer. As a result, the size of the block is not universally
consistent. There are notable exceptions to this rule. With the Atmel/Adesto
Dataflash [Atm04, Ade15], the device can also be erased at a page level (for
a significantly higher cost in terms of energy and time).

Data in flash memory cannot be directly read or written under normal
circumstances. All data movement occurs through an on board SRAM buffer
that is used to shadow a page of flash (Figure 2.11). In order to read data,
the host requires that the flash memory move the desired page into the
page buffer due to the page alignment configuration. Once the page has
been moved successfully into the buffer, the host can request the data be
transferred from the device. Conversely, when a page is to be updated the
entire page must be copied into the buffer, updated and then written back
into an erased page due to the erase before write requirement.

The constraint of data movement into and out of the buffer introduces
latency and complexity into read and write operations. To address theses
limitations, Atmel [Atm04] introduced a dual buffer NOR-based Dataflash
(Figure 2.12) which introduces a second buffer into the architecture. The
configuration reduces latency by allowing concurrent non-overlapping opera-
tions to occur. For example, a page from main memory can be transferred
to one of the buffers while the host reads live data from the other. Pages
in one buffer can also be written concurrently while reading data from the
second buffer. The architecture also introduces a direct read option due to
the NOR configuration. This unique operation allows a data stream to be
directly read from the flash memory without disturbing the data held in the
buffers which presents a significant performance advantage for this memory
for read intensive applications. In a performance analysis comparing the
cost in terms of read latency between buffered and direct reads, Fazackerley
and Lawrence [FL11] demonstrate that even for the smallest readable data
element direct reads will always out perform buffered reads. This is due to
the setup and transfer time of moving data from a flash page to one of the
internal buffers.

Limitations of Flash Memory

While flash memory is low cost and relatively robust, it presents some
unique challenges: it has a finite erase/write count as well as not supporting
in-place updates. Attempts to mitigate these issues are done through write
normalization and wear levelling in an effort to evenly distribute erase and
writes uniformly across the entire device. Use of flash memory without
the use of wear levelling or other erase/write normalization strategies can

28

2.2. Memory Stores

accelerate device failure [FL11]. While there are numerous strategies for
flash management that present novel and efficient methods for storing the
data, they all rely on extensive sensor processor resources in terms of RAM
or EEPROM which limits their practical use. Additionally, the strategies
are targeted for parallel NAND flash and will not transfer well in terms of
performance to serial NOR flash.

As with any technology, there are trade-offs in terms of cost, performance
and usability. As pages in flash memory degrade over a series of erases and
has a finite lifetime they will eventually not be able to reliably encode data.
At this point, the page is considered to have failed. It is up to the host
system to track the consistency of data or erase cycles to plan for eventual
failure. Some devices offer read back after write verification to check for
consistency [Atm04]. To ensure that a device ages uniformly, efforts are
made to write and erase pages uniformly across the device. In order to
accomplish this, host systems utilize wear levelling algorithms (WL) that
introduce additional overhead into device operations [KRKC11]. Typically
the wear levelling algorithm is transparent to the user and ensures that data
writes are spread evenly across the device.

In addition to wearability, flash memory suffers from asymmetric read
and write costs. Typically, write times will be orders of magnitude longer
than read times. From an implementation perspective, this is different from
other storage media such as rotating media which generally is symmetric in
terms of performance. Another significant difference from rotating media,
is that a unit of data cannot be permuted in place. Before data can be
written to flash memory, the target cell must be erased. This is referred
to as erase before write constraint [CPP+09]. The erase costs (in terms of
time and energy) are more expensive than other operations. Additionally,
most architectures require that data be erased in blocks which introduces
additional complexity from a management perspective [AB99] and limits its
usability as a drop in replacement for other memory types.

Another effort to increase the density and performance of devices is the
large block device but introduces further restrictions. A large block device
may have page sizes in the order of 2 kB with 64 pages per block [Ele06].
With a large block device, pages within a single block are required to be
programmed in sequential order [JKJ+10] to minimize the risk of write
disturb errors of adjacent memory cells, they do not allow for random page
programming [Ele06]. The implication of this is significant as it means that
if page 20 of a 64 page block needs to be programmed, pages 0 through 19
need to be programmed in advance of page 20. While this technology does
increase the capacity of the device, it does introduce challenges for utilizing

29

2.2. Memory Stores

the technology on devices that have limited SRAM memory in terms of data
management and buffering.

2.2.3 Other Storage Technologies

Recent investigations have made significant gains in newer memory tech-
nologies that address the limitations of previous generations of NVRAM.
Ferroelectric RAM (FRAM) has started to gain some inroads for some
applications due to its very high endurance (1010 to 1012 read/write cy-
cles [Lim11, Ram12]), low power and fast write times. Unlike flash memory,
it does not require a memory location to be erased before being written and
is byte addressable. Unfortunately, device capacity is still relatively low (8
kB) [Lim11, Ram12] with a high cost per byte compared to flash memory
technologies.

Another alternative NVRAM on the emerging horizon is the magnetore-
sistive RAM (MRAM). It has been speculated that MRAM is a promising
replacement for Flash memory as a universal memory [Ake05]. Different
from most other memory devices that encode binary information through
charge levels, MRAM utilizes magnetic storage cells. One of its desirable
features is that it has infinite endurance and will not fail through use like with
EEPROM based technologies. Due to the physical architecture and methods
of operation, MRAM can operate at high speeds, has symmetric read/write
costs, a long data retention period and is a byte addressable [Tec15]. It
appears to combine the best characteristics of SRAM and Flash memory
technologies but has not seen a high adoption level. The largest drawback is
that capacities are still low [Tec15] when compared to other viable candidates
as well as having a high per bit cost for storage. Eventually, MRAM may
find its place but until the capacity increases and cost decreases, its adoption
rate will be low.

Other recent works have examined utilizing phase-change memory as
a component of a non-volatile solution [KLCB08, PKCH10, PPP11]. This
technology is different from other non-volatile storage media which encode
information electrically or magnetically. It relies on a physical change in state
of the memory matrix to encode information [SKF+10] leading to stable,
long term storage. It is a byte addressable technology that does not require
erase-before-write as with flash memory technologies [ea04, KK04]. PRAM’s
inherent stability, and high endurance [Inc05] would seem to make this emerg-
ing technology desirable for use as a replacement for flash memory [KLCB08];
claims have also been made that significant power savings can be made over
flash memory technologies [Bar08] but in reality, currently available devices

30

2.2. Memory Stores

show substantially higher current draws [Inc05] when compared to other
technologies [Inc08, Atm04, Ele05]. To further confound this claim, devices
demonstrate instability and propensity for data loss at moderately high
temperatures and have a considerably smaller operating window than other
devices [PRP+04], limiting its use for harsh environments. PRAM’s low
density, write performance and cost [KLCB08] has lead to a slow adoption
rate for use in embedded applications.

As a result of the limitations with other non-volatile memory technologies,
flash memory has emerged as the predominant replacement for previous
NVRAM technologies [SCKS08] as it offers a cost effective, relatively robust,
flexible and energy efficient storage media for embedded systems [BCMV03]
but still requires a storage strategy to ensure that data will be consistent.

Table 2.1 compares and contrasts the different memory options that are
available as memory storage options for embedded systems. The remainder
of this work focuses on the use of flash memory and supporting operations
that allow for robust data storage with flash media. Section 3 will further
expand on the limitations of flash memory in general purpose computing
systems, the differences between flash memory and traditional storage media
and translation strategies for flash memories.

31

2.2. Memory Stores

Table 2.1: A Comparison of Memory Stores for Embedded Systems.

Memory
Type

Pros Cons Cost/Byte
Read/Write

Speeds

SRAM

Fast. Values stored as long as
device is powered. Byte

erasable. Erase-before-write
not required.

Non-persistent. Low density.
Cost.

High Symmetric

NVRAM

Performance similar to
SRAM. Byte erasable.
Erase-before-write not
required. Operates like

SRAM.

Requires continual backup
power to prevent loss of data.

Cost.
High Symmetric

EEPROM
Byte programmable. Low

power consumption.

Erase-before-write required.
Low density. Block erase

required.
Medium

Asymmetric
read/write

E2PROM
Byte programmable. Byte

erasable. Low power
consumption.

Erase-before-write required.
Low density

Medium
Asymmetric
read/write

NOR
Flash

Medium density. ECC not
required.

Erase/write endurance.
Requires flash management

strategy due to
erase-before-write constraints.

Single bytes not erasable
(erase blocks required).

Medium-
low

Asymmetric
read/write

NAND
Flash

High density. Low current
requirements.

Erase/write endurance.
Requires flash management

strategy due to
erase-before-write constraints.
Page addressable. Requires

ECC. Suffers from write
disturb. Single bytes not

erasable (erase blocks
required).

Low
Asymmetric
read/write

FRAM

High endurance. Low power
requirements. Fast write

times. Erase-before-write not
required. Device only requires

power during read/write
operations.

Low density. High cost.
Destructive reads. Requires

rewriting after reads.
High Fast writes

MRAM
Infinite endurance. Long data
retention period. Symmetric

read/write speeds.
Low density. High cost. High

Symmetric
read/write

PRAM

High stability and endurance.
Byte addressable.

Erase-before-write not
required.

Limited temperature
operating window. High

temperature exposure leads to
data loss. Low density.

High
Asymmetric
read/write

32

Chapter 3

Data Persistence Strategies

The beginning of knowledge is
the discovery of something we do
not understand.

Frank Herbert - Dune
(1920 - 1986)

3.1 Data Management Strategies

Numerous challenges exist using a flash based memory strategy for data
persistence in an embedded system.With flash memory, data cannot be
mutated in-place. The data must be first copied out along with all other
data in the same block at which point the block erased.

Definition 3.1. A block of pages that have been selected for erasure is
called a victim block.

Once the block is erased, the page can be re-written to the same physical
location along with the unchanged pages. This limitation is referred to as
the erase before write constraint.

Definition 3.2. The limitation that a flash page must be erased before data
can be re-written to the same physical location is called erase-before-write.

Second, flash memory has significant asymmetric read and write costs
both in terms of the total time for the operation to complete and the amount
of energy required for the operation. The behaviour of erase before write gen-
erally causes significant challenges for traditional file systems such as FAT16
or FAT32, NTFS, and ext3 among others. This is because the write behaviour
is drastically different from rotating magnetic media [PH12, p.581] as a write
operation now becomes two distinct operations. Two approaches had been
suggested to deal with this challenge [CPP+09, ZYWY09, KRKC11]. The
first approach is to use a flash aware file system that has been specifically

33

3.2. Flash Aware File Systems

designed to accommodate and exploit flash device attributes. Flash aware
files systems will be further expanded on in Section 3.2. The second approach
is to use the aforementioned translation layer to act as an intermediary be-
tween the physical device and the service or application requiring the use
of storage (being either a file system or direct application requiring raw
device access). This address translation is referred to as a Flash Translation
Layer (FTL). This layer is responsible for swizzling data addressed as it is
physically relocated. The FTL is further discussed in Section 3.3. Regardless
of the strategy used, flash-based memory technologies must utilize an ad-
dress translation scheme and a write normalization strategy to be considered
functionally useful [MFL11].

Block erasure can cause significant management issues for the host system
as other pages in the target block may contain data that is currently being
used by the system. Pages containing active data are referred to as live
pages.

Definition 3.3. A live page is a page that contains data that is currently
being used by the host system.

Before an erase can proceed on a block with live pages, the data needs
to be copied out to prevent loss. The management of this process and the
act of copying introduces significant overhead into the process of re-writing
in-place. As an alternate strategy, instead of writing the page back to the
same physical location, the page could be written to an already cleared area
leaving the remaining pages in the original block unperturbed.

When a page is physically moved, management challenges are introduced
into the system using the data if physical data referentiality is being used. To
combat this potential problem, services or applications on the host will refer
to data through a translation interface that will offer a logical address. The
interface will manage the mapping between the supplied logical address and
the physical (on the device) address of the data page allowing for maintenance
of referential integrity while being transparent to the user.

3.2 Flash Aware File Systems

In general, most file systems assume that data can be mutated in-place
which introduces significant challenges for flash memory. For file systems to
interact in a more favourable fashion with flash memory, focus has shifted to
file system architectures that do not use in-place updates. Section 3.2.1 will
discuss the evolution of file system for hard disk drives that do not rely on

34

3.2. Flash Aware File Systems

Figure 3.1: Rotating Magnetic Hard Disk Drive

in-place updates. Section 3.2.2 examines current trends for flash specific file
systems.

3.2.1 Log Based File Systems

The most common data store for general purpose computing is the rotat-
ing magnetic drive [Sta13] and is commonly found in most non-embedded
computing applications. The most commonly available hard disk drive used
today was developed by IBM in 1973 [AF02] and is referred to as the Winch-
ester drive. It was a significant developmental milestone as it introduced the
concept of a low mass flying magnetic head that was able to move across
the magnetizable platters to different locations under servo control which
is now the defacto standard for all rotation magnetic media [Sta13]. The
rotating magnetic drive consists of a series of rotating platters coated with a
magnetizable substrate that allows the surface to magnetized using a record-
ing head. In order to store a bit of data to the platter, the head induces a
magnetic field onto the patter at a given location; the absence of a magnetic
field is used to record a 0 bit. Hard disk platters are physically partitioned
into concentric circles called tracks (Figure 3.1) separated by gaps, which
allows that hard disk head to move to a certain position and read data from
the track moving under the head. The track is further divided into blocks
or sectors. The gaps between sectors and tracks play a critical role in data
access as it allows for alignment and timing for data.

Definition 3.4. The sector or block is the minimal readable or writable
unit of data for a rotating magnetic hard disk drive [Sta13].

A hard disk manufacturer will define a sector and track size for a device,

35

3.2. Flash Aware File Systems

and the internal control circuitry for the disk will be responsible for moving
the head to the requested position. When reading or writing data to or from
the disk, two operations are required. First, the internal control circuitry will
move the head to the correct physical track on the drive and the associated
time is referred to as the seek time.

Definition 3.5. The seek time is the time it takes for the read head to
move from its current track to the target track as specified by the hard disk
controller.

In the best case, the head will not have to move as it may already be on
the correct track; in the worst case, the head will have to move from the
inner most track to the outer most track. Once the head has been moved
to the correct track, the controller must wait for the correct sector to pass
under the head such that the data can be then written or read from the
device.

Definition 3.6. The rotational latency is defined as the time it takes for the
target sector to move under the read/write head. It is frequently expressed as
the average rotational latency and computed as the time it takes for one-half
a rotation.

This action introduces significant latency into the system and is one of
the most significant limitations of the technology. The delay incurred from
the combined rotational latency and seek time is referred to as the disk access
time and is a significant motivator in the move to non-mechanical storage
solutions.

As a result of the high cost of mechanical movements in the system,
numerous files systems have been developed in an effort to improve logical
and physical data layout on the drive such that access times are minimized
File systems will allocate adjacent sectors into a logical groups reserved for
a single file to exploit spatial and temporal locality; when data is being
accessed in one sector, the likelihood that adjacent sectors from within the
same track will be accessed at the same time is high [PH12]. If sectors are
physically grouped on the same track, then the access time can be minimized
as a track-to-track seek. The grouping of sectors is referred to as an Extent.

Definition 3.7. An extent is a contiguous area of storage that has been
pre-allocated by a file system. Extents are also known as block runs [Gia99,
p.9] as logical data is allowed to span multiple contiguous physical blocks.

With the formation of extents, file systems attempt to minimize file
fragmentation, where contiguous logical data is written in different sectors

36

3.2. Flash Aware File Systems

Figure 3.2: A Log Structured File System

or tracks leading to high access times when contiguous logical bytes are
being accessed. Extents are especially useful when logical byte streams are
being written to or read from disk as it allows the file system to access
contiguous blocks without having to access a separate track [Gia99, p.16].
Rosenblum and Ousterhout [RO92] first proposed a novel file system to
exploit extent access and thus minimize access times called Sprite-LFS. Their
work proposed a log-structured file system that offered significantly improved
access times over other files systems. It is built on the premise that with
increased memory and cache sizes, large components of files can be stored
in SRAM memory [ODH+85]. The caching of data in memory can be used
to satisfy read requests, allowing disk access patterns to be dominated by
writes [RO92]. With traditional file systems, when a byte is to be written,
the target sector and track is located, the head is moved to the correct track
position and the value is updated in-place as allowed by the re-writable
nature of magnetic media. While efficient in terms of space utilization,
a time penalty is incurred with the access time; if the access pattern for
writes is random in terms of logical location within a file or between files,
the access times can dominate over write times consuming up to 90% of
the total bandwidth [RO92]. While the idea of utilizing a log to improve
file system performance was introduced by Hagmann [Hag87, ea90], these
systems used logging primarily as a support structure for crash recovery
as opposed to focusing on improvements in write speeds [RO92]. With the
log-structured file system, the log was used for a fundamentally different
purpose. With previous works, the log was used as a temporary data store but
Rosenblum and Ousterhout proposed using the log as the primary data store
and maintaining no other structures on disk [RO92]. While a radical design
departure from other file systems, the concept proved to be appropriate for
write intensive applications and offered an order of magnitude improvement
in performance with respect to raw write speeds [RO92].

In a log based file system, all data regardless of whether it is an update to
an existing block or a new block is written to the tail of the log (Figure 3.2).
This allows writes to be made in a continual sequential order without having
to incur unnecessary access times as the head moves to the target block to

37

3.2. Flash Aware File Systems

(a) Sprite-LFS Copy and Compact (b) Sprite LFS Segment Threading

Figure 3.3: Sprite-LFS Space Management Strategies

be updated. As blocks are updated, a version numbering scheme is used to
track the most current version of a block. Sprite-LFS also utilizes fixed sized
extents called segments [RO92] that are composed of numerous blocks. The
file system will buffer writes to disk until it can completely fill a segment
and then writes the complete segment, which can impose significant SRAM
requirements. For optimal performance of the file system, a number of large
free extents must be maintained. As blocks are invalidated in the log due
to multiple updates to the same block, the log will become occupied with
stale data. Beside occupying space, this also leads to segment fragmentation
which impacts performance. To overcome this, the log will periodically
require cleaning to remove any stale blocks with the exception of the most
current block. An operational constraint of Sprite-LFS is that any block
in a segment cannot be rewritten until all live data has been removed. To
deal with this, Sprite-LFS uses two different strategies; the first being a
copy and compact strategy and the second being a segment interleaving
strategy known as a threaded log. When the file system performs a compact
and copy, long lived data is combined into a single segment as shown in
Figure 3.3a. Unfortunately, the copying operations introduce additional
delay. The second strategy used is segment interleaving where the file system
will overwrite or create new segments in areas that are completely stale that
may be located between two active segments. While this does improve space
utilization, Rosenblum and Ousterhout note that this will lead to increased
fragmentation and limits the number of large contiguous writes, eliminating
any advantage of the file system [RO92]. Sprite-LFS uses a combination of
both strategies to ensure that an acceptable number of suitably sized extents
are available, but these processes can negatively impact the performance of
the file system under certain workloads [SBMS93].

While Sprite-LFS introduced improvements in terms of write performance,
limitations before it would be suitable for use in a production environment
include issues with a large memory footprint and write validation issues if

38

3.2. Flash Aware File Systems

disk space was not available [SBMS93]. Regardless, it is considered to be the
foundational work for all log based files systems as well as offering potential
solutions for performance related issues with flash memory.

3.2.2 Logging Based File Systems for Flash

One of the fundamental challenges encountered with the introduction
of Flash technology in secondary storage is that it does not have the same
write properties as rotating magnetic media. While Flash memory does not
suffer from issues of access delay due to the lack of moving parts, they have
a significant limitation when working with files systems that are designed
for devices that re-write in-place. With the inability of flash to re-write
data without first erasing a page, traditional file systems that mutate data
in-place offer challenges both in terms of the amount of time to complete
the operations as well as accelerating the wear on the device and shortening
the service life.

While flash memory does not have the same limitations in terms of
seek and rotational latency that drove the development of the log-base file
system [RO92, SBMS93], Kawaguchi et al. [KNM95] observed that the write
pattern of logging files systems would be compatible with Flash technologies
as they do not rewrite blocks or extents in-place; they only append changes
or additions to the end of the log of disk which is compatible with the
attributes of flash memory. Kawaguchi et al. successfully implemented a
log based file system on flash memory but not without encountering some
limitations in terms of performance with mixed hot and cold data as well
as the impact of cleaning operations on overall performance. Kawaguchi et
al. encountered problems with data consistency as well as suffering from
increased write times as the amount of data being stored increased due to
a decrease in the ratio of valid to invalid blocks. This forced the system to
be engaged in a large number of erase operations with as much as 60% of
the total operations being consumed by writes associated with valid page
movement during erasures [KNM95].

With the use of flash memory in wireless sensor networks, work has focused
on developing file systems that can accommodate its different performance
characteristics. While suitable for general purpose computing, a direct
implementation of these systems on a microprocessor is infeasible due to lack
of system resources [DNH04]. Custom designed file systems such as JFFS,
JFFS2 [Woo01] and YAFFS [LP06], which share a common evolutionary
point with LFS, are not suitable for use in resource constrained systems as
they maintain data structures in RAM for file system control. These flash

39

3.2. Flash Aware File Systems

file systems are designed to work on systems with large amounts of RAM
and processing power.

Smaller systems have evolved from these that are more suitable for
wireless sensor platforms that are constrained in terms of power and resources.
Matchbox [GLvB+03], a byte structured file system implemented in TinyOS,
supports basic wear levelling as well as multiple files. It is designed for logging
applications but supports only append operations making the modification
of existing files not possible. Additionally, its RAM footprint will grow with
the number of files in the system [DNH04].

In [DNH04], the authors present ELF, which is a log based file system. It
relies on the host microprocessor EEPROM to store the directory structure
for the system. Unlike traditional log based file systems, it caches multiple
writes to reduce the write overhead. It maintains log entries on separate
pages to improve fault tolerance. It also maintains a garbage collector to
reclaim pages and relies on a page write counter stored in the metadata of
each page. Garbage collection is only triggered when the number of free
pages drops below a given threshold which is stored as a bitmap in SRAM.
Overall, the SRAM requirements offer limitations in terms of application to
memory constrained devices.

Microhash [ZYLK+05] provides a primitive framework for storing and
indexing temporal data based on page chaining. It maintains numerous
data structures in RAM and utilizes a naive garbage collection strategy. In
practise, the run time RAM requirements make it infeasible for memory
constrained devices [MDC+09].

Capsule is a cross device file system that uses object abstractions to store
data [MDC+09]. If offers a wide selection of data objects such as stacks,
streams and queues to store data but requires a large SRAM footprint. It
relies on per object buffering in microprocessor RAM and is based on a
logging file system. Similar to other systems, it supports a garbage collector
which is triggered when the amount of available space in the system falls
below a certain threshold. It also supports check pointing and rollback of
objects.

In practise, regardless of the features offered by the flash aware file system,
they must manage a logical to physical address translation scheme and write
normalization. Table 3.1 compares and contrasts the features and limitations
for flash aware file systems in addition to highlighting the target computing
platform.

40

3.2.
F

lash
A

w
are

F
ile

S
y
stem

s

Table 3.1: A Comparison of Flash Aware File Systems.

File System Medium Platform Pro Cons

Sprite-LFS
Spindle

Disk
General
purpose

Log based system writes in sequential
order Avoids random in-place writes.

Large SRAM requirements. Unsuitable
for resources constrained systems.

LFS
(Kawaguchi)

Flash
General
purpose

Appends modifications to end of
sequential log.

Mixing of hot and cold data impacts
performance. Operations dominated by

valid page movement during erase
operations. Unsuitable for resources

constrained systems.

JFFS,
JFFS2

Flash
General
purpose

Avoids random in-place writes.
Large RAM requirements. Unsuitable

for resources constrained systems.

YAFFS Flash
General
purpose

Support for large block devices. Data
integrity.

Large RAM requirements. Targeted for
NAND flash. Unsuitable for resources

constrained systems.

Matchbox Flash
Embedded
(TinyOS)

Supports multiple files and basic wear
levelling.

Append only operations. SRAM
footprint grows with number of files in

system.

ELF Flash Embedded

Caches writes. Directory structure
maintained in EEPROM. Maintains
logs on separate pages for improved

fault tolerance.

Large SRAM requirements.

Microhash Flash Embedded Supports indexing for temporal data. Large SRAM requirements.

Capsule Flash Embedded
Provides data abstraction layer.

Supports data objects such as stacks,
streams and queues.

Large SRAM requirements.

41

3.3. Flash Translation Layers

3.3 Flash Translation Layers

Flash translation layers are responsible for providing a mapping scheme
between logical units of data in an application to physical units of data on
a device. Depending on the design of the FTL, there may or may not be a
direct mapping between the logical and physical storage units.

Definition 3.8. A logical page is the smallest read or writable unit of data
from an application or service [ZYWY09, DZ11].

Chung et al. [CPP+09] suggest that the FTL is actually composed of
three components. In addition to the logical to physical mapping, the FTL
also needs to provide wear levelling to ensure uniform wear across the device
which in turn will maximize lifetime due to erase failure. Further, the FTL
needs to handle power off recovery (POR) as the FTL may become corrupt
in the event of a sudden loss of power which is common in embedded systems.
On restart, the FTL needs to recover and ensure that the data on the device
is consistent and available. Deng and Zhou [DZ11] further suggest that a
fourth component should also be included in the FTL which is Garbage
Collection (GC). In the majority of previous works, focus has strictly been
on more efficient storage by minimizing erase operations and thus increasing
the life of the device. The amount of data that is moved between the host in
addition to the amount of energy expended in the operations has not been
considered; both of which are key points of consideration for memory, pin
and power constrained devices.

As pages are relocated through re-writes or wear levelling, old pages are
left un-erased and un-used. If left alone, the device will eventually run out
of erased or free pages. Pages that have been abandoned during this process
are invalid. Pages that contain data are considered to be active, valid or live.

Definition 3.9. A free page is a page that has been erased and does not
contain any data.

Definition 3.10. An invalid page is a page that contains data but is no
longer linked to an application, service or active logical mapping.

Definition 3.11. An active, valid or live page is a page that is involved in
an active mapping and is linked logically to an application or service.

To deal with the issue of increased invalid pages during operation, the
FTL needs to track the state of each page in terms of use (that being free,
active or invalid) through direct or indirect means. When data is moved,

42

3.3. Flash Translation Layers

the original page is marked as invalid through a tracking method. When the
number of invalid pages on the device reaches a given threshold, the FTL will
trigger the garbage collection process. This will in turn erase invalid pages,
converting them back to free pages. In the process of garbage collecting,
valid pages may be sharing a block with invalid pages. In order to prevent
the loss of data during erasure, the valid pages are moved out of the block
being targeted for erase which is also referred to as compaction. Once moved,
the block erasure can proceed.

3.3.1 FTL Taxonomies

In previous works, focus has primarily been on three different styles of
FTLs for NAND flash and how these algorithms can be made as efficient as
possible for that architecture [CPP+09, DZ11]. Little work has focused on
viable FTL algorithms for serial NOR flash and fail to address key concerns
for constrained devices. FTL designs are strongly related to memory cache
strategies and share common design traits with either a fully associative
cache, n-way associative cache or a directed mapped cache [PH12, pp.479-
481]. Using these models, FTLs are generally categorized as page level (fully
associative) mapping technique which provides a high level of granularity
and can be considered to be fully associative, block level (direct mapped)
mapping technique which has a lower degree of granularity and a hybrid
(n-way) mapping level technique which borrows from techniques used in both
page and block mapping schemes. The following sections will examine fully
associative or page level techniques, block level mapping and hybrid mapping
techniques. Each technique offers trade offs in terms of SRAM footprint,
performance and endurance. Performance is gauged by the minimization of
erase operations and the maximization of block usage before erase. Strategies
do not consider the data transfer and energy costs.

Fully Associative Translation Layers

A page level or fully associative translation layer is considered to be a
naive algorithm [CPP+09] that was first presented by Ban [AB95] in 1995.
In previous works, page mapping schemes such as DAC [CLC99] generally
outperform other taxonomies [LJKK08] but have the largest SRAM footprint
as a mapping must be stored for each page. Regardless, it offers the best
performance in terms of device utilization There is a one to one mapping
between physical and logical pages [DZ11]. This is typically stored as a
2-tuple with the logical page number as the primary key as can been seen in

43

3.3. Flash Translation Layers

Figure 3.4: Page Mapping Scheme for Flash Address Translation

Figure 3.4. In this example a flash memory consists of 16 pages with four
pages per block. The blocks are classified as either data (D) blocks or update
(U) blocks [CLC99, DZ11]. Data blocks are used by FTL to store application
data and U blocks are used by the FTL for administrative purposes. In this
example there are three D blocks and one U block. When a write command
is issued to the FTL such as write (7,A), the FTL will attempt to write A
to the logical page number 7. To accomplish this, the FTL will lookup the
mapping record of logical page 7 and see that it maps to physical page 5.
The FTL will write A to physical page 5 if it is free. If the physical page
is active or invalid, the FTL will select a free page to write the data to,
update the logical to physical page mapping and then mark physical page 5
as invalid.

If there are no free pages in the system, the FTL must select a victim
block to erase which incurs a management cost. The block may be selected
based on the largest number of invalid pages or some other victim block
metric [CPP+09]. The FTL will then move the active pages from the victim
block and the page being written to the U block. The mapping table will
then be updated to reflect the changes. The FTL will then erase the victim
block which will become the new U block.

In order to offer recoverability, page mapped FTLs must ensure consis-
tency in the mapping table after a power off (either planned or unplanned).
This can be done by periodically flushing the mapping table to flash memory
or by encoding logical page numbers in the out of band area for each page.

44

3.3. Flash Translation Layers

After a restart, the FTL must scan to find or rebuild the table [CPP+09]
before the FTL is usable.

A flash memory with n pages requires n tuples in SRAM. This can prove
to be a daunting method for both general purpose computers and memory
constrained devices. Consider the following case for a 1 megabyte flash
memory device with a 512 byte page size. For this device, there are 2,048
pages that need to be mapped in SRAM. To encode this address space, a
short (2-byte) int can be used. Thus, using a 2-tuple of 2 short ints (one to
encode the logical page, one to encode the physical page), each tuple is 4
bytes in size producing a mapping table of 8,192 bytes. While this seems
to be quite small, this table would be impossible to encode on most 8-bit
microprocessors due to the limited amount of SRAM.

In the design of the paged mapped FTL, Deng and Zhou [DZ11] suggest
that two key items must be considered. First, the size of the mapping table
can present a significant challenge especially for highly memory constrained
devices as each physical page must have one mapping tuple in the translation
table. To further complicate matters, the table needs to be persistent; thus
it also needs to be stored in non-volatile memory. The memory constraints
can be reduced as only a small part of the table may actually be in SRAM at
any one time depending on the nature of the access patterns [GKU09]. To
accomplish this, caching strategies can be employed to reduce the amount of
thrashing on address translations that may occur and impact overall system
efficiency.

Definition 3.12. Thrashing is the rapid exchange of data from memory
with data in secondary memory (flash or disk storage).

The second major consideration highlighted is that of overall query
efficiency. The performance of queries on the FTL should not degrade with
the growth of the system which may be the case if multiple translation tables
need to be brought into memory.

When compared to the block level and hybrid schemes, the paged mapped
strategy offers the best performance [CLC99, CPP+09, GKU09, DZ11]. This
is partially due to the ability of page mapped FTLs to delay erases as long
as possible as a result of the flexible and unconstrained page placement
policies. The scheme ensures that an erase block is fully utilized before
being targeted for erase. Additionally, there is no requirement that data be
clustered into block regions with reduces the overhead on the FTL [JKJ+10];
as long as pages are free and above the given threshold, the system can
continue to operated without having to invoke the garbage collector. Little
work has been put into page level schemes for NAND and NOR flash due to

45

3.3. Flash Translation Layers

the stigma over performance restrictions with SRAM based mapping tables.
Two works have emerged that address these concerns: DFTL [GKU09] and
LazyFTL [MFL11]. Both compare performance to hybrid and block level
mapping strategies highlighting the fact that page mapped schemes will offer
better performance in terms of flash utilization, erasure and wear.

Block Level Translation Layers

A block mapped translation scheme makes a trade off in terms of perfor-
mance for size of translation table footprint. Unlike page mapped strategies
where there is a high level of granularity, block mapped strategies group
pages into blocks that align with erase units on the physical flash memory
device and are by far the most built upon strategy.

With a block level FTL, pages are still available at the logical level but
are grouped into logical blocks for write operations by the system. Each
logical block will map through to a physical block in flash memory. Each
logical page in the logical block will map to one and only one physical page in
the physical block based on its offset in the block [CPP+09, DZ11]. Because
of the spatial page restrictions on where a page can exist in a block, block
level translations are referred to as in-place schemes [DZ11]. A significant
limitation of block mapped schemes is due to the erase-before-write nature of
flash. With a block mapping scheme, when a single page is updated the entire
block must first be erased. Instead of erasing in-place, the block (both valid
and invalid pages) with the exception of the target page will be copied to an
erased block and then the update will be made which can incur significant
management overhead [DZ11].

Unlike the previous strategy, block mapping techniques present m logical
blocks in the mapping table where each block can contain between 1 and
n logical pages. The record consists of a 2-tuple mapping between logical
block number and physical block number with the logical block number as
the primary key. Figure 3.5 shows the general layout of a block mapped
FTL. In the simplest form a hash function determines what logical block a
page is located in, and is computed as

LBN = LPN ÷m (3.1)

where LPN is the logical page number of the page to be accessed, LBN is
the logical block number a logical page will belong to and m is the number
of available blocks. The logical block is mapped to a physical block number
and stored in the FTL mapping table. The physical page number of the

46

3.3. Flash Translation Layers

Figure 3.5: Block Mapping Scheme for Flash Address Translation

logical page is calculated as

PPNoffset = LPN (mod n) (3.2)

where PPNoffset is the physical page number within a given block as an
offset relative to the first page of the block and n is the size of the block in
pages.

Consider the example in Figure 3.5 in which the flash memory consists of
4 blocks and each block consists of 4 pages where the write command write
(7,A) is issued. The operation will attempt to write A to logical page 7. To
accomplish this, the logical block must first be computed using Equation (3.1)

LBN = LPN ÷m (3.3)

= 7÷ 4 (3.4)

= 1 (3.5)

where the logical page will have membership in logical block 1. Using this
value, the FTL will determine the physical block that the page will be located
in. The physical page offset will then be calculate using Equation (3.2) as

PPNoffset = LPN (mod n) (3.6)

= 7 (mod 4) (3.7)

= 3 (3.8)

47

3.3. Flash Translation Layers

where the offset of the logical page in the block will be 3. Once the logical
block number and physical page offset have been calculated, the FTL will
retrieve the physical block number from the mapping table.

Chung et al. [CPP+09] note that while block mapping can reduce the size
footprint of the mapping table in SRAM, there are performance limitations if
the system issues sequential write commands to pages with membership in the
same logical block. This will lead to thrashing of a block due to the increased
number of re-writes required [CPP+09]. This will cause overall system
performance degradation [DZ11] as the system will have to deal with a copy
and erase for every operation. This performance concern has been addressed
with the introduction of log based block mapping schemes [LPC+07, CP07,
KC08, KJKL06, LSKK08, CLP09] which can be categorized as performance
enhancing algorithms [KRKC11] as the main design focus is on reducing
thrashing and minimizing the erase cost overhead.

A log block scheme reserves a series of pages in a logging block that
are used for updates instead of having to continually re-write the target
page and block. Eventually the logged pages need to be merged with the
target block. The log pages and target block are copied to a new block in
an operation called a merge [KKN+02]. Once the merge is complete, the
original block and log block will be targeted for erasure. The specific method
varies depending on the scheme. In the literature, the term hybrid FTL is
often used to refer to a log based block mapped FTL. This leads to confusion
as it is fundamentally different from a hybrid FTL and caution should be
taken to disambiguate the two concepts.

Regardless, the hybrid strategies that are introduced in the following
section employ block level mapping strategies and still suffer from perfor-
mance issues regarding the conversion of log blocks to data blocks through
the merging process.

Hybrid Translation Layers

Both the page level and block level mapping techniques present short-
comings in terms of translation table size in SRAM or erase-before-write
limitations. To address these issues, a hybrid translation scheme [CPP+09]
that offers performance advantages from both page level mapping and block
mapping has been suggested in [KKN+02, BsKGyL02, KC08]. Similar to
the approach used in block mapping schemes, hybrid mapping uses a logical
to physical block mapping to locate a physical block [CPP+09, DZ11] which
offers an attractive SRAM footprint for the translation table. As introduced
previously in Section 2.6, a block consists of contiguous set of pages that

48

3.4. FTL Schemes

Figure 3.6: Hybrid Mapping Scheme for Flash Address Translation

form a minimal erase unit. The number of pages in a block is defined by
the manufacturer and can vary between devices but typically start with
eight pages per block as a minimum. Unlike block mapping, hybrid mapping
techniques remove the direct page mapping requirement from within a block.
Similar to a set-associative cache [PH12, pp.479-481], hybrid schemes allow
for an intrablock page to be placed in any free page within the physical
block. While this helps to manage the erase-before-write induced thrash-
ing encountered by block mapping schemes, more complex intrablock page
mappings are required as a single page may exist numerous times in a give
block, especially under heavy sequential rewrites. As a result, the strategy
introduces complexity as page mappings need to be stored on a block level.
In the most naive form [TS99], the FTL will use a linear scan to find the
most current version of a given page using information stored in the OOB
area of a page. For small block sizes, this may prove to be an acceptable
strategy but can become unmanageable as block sizes increase. Research
improvements [LBP08, KLCB08, LYL09, JKJ+10, WLQS11] have focused
on how to better encode page mapping information.

3.4 FTL Schemes

In practice, current FTL schemes often are built from the integration of
page, block and hybrid schemes borrowing the best performing components

49

3.4. FTL Schemes

from each. As a result, challenges exist to strictly classify a scheme as one
specific type. In the literature there is a large degree of idea recycling with
subsequent works being released on relatively minor variations or improve-
ments on a theme to offer increased performance based on a specific attribute.
The following section introduces the commonly built on FTL strategies with
an attempt to offer a grouping based on performance characteristics. Further
details on specific FTL strategies are found in Appendix A.

3.4.1 Page Level FTL Schemes

DFTL: Demand Based Flash Translation Layer

While the page-level flash translation layer is an efficient design due to
its similarity to a fully associative cache [PH12, p.479], Gupta, Kim and
Urgaonkar [GKU09] highlight that this will result in a large translation table
that will be stored in SRAM. They highlight that for a 16 GB memory
device, the mapping table will be approximately 32 MB. Their work focuses
on enterprise level databases utilizing NAND flash-based SSD technologies
and is strictly a flash mapping interface. Highly memory constrained devices
will not have anywhere near this level of SRAM available. To address
this challenge they propose a method by which the amount of data stored
in SRAM can be minimized through the selective caching of page-level
address mappings. While the work shows a significant improvement in
performance for enterprise level systems utilizing NAND flash, it proves to
be an infeasible solution for memory and bandwidth constrained devices.
From the memory constrained approach, they highlight a valid point; they
claim that due to block level mappings, devices may suffer from a high-
level internal fragmentation as well as performance degradation due to
excessive garbage collection overheads [GKU09]. They argue that due to the
temporal nature of data, the cache based strategy proposed can be a suitable
solution for memory constrained devices. Unfortunately, this factor alone
does not warrant its suitability for serial NOR flash devices. As highlighted
previously with constrained SRAM sizes, this strategy would lead to heavy
page-mapping trashing over the serial data bus as more time would be spent
on mapping table transfers. This would lead to a performance decrease due
to page-mapping movement. Gupta, Kim and Urgaonkar go on to further
argue that due to the fact that they are a page-level map scheme, they
minimize operations such as full and partial block level merges which are
problematic sources of performance degradation in block level schemes which
makes their strategy overly favourable. While this may be the case, the

50

3.4. FTL Schemes

system fails to consider data and page level mapping consistency as well
as power on recoverability. While it may be a completely suitable strategy
for enterprise-level systems it is infeasible for use in resource constrained
systems.

CFTL

CFTL [PDD10] is a hybrid block mapping scheme that can switch between
write and read optimized schemes dynamically, utilizing an efficient cache
strategy for managing FTL mapping pages. At its core, it is a page mapped
FTL, which is stored in flash memory. It stores in SRAM eight cache
blocks and page map tables based on temporal and spatial locality of data.
Additionally, a master mapping table which tracks all other mapping tables
is also stored in SRAM. The authors claim that with spatial and temporal
locality, this is important but with flash memory there are no variable latency
penalties; the only penalty cost comes from having to look up translations
in the FTL. Thus the FTL lookup will be dominated by nothing other than
the cost of swapping in and out the lookup tables from flash memory. For
a bandwidth constrained device, this presents a significant bottleneck and
should be avoided. With the CFTL scheme, a write counter for each page is
also maintained in SRAM which is used to identify hot and cold pages. This
increases the overhead significantly in terms of both data storage structure
and page re-allocation. While the authors assert some minor improvements,
due to updates being able to be placed in any page as a result of the page level
mapping, they fail to consider this complicates both garbage collection and
wear levelling operations. They also fail to identify page conversions costs
when switching from page to block level mapping. Additionally, they have
failed to identify how block level access happens as well as how they handle
consistency issues between flash memory tables and SRAM caches, issues with
overall record integrity and power-on recovery. Performance comparisons are
made against DFLT [GKU09] and claim significant improvements but fail to
provide details on testing. While it may speed up FTL translations and look
ups, it does not address any other core FTL design issues.

LazyFTL

Ma, Feng and Li [MFL11] present a low latency and high scalability
FLT for enterprise use. They assert that their proposed FTL is the highest
performance ever presented in terms of efficiency and effectiveness but limit
their comparisons to hybrid and block-level mapping strategies. They do

51

3.4. FTL Schemes

not compare the performance of their FTL to DFTL or other page mapped
strategies.

LazyFTL delivers a lower overhead system through the elimination of
merges as well as improved system recovery, redundancy and fault tolerance
by storing page mappings in a specific area of flash that gets updated
in a lazy manner. The authors claim that since their strategy is a page
based scheme, there is no need for merges which significantly reduces any
overhead that may be encountered with block-based or hybrid mapping
schemes. In performance comparisons, LazyFTL outperforms many other
hybrid and block level mapping schemes. This is generally due to the fact
that page level mapping schemes generally have higher resolution than other
schemes [CPP+09].

With LazyFTL, page level mapping schemes are stored in flash and
brought into SRAM as required, utilizing a least recently used (LRU) replace-
ment strategy. While they claim that their scheme is unique, the principles
of operation are similar to DFTL in terms of flushing page mappings back
to flash. A limitation is encountered with how mappings are stored. As
page mappings are stored in a defined area in flash, the memory device will
suffer from non-uniform wear and contribute to premature device failure. It
is not suitable for use with bandwidth constrained devices as this method
results in large amounts of data being moved bidirectionally on a limited
bandwidth bus. Additionally, memory constrained devices could not support
this strategy due to SRAM limitations.

3.4.2 Page Based Logging Schemes

Mistubishi

One of the earliest hybrid schemes known as Mitsubishi was proposed
by Takayuki Shinohara [TS99] in 1999 and is a log based design. While
mappings occur at the block level on the flash device, the block is divided
into two sets of pages. The first set of pages is used to maintain the first
instance of new data written to a block. The second set of pages is used
as a log and are termed by Shinohara as “space sectors” [KRKC11]. It is
important to note that with this implementation data that is destined for
one logical or physical block can only use the associated sector space for the
block. As a result, the number of successive writes to a given block before it
needs to be compressed or merged is limited by the log size and compounded
by the use of fixed logical offsets. Additionally, the overall usable capacity of
the memory is reduced due to the strict 1-to-1 association of a space sector

52

3.4. FTL Schemes

(a) Mitsubishi Write to Unallocated Logical Page

(b) Mitsubishi Update to Previously Allocated Logical Page

Figure 3.7: The Mistubishi FTL Scheme

53

3.4. FTL Schemes

to a given block.
Figure 3.7 shows the general operation of the Mitsubishi scheme where a

block is composed of four pages with two pages being used for data and two
pages being used as space sectors. Consider Figure 3.7a where the system
issues the command write(7,A). The system will determine the logical block
number (LBN) using Equation (3.1), with the logical page offset (LPO)
within the block being calculated using Equation (3.2).

As the file system has not previously allocated space for the page, a
physical block number will be assigned from the logical to physical block
mapping table. The data is targeted to be written into the page at offset of 1.
Since the page has not been previously allocated, the data A will be written
into the location. The logical page number of the data is then written into
the out of bounds area for the target page. If the page at offset of 1 in the
target block had previously been allocated (Figure 3.7b), the write would not
be able to proceed. In this case, the Mitsubishi scheme will select the next
available page from the spare area by way of a linear probe and write the
data to that page. The logical page number will then be updated in the out
of bounds area of the target page. In the case where there are no free pages
available in the spare section, the Mistubishi scheme enters a compaction
(merge operation) phase where a free block is acquired from the FTL and
only the valid pages from a fully utilized page are copied. Once the coping
is complete, the old page is abandoned and erased.

While the Mitsubishi scheme reduces the number of erases [KRKC11],
the performance gain is proportional to the size of pages in the spare area.
Additionally, the overall capacity of the memory store is also reduced due
to the strict allocation of spare pages within a given block. Performance
limitations are also encountered when updating frequently accessed pages
or when mixing hot and cold data. In order to find the next available page,
a linear scan is performed to find the next available free spare page which
introduces an inconsistency into the write time performance. This leads
to longer write times as the page is continually updated. This is due to
the system scanning further into the spare area with each successive write.
In terms of reads, performance limitations are also encountered especially
when attempting to access cold data in a page with a large percentage of hot
data. In order to find the current version of the target page, the Mitsubishi
scheme starts scanning at the bottom of the spare area and moves backwards
towards the front scanning of the out of bounds area for the target logical
page number. Based on the update scheme, the newest page will be the
first one encountered. If the target page consists of cold data mixed with a
high percentage of hot pages, the system will have to scan numerous pages

54

3.4. FTL Schemes

before finding the target page. This leads to inconsistent read performance
especially with mixed hot and cold data. Additionally the scheme does not
deal with any recovery, data consistency or write normalization issues.

ANAND and FMAX

Ban and Hasharon [AB99] introduced two different FTL schemes called
ANAND and FMAX which are similar to the log based design presented
with Mitsubishi. The key difference with ANAND and FMAX is that logged
data is no longer required to be constrained to pages with the same block as
required by the Mitsubishi scheme [KRKC11]. With the proposed method,
both ANAND and FMAX utilize separate physical blocks for the logging of
data with each logical block being mapped to two physical blocks where the
first block is the target physical block allocated in the mapping table and
the second block is used as the log block to receives pages that have been
previously written in the target physical page. The key difference between
ANAND and FMAX is how data is written to the log block.

ANAND utilizes the log block as a shadow of the target block which is
an exact copy of the logical block but with a different physical block number.
As a result of this, ANAND only can support in-place updates. Consider
the example for ANAND in Figure 3.8a where the operations write(4,A) and
write(5,B) proceed. Using Equations (3.1) and (3.2) the logical block and
page numbers are calculated and the physical target block resolved from the
mapping table. As the logical pages are both previously unallocated, the
writes proceed unencumbered. In Figure 3.8b when the operation write(5,C)
attempts to proceed at physical page 5 (in physical block 1, logical page
offset 1), it cannot proceed as the physical page has been previously allocated.
As a result, the data must be written into the shadow block which has been
allocated as physical block 2. The page in the target block is marked as stale
(invalid) to indicate that a newer version of the page exists and the update
is written into the same logical page offset in the shadow block.

Limitations exist with ANAND in the same fashion as with the Mitsubish
FTL scheme. Due to the direct shadow mapping, only 1 update can be
performed per page. If a third update was to proceed as write(5,D), a merge
operation would occur [KRKC11]. This characteristic will cause a large
number of merge operations for sequential writes. A new block would be
allocated by the FTL and the live pages from both the target and shadow
pages would be merged along with the update into the new block. The
FTL would then release the original target and shadow page for erasure.
Depending on the types of access patterns in the data set, in addition to

55

3.4. FTL Schemes

(a) ANAND and FMAX writing to Unallocated Pages

(b) ANAND Update to Previously Allocated Logical Page

(c) FMAX Update to Previously Allocated Logical Page

Figure 3.8: The ANAND and FMAX FTL Scheme

56

3.4. FTL Schemes

having a mix of hot and cold data within a specific block, a merge operation
will occur at every third update leaving to high levels of rewrites and erasures.
An advantage with ANAND is that linear scanning of the shadow block is
not required as it is using a block mapping scheme where a page can only be
placed in one set location per block. This offers faster access times for read
operations when compared to previous strategies.

To address the issues of limited logging ability, FMAX utilizes the log
block in a different fashion than ANAND. Instead of shadowing the target
block, FMAX treats the log block strictly as a linear log of pages similar in
fashion to a logging file system [RO92, KNM95] where updates are written in
an out-of-place fashion [KRKC11]. For unallocated pages, FMAX proceeds
in the same fashion as ANAND as in Figure 3.8 differing in operation only
when a write to a previously allocated page must occur. In Figure 3.8c, the
operation write(5,C) proceeds assuming that the operation write(4,A) in
Figure 3.8a has already completed. As the target physical page has previously
been allocated, the page in the target block is marked as stale and the write
proceeds in the log block. Unlike ANAND where writes are restricted to
the same logical page offset in the target block, FMAX proceeds to write
unrestricted to the next available physical page noting the logical page
number in the out-of-bounds area of the page. For the operation write(4,D),
the same process occurs and it is subsequently written out-of-place to the
next available page in the log block with the logical page number noted
in the out-of-bounds area. This technique allows merging operations to be
reduced as the merge will now only take place when the log block is full. The
rate at which merges occur is now dependent on the block size and better
accommodates access patterns having a mix of hot and cold data within a
specific block. The limitation to FMAX is on reads; unlike ANAND where
data position is deterministic and can be in only one of two places, FMAX
allows for numerous rewrites of the same page. As a result when accessing a
page the newest version must be found which results in a linear scan through
the log block to find the current logical page.

3.4.3 Block Based Logging Schemes

Unlike page based logging schemes where each block has a dedicated
logging area either within the same block such as with the Mitsubishi scheme
or within a separate block as with FMAX and ANAND, the block based
logging schemes extend this concept such that a specific area is reserved
for logging operations and that logging blocks are no longer mapped on a
one-to-one basis [KRKC11]. That is, many pages share a smaller number of

57

3.4. FTL Schemes

log blocks in an effort to improve write and merging performance. Sharing
similar design concepts with a log based file system [KNM95] updates are
written to the log area in a sequential fashion.

BAST

To deal with the limitations of block mapped flash translation layers,
Kim et al. [KKN+02] proposed the seminal strategy Block Associative Sector
Translation (BAST). This is a log block type mapping scheme that introduced
two different levels of granularity and was primarily targeted at the compact
flash market. In addition to the normal block mapping structure, the system
maintains a series of log blocks that are managed at the page level in addition
to data blocks. The log blocks are used strictly as temporary storage when a
page update is required for a block. There is a one to one mapping between
log and data blocks where a log block can only be associated with a single
data block. Unlike previous strategies though, there is not a one to one
relation between data blocks and logs blocks. That is a data block may not
have an associated log block depending on the relative hotness of the data
compared to the data in the remainder of the system. To avoid the under
utilization and overhead of unused log blocks in previous works, BAST limits
the number of available log blocks significantly such that all data blocks
will share a limited number of log pages [LPC+07]. This ensures that log
blocks will continually be in reuse. Kwon et al. [KRKC11] note that due to
this approach log blocks must be managed in an efficient fashion. Instead
of erasing and rewriting a block when a page update request is made, a log
block (which has been previously erased) is allocated and used to store the
updated page similar in operation to LFS [RO92]. The out-of-band area is
used to store the logical address of each page. Once all log pages for a given
data block have been consumed or another block requires the use of a log
block and none are available, the system will enter a merge operation where
the most current log pages will be merged with their target logical block
and re-written into an erased block in flash memory. The system will then
choose a new log block for the log to use. The page level mapping is stored
in SRAM to allow for efficient operations with respect to speed.

Consider the following example in Figure 3.9 where each block contains
4 pages and the system has two log blocks. The operations write(4,A),
write(6,B), write(4,C), write(8,D), write(8,E), and write(12,F) are done. The
logical block number and page number are calculated using Equations (3.1)
and (3.2) respectively using four pages per block. For the first two write
operations (Figure 3.9a), the target pages do not contain any data so the

58

3.4. FTL Schemes

(a) BAST Write to Unallocated and Allocated Logical Page with Available Log Block Space

(b) BAST Write to Unallocated Block without Log Block Space

Figure 3.9: The BAST FTL Scheme

59

3.4. FTL Schemes

writes proceed directly on the target pages in physical block 0. For the third
operation of write(4,C) the target page is already allocated so the update
must proceed in the log block. The system will allocate physical block 3 as
a log block for physical block 0 and proceed to update the data in the first
available page. It records the logical page number of the updated page in the
OOB area and updates the page mapping table in SRAM for the log. It will
also mark the original data page as invalid to indicate that the data has been
updated in the log. For the next three operations of write(8,D), write(8,E),
and write(12,F), the first two will proceed first by completing write(8,D)
into physical block 1 as denoted by the block mapping table and then will
update write(8,E) into the second log block (physical block 4), record the
logical page number in the OOB for the logged page and then invalidate the
page in the original target block. For the last operation of write(12,F), the
system will proceed to update the value into the previously unallocated block
2. If another write operation was to proceed for logical page 8, BAST would
attempt to update the target page but detect that a value had previously
been written to the page. It would then attempt to write the update value
to the log, but no more log blocks are available. At this point, BAST would
have to select a victim block that will be merged with the original target
block. Once the victim log-block has been merged, the block will be erased
along with the old data block and returned to the system as free blocks. The
FTL will then select a new log block from the pool of free pages allowing
the final write operation to complete.

With BAST, the merge operation can lead to a high level of erase-writes,
depending on the number of log blocks and the access patterns of the data.
In the worst case, a merge operation will require n page reads and n page
writes followed by two block erases. A special case exists that is refereed to
as a switch, where log pages have been written to the log block in a logically
sequential fashion. To reduce the number of read-writes and erases, the log
block is simply converted to a data block; this operation only requires that
the old block be returned for erasure.

With BAST, instead of storing block mapping information in the out
of band or in SRAM, the scheme dedicates a set of blocks in flash that are
exclusively used as map blocks. The blocks are organized in a page orientated
fashion. A two level mapping scheme is used where a map directory is
stored in SRAM. Mapping data pages are brought into memory as needed
using a caching model. This presents limitations for bandwidth and memory
constrained device. Depending on the amount of data and the width of
the data path between the memory and processor, a significant number
of mapping block data transfer operations are required to read or write

60

3.4. FTL Schemes

data. Since map blocks cannot be updated in-place due to erase-before-
write restrictions of flash memory, map blocks are consumed in a round
robin fashion and handled in a similar fashion to data blocks which leads to
extensive, non-uniform wear.

Numerous variations on block based logging exist, such as
FAST [LPC+07], EAST [KC08], LAST [LSKK08], JFTL [CLP09], and
SAFTL [Wu10]. While each variation offers incremental improvements,
they are unsuitable for use with resource constrained systems with serial
NOR flash. Details on each variation can be found in Appendix A.1.1.

3.4.4 Block Set FTL Schemes

A block set scheme groups adjacent physical blocks into a larger block set
where the set will have self contained data and log blocks. The operations are
typically based on a log-block scheme [KRKC11] in terms of block utilization
and merging but differ in terms of addressing. As they are targeted at
large block memory and large capacity devices, they offer the advantage of
reducing block mapping sizes due to the decreased granularity. The basic
formation of a block set will consist of a fixed number of data blocks with a
variable number of log blocks [KRKC11]. While based on a log-block scheme
in terms of operation, the techniques use a hybrid technique to improve block
set performance in terms of merge costs.

Superblock FTL

One of the earliest block sets schemes was proposed by Kang et
al. [KJKL06] where sets of logical blocks are grouped into block sets. The
work was extended in [JKJ+10]. Each block set is mapped as a single entity
with a block level addressing scheme. A block set is referred to as a super
block. Pages inside each super block are addressable at a page level forming
a hybrid mapping scheme with three levels. The highest level is the super
block map that is maintained in SRAM along with the page global directory
(PGD). The PGD will contain numerous entries for page middle directories
(PMD) which in turn point to one of four page tables. Each page table will
contain a physical page and block number for the data. While the page
level mapping allows pages to be placed freely in any location within the
superblock, it presents a long and overly complicated lookup scheme. Kang et
al. divide the blocks within a superblock to be either a data block (D-block)
or an update-block (U-block) which forms a contained log block system. The
page level mappings for each superblock is stored in the OOB area of pages

61

3.4. FTL Schemes

within the block. Thus, as new pages are written within a block, the page
mapping is simultaneously written into the OOB area. As the OOB area is
limited in size, this limits the number of pages that can be included into a
superblock.

In terms of operation within the superblock, it performs in a similar
fashion to the FAST scheme with the exception of separating data into hot
and cold logs to improve merging performance. While the scheme does offer
increased performance over BAST and FAST (Appendix A.1.1) for large
memories, it does so through the reduction of merging and erase options
through the page level granularity available in each superblock. While the
superblock scheme allows large memories to be addressed, the operational
overhead in terms of SRAM footprint is similar to other block level schemes.
Additionally as noted by Kwon et al. [KRKC11], having the mapping table
in the OOB area can lead to excessive partial reads and writes for accessing a
single page of data which can be detrimental for resource constrained devices.
The experimental results offered by the authors suggest that superblocks
consisting of 2 to four blocks offered the best results. In the more extensive
analysis presented by Jung et al. [JKJ+10], they claim that the performance
of their algorithm is in many cases comparable to a page level FTL scheme
but in reality, the performance depends on the data patterns. With some
patterns, the scheme offers significant savings over block level schemes but
with other patterns there is no discernible advantage. While the authors
of [KJKL06] and [JKJ+10] have targeted the FTL for large block devices
in general purpose computing, they bring to light a key point that FTL
performance is strongly dictated by access patterns and data arrangement
logically within a block. While they have attempted to produce a general
purpose FTL, some FTL schemes are better for certain types of data. In
practice, it does not perform as well as page level addressing but does offer
some improvements over FAST. Thus, as the number of superblocks will be
similar to the number of blocks for a smaller memory, it offers no advantage
for memory constrained systems.

3.4.5 State Based FTL Schemes

A state based FTL scheme does not treat a specific block as an atomic
entity. Instead, blocks are allowed to transition through various states that
offer different levels of functionality to the system as initially presented with
EAST (Appendix A.1.1) where a log block initially started out as a shadow
copy of the target block allowing only in-place updates. To prevent the
log from an early merge (and thus postponing erase operations), the log

62

3.4. FTL Schemes

block was allowed to change state and support out-of-place updates such
that all pages could be utilized before erasure. State based FTL schemes
build on this concept and allow blocks to switch state between in-place and
out-of-place as well as being tagged as complete. It also allows blocks to be
tagged for deletion without having to be immediately erased thus reducing
the run time demands on the system.

STAFF

In 2007, Chung and Park [CP07] proposed an improvement to the naive
block mapping strategy with STAFF with a focus on reducing block erasures.
This was based wholly on their earlier work presented in [CPJK04]. They
propose a state machine that encodes the state of each page in the out of band
area of a given block but the mapping strategy is fundamentally unchanged
from the basic block mapping scheme. Limitations exist as the device must
support Partial-Page Programming (PPP) (Definition 2.5) where distinct
areas of the OOB area can be written in isolation a limited number of times
before having to be erased. PPP is not available on all NAND flash memory
devices; thus STAFF is limited to specific devices. Their methodology allows
the encoding of free, obsolete, modified in-place, complete in-place, and
modified out-of-place states. STAFF enumerates the possible block states as:

− Free (F) state: an unwritten, erased block

− Obsolete (O) state: a block that contains no valid or live data and is a
candidate for erasure.

− Modified In-Place (M) state: the block has pages that have been written
in an in-place fashion. That is, the pages have been written in the log
block at the same logical page offset as in the target block. The block
may still contain unwritten pages.

− Complete In-Place (S) state: the block is completely occupied and all
the pages have been written in an in-place fashion.

− Modified Out-of-Place (N) state: the block contains at least one page
written in an out-of-place fashion. That is, the page has been written
at a different logical page offset than its original offset in the target
block.

As the state space contains five states, the state of each page can be
encoded with three bits. STAFF also allows for a single logical block to

63

3.4. FTL Schemes

Figure 3.10: The STAFF State Machine

map to two physical blocks to allow for updates in a logging type operation.
The state of each page is governed by allowable state transitions shown in
Figure 3.10. All blocks start out as being free and can only transition to a
modified-in-place state in the case where a single page is updated. When
a second page is updated, the block can transition to one of three states.
It can transition to a Modified Out-of-Place, if a page write attempt is to
a logical page offset that is already occupied. If a write attempt is made
to a logical page offset that is unallocated the page will stay as Modified-
In-Place. Thirdly, if a write attempt in made to a page at a logical page
offset that is unallocated and is the last available page in the block, the write
will proceed and the block will transition state to be Complete In-Place.

For blocks that have transitioned to a Modified Out-of-Place, only two
possible transitions exist. If a write attempt is made to the block and the
block still contains live data, it will stay as Modified Out-of-Place. If all
of the pages in a Modified Out-of-Place block have been invalidated, the
block will transition to the Obsolete state which means it can be erased
immediately. For blocks that have transitioned to a Complete In-Place state,
as long as the block contains live data, it will stay in the Complete In-Place
state until all pages become invalid at which time it will be transitioned to
being Obsolete.

One of the features that they introduce is the concept of partial repro-
gramming in the out of band area, which is only supported by some flash
memory devices. By exploiting this feature, STAFF can change the state of
a page without having to re-write an entire page thus effectively reducing

64

3.4. FTL Schemes

re-write and erase costs. The authors claim that due to this feature, their al-
gorithm offers better overall write performance of more than 5 times through
low-cost swapping and merging operations. While based on simulated results,
the work highlights the performance improvements than can be realized
via partial page programming. A detailed discussion with examples on the
operation of STAFF is found in Appendix A.1.2.

Since this is strictly a block mapping scheme, the authors suggest that
this strategy is suitable for use on embedded systems due to the smaller size
of the mapping tables. Unfortunately, while this may be true for numerous
embedded 32-bit processors, the mapping table size is still too large for
highly memory constrained 8-bit devices as the mapping table is still stored
in SRAM. Kwon et al. [KRKC11] highlight another factor that makes this
technique undesirable for memory constrained devices. As the number of N
state blocks is unknown and the system maintains a page mapping table in
SRAM for each N state block, there is no realistic run time upper bound
estimate in the SRAM requirements.

Another significant shortcoming that is not highlighted is the cost of
writing into the out-of-band area. It also requires that the memory will
support out of band rewrites. This is not available on all memories and is
strictly limited to some families of flash. While the concepts presented with
this algorithm offer performance improvements, STAFF is not suitable or
feasible on many embedded devices utilizing serial NOR flash.

Variations on STAFF have been proposed [CPRH05, CPK11] to offer
improved performance with large block devices. The variations use the same
state machine proposed by STAFF to track the state of each block but map
multiple host operating system sectors to a single large block. Similar to
STAFF, the variations are not suited for use with many embedded devices
utilizing serial NOR flash. Detailed discussion of the variations are found in
Appendix A.1.2.

3.4.6 FTL Improvement Schemes

As addressed by Chung et al. [CPP+09] and Kwon et al. [KRKC11],
FTLs should address issues not only of physical to logical page translation,
but also recovery, erasure and wear levelling operations. In practice, few
works address these holistic requirements, but focus primarily on extending
the life of the device by minimizing the number of erase operations to a
device through different page and block organization schemes. This section
introduces works that offer potential solutions to the holistic requirements
without directly addressing page and block organization strategies.

65

3.4. FTL Schemes

Figure 3.11: PORCE Block Validation

PORCE

One of the significant limitations of most FLT schemes is the failure to
address recoverability of the system [CLRL08] in the event of power fail-
ure, system corruption or normal power cycling operations. As previously
noted by Kwon et at. [KRKC11], recoverability should be addressed as a
key requirement for any FTL schemes. This is particularly true in embed-
ded applications [CLRL08] where devices are routinely power cycled under
normal operation. Chung et al. present PORCE [CLRL08] as a suitable,
generalizable recovery scheme for use with any FTL. However in fact, due to
its fundamental principle of operation, it can only be used with FTLs that
operate strictly with in-order writes. This eliminates any FTL that relies on
invalid but underutilized block re-use to extend the life of the device.

PORCE divides the protection into two different failure modes. The
system offers protection during write operations to ensure that data is
consistent in flash memory in the event of a failure due to a sudden power
removal as well as protection for generalized power off and restart. To ensure
consistency, PORCE utilizes a block valid mark to track the status of a block.
Previous strategies [CKK10] take a naive view that record the consistency
state in the out-of-bounds area for every write operation which are considered
to be two discrete write operations per page of data. In the event of a failure,
the system scans all pages looking for a valid tag in the corresponding OOB
area. If a page is located that does not have a valid tag, it is considered
to be potentially inconsistent. In the generalized case, FTL systems offers
no strategy for addressing the failure other then by discarding the page in
a similar fashion to a database log rollback operation. This technique of
continual validation leads to a high system overhead due to the number of
writes required as OOB writes require a separate operation.

PORCE divides consistency operations into two different classes of oper-

66

3.4. FTL Schemes

ations. A failure can occur during normal operations, such as when a system
loses power during a write. Alternately, a system can encounter a failure
during a merging or cleaning operation where pages are being copied and
compacted from one block to another such that the original block can be
deleted. To address the first failure mode, PORCE attempts to reduce the
overall number of writes by using the valid mark only after the last write of
valid data in a block. Its operation assumes that writes will be sequential in
nature and consist of more that one page and that each write is self contained
and atomic. When writing four pages to a block only the last page will
incur the cost of writing the valid tag to the OOB area implying a collective
validation. That is, if pages are written in a consecutive fashion, and page n
is valid, then it implies that page n− 1 is also valid. Consider the example
in Figure 3.11 where the operations write(1,A), write(2,B) and write(3,C)
occur in a consecutive fashion in physical block 0. After the third write
operation a valid mark is placed in the OOB area of physical page 3. In the
event of failure, the system will scan all pages looking for the valid tag. If it
finds a page with a valid tag as the last page written in a block, then the
data is considered to be consistent. If data is found to have been written in
a block but no valid tag is found then all but the last page are considered
to be valid. Thus, the last page is considered to be inconsistent and the
previous page marked as valid. It offers no mechanism for recovery of the
inconsistent page under normal operations.

While this does offer a performance improvement over the naive strategy,
it relies on two fundamental operational principles. It assumes that all
operations (both writes to data blocks and write to update or buffer blocks)
will proceed in a sequential fashion. While the authors claim that PORCE
can be used as a generalized recovery strategy for most FTLs it is limited
only to block level FTLs that do not rely on block reuse in dirty blocks or
strategies that only use in-place updates. Secondly, it assumes that data
writes will consist of multiple consecutive page writes. While this may be
a valid assumption of general purpose computing systems, it may not be
true for resource constrained systems where data writes may consist of a
single record that must be committed to persistent storage due to the lack
of SRAM resources for buffering and to reduce the risk of data loss in the
event of a system failure. Consider the write operations in physical block
1 in in Figure 3.11. If write(4,D), write(5,E), write(6,F) and write(7,G)
were isolated write events and thus each require their own valid mark in the
OOB area. As a result of this, PORCE would be required to write a valid
tag for every write operation, essentially offering no performance advantage
over the naive strategy where two writes are required for every data write.

67

3.4. FTL Schemes

Additionally, it requires PORCE to completely scan every single page during
a recovery operation to ensure that it has located the most current valid
mark.

The second failure mode that is addressed by PORCE is a failure that
occurs during a cleaning process as the result of free pages not being available
to the system. In this operation, only valid pages are copied from one block
to another, allowing the data block and buffer block to be compacted into a
new, single data block with the invalid data and buffer blocks being set for
erasure. With the operation, Chung et al. note that there is a significant
risk of introducing data inconsistency in the event of a failure mid operation.
To address this mode, PORCE utilizes a database REDO style log to track
the operations during this phase. The system maintains a separate log where
transactions are recorded detailing the cleaning process. At the start of an
operation, the type of operation and the target (victim) and destination
blocks are recorded in the log along with a log ID. Once the operation
completes, a corresponding commit record is written to the log. In the event
of a failure, the system will scan the log looking for log records and the
corresponding commits. If a record is found to exist without a corresponding
commit, the system is able to redo the operation. While this appears to
be a reasonable strategy, a significant challenge exists with this operation.
The cleaning operation involves multiple copies and erases. Based on the
algorithm presented, uncommitted operations in the log are completely re-
done and do not consider the state of individual pages in blocks. If the
failure occurs after the target block has been erased, but before the commit
is written to the log, the system will lose referential integrity to the data.
Upon restart, the target blocks that are involved in the transaction may not
contain valid data due to erasure but still be used to update the destination
block, thus producing inconsistent data.

In terms of overall performance, Chung et al. present a performance
analysis utilizing STAFF. The performance of the recovery algorithm is
compared to the naive strategy and overall does perform better but does
increase the overall number of erase/write operations when compared to
STAFF without any recovery option. Additionally, it appears to have
highly variable performance depending on the type of data and access
patterns. Operations without large sequential writes will encounter significant
additional overhead. While a potentially plausible strategy for a general
purpose computing system where large consecutive pages of data may be
accessed, it is not suitable for use on resource constrained systems due to
the increased number of operations as well as the risk of data inconsistency
introduced through the logging operations.

68

3.4. FTL Schemes

Reuse-Aware NAND FTL

Wang et al. [WLW+10] have developed a reuse-aware NAND flash trans-
lation layer (RNFTL) which focuses on minimizing the number of merge
operations through strategic management of free pages in data blocks. The
scheme uses the similar mapping algorithm presented with FMAX and
ANAND [KRKC11] where each active or target block can be associated with
a log (replacement) block such that updates can occur without having to
immediately update the original block. The proposed strategy attempts to
minimize the merging of active blocks that contain a large number of free
pages. Unlike other schemes, after a merge of an active (or primary) block
with its associated replacement block, the target block is not immediately
sent for erasure after being invalidated. The algorithm attempts to reduce
erase counts and extend the lifetime of NAND flash by applying a reuse
strategy in the flash translation by examining the number of free pages left
in the block and attempting to maximize the block utilization before the
block is erased. The authors claim that RNFTL improves utilization and
minimizes erase counts compared to previous methods.

The primary difference between RNFTL and other logging strategies is
that invalid blocks are put on a preserved block list such that they can be
used as log blocks for updates. A block may be sent for erasure while there
are still free pages available which is dependent on data access patterns.
Some access patterns will utilize a small percent of the block leaving the
majority of the block unused. A block that is only partially filled and that
can be reused for logging is referred to as a dirty block. Blocks that are no
longer used but are not completely full are transferred into a preserved block
list which contains a list of dirty blocks if the number of free pages in a block
is above a preset threshold. A block with a total number of free pages below
the threshold is sent for erasure immediately without reuse. This ensures
that a dirty block with a significant number of free pages can be reused and
fully utilized before it is selected for erasure thus delaying erase operations.
This introduces significant overhead in terms of data management and also
limits the classes of NAND memories that can be supported. This strategy
is reliant on the fact that NAND memories can support out of place updates.
While this is true for older small block architectures, this is not true for new
large block devices which enforce the constraint that data must be written
in a sequential fashion per block.

Due to the reuse strategy, the scheme allows for high levels of reuse
in terms of block management by focusing primarily on reducing erase
operations but it offers nothing new in terms of the flash translation layer

69

3.4. FTL Schemes

mapping and table management. The authors claim that wear levelling is
explicitly improved, but it appears that this is generally due to the decrease
in page erases. They are unclear on how this is actually accomplished
in terms of wear levelling strategies. In fact, the correlation between the
performance of the wear leveller and the total number of erase operations
is a commonly addressed theme in previous works. If the reuse threshold
is not set correctly, performance of the scheme is not better than a hybrid
scheme [WLW+10] and functionally aligns with the FMAX strategy. If the
threshold parameter is tuned correctly, RNFTL does present a significant
advantage over previous schemes as it offers better space utilization. Blocks
are fully utilized (to a given threshold) before they are sent for erasure which
in turn decreases overall number of block erasures. Additionally, this strategy
does not differentiate between write patterns for hot and cold data which
impacts the overall performance. A page with a large amount of cold data
will not be allowed to be reused thus will not increase the overall performance
of the algorithm.

RNFTL shows good performance with appropriate parameters due to
extensive block reuse, but its suitability for devices is limited. As with
FMAX, page writes to a block may occur in an out of order fashion. This
excludes it for use on large block devices. Through the reuse of dirty blocks
being used as replacement blocks (log type blocks) wear is more uniformly
spread out across the device as well as reducing the number of erase cycles
required. The consequences of this are that the erase operations will run
less frequently. This behaviour leads to improved wear levelling but not
necessarily by design.

RNFTL offers performance benefits similar to previous strategies but
the state of blocks need to be explicitly tracked. For many constrained
systems this additional overhead makes it an unattractive choice. What is
not considered is that the duty block list must be maintained in a specific
space in flash memory. This will lead to non-uniform wear if dirty page
operation rate is very high or very low compared to the data rates in the main
flash section. This partitioning violates the goal of wear levelling which is to
uniformly spread wear across the device. This also can generate problems for
devices where adjacent block erase thresholds need to be maintained within
a physical bound.

A significant limitation of the scheme that is not discussed is the read
performance. With other strategies that use a fully associative strategy, pages
will be updated to the replacement block in a strictly increasing fashion.
As a result, the most current version of a specific page can be found by
scanning backwards from the latest entry. When it encounters the logical

70

3.4. FTL Schemes

page that is being search for, it will be the most current version. With
RNFTL, this strategy cannot be employed as live pages will be intermingled
with previously invalidated pages. To further confound this, previous versions
of the same logical page that is being read can exist anywhere in the dirty
block. As a result, every single page in the block will have to be checked to
see which one is the most current. Additionally, the work does not present a
strategy for being able to resolve page versions. As a result of this behaviour,
the read performance of the algorithm is poor compared to other strategies.

While the authors propose a suitable strategy for reducing the number
of erase cycles and limiting wear across the device, they have not changed or
improved the fundamental flash translation layer block mapping algorithm. It
offers no performance increase in terms of address translation and increases
look-up complexity when attempting to locate pages in the replacement
blocks during reads. Regardless of any improvements, the FTL mapping
table is still maintained in SRAM. Additionally, it is targeted for NAND
flash and does not consider the cost of data movement between memory
devices and SRAM buffers. While this is an improvement for high endurance
applications, its complexity offers little value for embedded systems for
storage capacity and data rates are orders of magnitude lower.

Janus FTL

Janus-FTL [KKC+10] is a hybrid page/block mount solution offering
mixed mode addressing similar to SAFTL [Wu10]. The major contribution
is that the FTL can adapt to specific types of work load and is particularly
targeted and suited for solid-state hard drives. The work attempts to find a
balance between erase and merge operations such that the number of units for
a given workload is minimized The FTL algorithm analyses the utilization
of free and invalid space to decide between erase and merge operations,
allowing the use of free pages in invalid blocks log type operations to improve
performance in a similarly fashion to the earlier works of RNFTL [WLW+10].

The design of Janus-FTL relies on page mappings to be kept in SRAM for
recovery and performance which limits its suitability for resource constrained
systems. The authors compare the performance of Janus-FTL against other
strategies [KKC+10] and was found to have mixed performance results.

ShiftFlash

ShiftFlash [HZW11] is designed to introduce the concept of continuous
data protection for solid-state hard drives. Its overall architecture is not

71

3.4. FTL Schemes

feasible for small devices due to its overall size and complexity. It offers
nothing new in terms of flash translation strategies but does allow for high-
level rollback through the use of data snapshot and backups. It stores a
mapping to superseded data as a set of tuples in SRAM. As a result, it
enforces sequential writes to prevent overwriting of snapshotted data.

It utilizes a user-defined protection window in which writes are guaranteed
to be protected from corruption or loss. This significantly impacts how
garbage collection functions as invalid pages in the protection window cannot
be reclaimed due to the fact that they may contain data under protection.
This results in a lower number of free blocks being available to the system
as well as having to manage multiple garbage collection thresholds.

The most significant change from other FTL strategies is with the opera-
tion of the garbage collector. When triggered, the garbage collection forces
a merging of superseded pages from the protection window and produces a
new system snap shot. This is a complex operation as a protection window
may have multiple copies of a single superseded page. Thus, the garbage
collector must scan all superseded versions to find the most current one.

ShiftFlash relies on inter-flash memory chip wear levelling and garbage
collection strategy to realize performance increases as its target platform is
solid-state drives. This results in extensive data transfer between memory
devices. This approach is not feasible on embedded systems due to the loss
of memory and a highly constrained data bus.

The operation of the garbage collector is used to trigger the advance
of the protection window. This is similar to protection offered by the
FlaReFS [FL11], but with significantly more overhead and complexity. Ad-
ditionally it only is designed to work with multi-chip NAND flash devices
and is not necessarily compatible with all FTLs due to its write patterns.

While ShiftFlash offers a suitable continual protection for enterprise level
systems, no analysis with respect to flash translation performance, utilization
or garbage collection performance is done. The work does not address fault
tolerance and recovery.

3.4.7 Suitability of FTL Schemes for Serial NOR Memories

The development of flash translations layers has primarily focused on
improved utilization of NAND in terms of overall lifetime. The lifetime
of a flash memory device is directly linked to the number of erase cycles.
Numerous FTL strategies have been suggested to address this concern.
Appendix A.2 summarizes the presented FTLs and highlights the type of
mapping scheme used for each, as well as the key contribution of each

72

3.5. Open Research

algorithm in addition to any special requirements. All FTLs utilize one of
three underlying mapping strategies; a page mapping scheme, block mapping
scheme or a hybrid scheme. Many of the FTLs presented are a variation on
a common theme, with the differences focusing on how to extend the life
of the device through lowered erase counts and improved page/block write
management. Of the work examined, none focus on the cost of data transfer
between the host and device which is a key design parameter for serial NOR
devices. While the FTLs presented are targeted at NAND flash, many would
theoretically work with serial NOR flash but in practice are infeasible as they
produce high levels of overhead for constrained systems. Ideally, an FTL for
an embedded system utilizing serial NOR flash must minimize the amount
of data transferred across the bus. The volume of data is directly related to
energy consumption, a key parameter in resource constrained systems.

As a result of the unreliable nature of embedded systems, the FTL must
offer fault tolerance and recoverability guarantees. This is not offered by
the majority of the FTLs. Additionally, many of the FTLs assume that a
large amount of SRAM is available as they are designed for general purpose
computers. The FTL for a constrained device must work with a minimum
amount of SRAM due the physical limitations of many devices, while still
offering reasonable performance. While many of the FTLs offer significant
insight into design issues with flash memories, none are suitable for use with
serial NOR flash on constrained devices.

3.5 Open Research

With the pervasive nature of embedded devices, the desire to collect
and analyze data is increasing. While different solid state strategies exist,
flash based memory technologies are the best candidate until other solid
state memory technologies become more viable in terms of cost, energy and
capacity requirements. While consumer devices have the ability to run a
variety of file and operating systems, most resource constrained devices do
not have this luxury, being limited by both memory and power requirements.
Additionally, they are typically focused on a single set of tasks, such as
temporal data collection or process operations. As a result, complex file
systems are not required. For many applications, storage will require only
create, append, read, and delete operations. Many embedded applications
will use their own data storage strategy and only require an abstraction layer
to the lowest level of hardware.

Flash memory presents significant technical challenges due to the lack of

73

3.5. Open Research

in-place updates in addition to only providing a page or block level interface
to the application. Utilizing a flash translation layer, a developer can easily
produce a system that will allow for the low level management of data
without the complexity of a large file system.

While significant research has been undertaken in the area of flash trans-
lation layers, the majority of work has focused on large systems utilizing
NAND flash. The core mapping algorithms for page mapping remain rel-
atively unchanged with efforts focusing on reducing the number of erase
operations which in turn extends the life of the device. Many works present
small variations on a common theme focusing on reducing costly erase oper-
ations and extending the life of the device but do not consider the cost of
data transfer and management.

For resource constrained devices, the current FTL systems do not offer
truly viable candidates. While targeted at NAND devices, many pin con-
strained devices cannot use these devices as they are physically pin limited.
They tend to favour serials devices such as Adesto’s serial Dataflash due to
the low pin count interface. Additionally, the majority of serial memories
are NOR flash and offer different read and write constraints compared to
NAND flash which prevents the optimal use of many FTL strategies. Current
implementations also require large SRAM footprints, making the majority
of them unsuitable for memory constrained systems. An oversight with the
current strategies is that no consideration or analysis is made in terms of
the amount of data transferred between the host and memory device. For
serial accessed devices, this is a critical consideration as energy consumption
is incurred with the movement of data across the serial bus as there is a
correlation between energy consumption and data transfer.

With current FTL strategies, little attention is given to the storage and
size of mapping tables. This presents challenges in terms of consistency,
resource availability and energy cost. For page level strategies, the available
SRAM on many resource constrained devices is not large enough to maintain
the map leading to extensive page transfer between host and device through
caching strategies. To complicate this, the mapping tables will continually
need to be flushed to flash memory to ensure consistency in the event of
a failure. This introduces significant overhead on the serial bus as well as
being a large energy consumption source. While block or block-sets produce
smaller mapping tables, more data must be moved between host and device
due to the increased block size which increases bus utilization and risk of
data loss and is not suitable for small data records.

One common attribute missing in the collective works is the movement
of data into and out of memory buffers. While current FTL strategies make

74

3.5. Open Research

no concession for this, efficient and strategic utilization of buffers can be
explored to reduce data transfer between host and device [FL11]. Another
key issue that is not considered is the consistency of systems in the event of
a failure. This is present on both the data and metadata level. Systems that
use block level association present risks for data corruption. This is due to
the number of page writes that must occur during a block move and hence
increases the risk of a failure due to data corruption as a result of a fault
during a write operation.

For memory and resource constrained devices, FTL requirements are
different than with general purpose computing systems. A balance must
be stuck between SRAM utilization, data transfer and consistency. An
ideal system would have low energy consumption as well as minimizing data
movement while ensuring a high degree of consistency. Low data movement
not only reduces energy consumption but also reduces the risk of data loss
and system inconsistency. For a system to have a small SRAM footprint,
the minimum data block size must be larger. For block level schemes, this
increases the complexity of data management and well as energy costs.
Additionally, due to the nature of environments where embedded systems are
being used, an FTL should offer a degree of data consistency and recoverability
as system faults may occur producing a potential source of data loss. In
situations such as environmental monitoring applications, data consistency
during collection is critical. Events may be singular in nature and the loss of
data unacceptable. To balance all required aspects for memory and resource
constrained systems, the FTL must have a small unit of addressability which
reduces the risk of data loss and minimizes data transfer. While page mapped
FTLs offer this solution, currently the page mappings are too large to be of
use.

With NOR flash being the most common choice of flash memory for
embedded systems, few FTL choices exist. Atmel has produced an FTL
for the serial NOR Dataflash but it is incompatible with 8-bit processors.
It has a large SRAM requirement as is only available as a pre-complied
library for specific Atmel 32-bit devices making it infeasible for use across
multiple platforms. No work to date offers an ideal solution that balances
all of these aspects in a holistic FTL system nor considers memory device
specific algorithms to take advantage of architectural features that can offer
performance gains that is cross platform and addresses the challenges in the
8-bit embedded space.

75

Chapter 4

Write Strategies for Serial
NOR Flash

If the person you are talking to
doesn’t appear to be listening, be
patient. It may simply be that
he has a small piece of fluff in his
ear.

A.A. Milne - Winnie-the-Pooh
(1882 - 1956)

Embedded devices need to be able to store and process data. The Internet
of Things (IOT) involves devices such as wireless sensor networks and mobile
computing platforms interacting with each other [GIMA10]. It is anticipated
that by the end of this decade there will be between 30 and 50 billion devices
participating in the IOT [Wit13]. One of the key aspects of the Internet
of Things is the sensing and sharing of data and environmental parameters
automatically in numerous domains [AIM10].

IOT vendors such as Cisco anticipate the direct sharing of data between
devices driving the need for local storage and processing [Eva01]. Devices such
as the Telos, Btnode, MicaZ [BPC+07] platforms have been previously used
as research and development platforms. Recently, the Arduino [Sev14] family
of devices has driven low cost development and exploration. These devices
are typically small 8-bit devices [ASSC02] with power and persistent storage
constraints as well as minimal memory (often less than kB SRAM) [DNH04].
Energy availability and secondary storage are key factors.

While NAND Flash has found numerous applications such as mobile
handsets and primary storage solutions, NOR flash is still the primary choice
for use in embedded applications [ZSI11] primary due to its low read latencies
and data integrity. It maintained market dominance over NAND flash until
2005 by measure of market revenue [AA11]. The adoption of NAND flash did
not move at the same rate due to the significantly more complex write patterns
due to the block structure of the device [SCKS08]. This chapter examines how

76

Chapter 4. Write Strategies for Serial NOR Flash

write strategies optimized for serial NOR Dataflash can significantly improve
device performance including fewer page erases, faster write operations, and
less energy consumed. The techniques examined can be used to improve
data consistency, extend the field lifetime of memory devices, and simplify
write techniques for resource constrained devices. The technique applies to
many applications and devices. In this work, the target devices are 8-bit
processors which are commonly used due to low cost and complexity [Mur15]
and are well-suited for many data collection and logging applications. These
applications are still well suited to the 8-bit processor which is being driven
by a growing number of IoT systems utilizing this technology [Mur15]. The
8-bit architecture is still the most commonly used device today accounting
for almost 40% of all microcontroller device sales in 2014 [TBHR15].

One of the largest challenges for resource constrained devices is the lack
of SRAM for temporary storage of data. Devices such as the Arduino utilize
SD cards for secondary storage, but SD cards required too much SRAM to
use with resource constrained devices.

Embedded devices have limited SRAM and use either NAND or serial
NOR flash for persistent storage. NAND flash has faster performance and
larger capacity than NOR flash but requires a higher pin count and more
complex data management strategies. NOR flash has simpler management
requirements and would be a more useful technology if its write performance
was more comparable to NAND flash. For systems that are unable to use
an FTL, serial NOR Dataflash offers the ability to erase single pages before
writing, but at a much higher cost than a block erase. It does provide an
attractive solution as no additional management is required. The worst case
scenario is that a page needs to be erased for every operation to satisfy the
erase-before-write constraint if the device is unable to maintain an FTL type
algorithm. The drawbacks are that the operations are expensive both in
terms of time and energy.

In many of the smallest applications, serial NOR flash memory is used.
A commonly found alternate strategy is serial NOR Dataflash, a NOR flash
based technology with additional buffers to facilitate the movement and
storage of data. While it offers advantages over SD cards due to this feature,
users of the device are directly required to manage write and erase constraints
commonly found with flash memory.

This chapter presents serial NOR Dataflash optimized writing strategies
that greatly improve its performance and usability for embedded devices.

77

4.1. Write Strategies for Improved Performance with Serial NOR Dataflash

4.1 Write Strategies for Improved Performance
with Serial NOR Dataflash

Understanding NOR flash memory technology allows for write optimiza-
tions. Flash memory technology is based on the floating gate MOSFET
which has a similar architecture to the MOSFET used in SRAM. The floating
gate MOSFET [KS67] can encode a persistent state for a long period of time
without the requirement that it be continually powered.

As discussed in Section 2.2, the floating gate of the MOSFET is used as
an electron trap to encode information. In the erased state, flash memory is
set to a logical ‘1’ via the absence of electrons in the floating gate. The lack
of electrons allows for the establishment of an electric field and generation
of a conduction channel. When programmed, electrons are injected into
the floating gate which prevents the formation of an electric field and thus
the formation of a conduction channel. As noted previously, the method by
which electrons are injected into the floating gate and the quantity differ
depending on the type of flash memory.

NAND flash uses Fowler Nordheim (FN) tunnelling for both erase and
write operations whereas NOR only uses FN tunnelling for erase operations.
For write operations, channel hot electron (CHE) injection is used to inject
electrons into the floating gate. This operation is self limiting in such that the
injection operation will stop when sufficient charge has built up proportional
to the strength of the electric field being applied.

Another difference is the configuration of memory cells. With the NOR
architecture (Figure 4.1a) each element in the matrix has its control gate
connected to a word line and bit line connected to the drain [BCMV03]. This
allows the matrix to address a single element in the memory array without
disturbing any other element. NAND flash shares a similar configuration
in terms of the word line which is used to activate the control gate of
the element or elements being read. The single largest difference in the
architecture between NAND and NOR is how the bit line is connected.
Unlike in NOR memory, the source and drains of the memory cells in NAND
flash are linked together (Figure 4.1b) in a daisy chain fashion [BCMV03]
which can lead to disruption of neighbouring cells.

These observations leads to a unique opportunity with NOR flash that is
not possible with NAND flash. When a page is erased, each cell will encode
a logical ‘1’ (lack of charge). Unlike NAND flash where charge levels during
programming are continually controlled as well as suffering from neighbour
write disruptions, when a NOR memory cell is written (set to logical ‘0’),

78

4.1. Write Strategies for Improved Performance with Serial NOR Dataflash

(a) NOR Flash Memory Cell
Structure

(b) NAND Flash Memory
Cell Structure

Figure 4.1: Memory Cell alignment for NOR and NAND Flash

charge is allowed to accumulated in the floating gate via CHE injection. If
an attempt is made to write a logical ‘0’ to the cell again, the existing build
of charge will prevent any additional charge entering the floating gate due
to the self limiting properties of CHE injection. It is hypothesized that this
unique observation allows for the re-writing of memory cells under specific
conditions which can be exploited to increase device performance.

4.1.1 Write Operations for Serial NOR Flash

In developing the understanding of the structure of NOR flash, it is
conjectured that a NOR cell may be re-written as long as the transition is
from logical ‘1’ to logical ‘0’ without disturbing neighbouring cells due to
the internal structure of NOR flash (Figure 4.1a) for page accessible serial
NOR Dataflash.

Consider the following state transitions for an erase NOR memory cell
where CSerased is the state of the cell (logical ‘1’) after it is erased and is
considered to be the normal state before any write operation. The state of
allowable transitions is shown in Figure 4.3. Under normal conditions where
the cell is being written, the allowable bit transitions can be represented as
an AND operation between the state of the current cell state and the data
being encoded as shown in Table 4.1a. Based on the previous conjecture
on allowable cell transitions, the complete set of operations can be fully
expressed as an AND logic function as shown in Table 4.1b where CSinitial is
the initial state of any cell, and CSafter write is the final state. It is observed
based on the table, that if the initial state of the cell is a logic ‘1’, then the
cell can be transitioned to either a logical ‘1’ or logical ‘0’ whereas if the cell

79

4.1. Write Strategies for Improved Performance with Serial NOR Dataflash

(a) Overwritting

(b) Masked Overwritting

Figure 4.2: Overwriting strategies for data movement from SRAM buffer to
flash page for Serial NOR Dataflash

80

4.1. Write Strategies for Improved Performance with Serial NOR Dataflash

Figure 4.3: Memory Cell Write Transition States for Serial NOR Dataflash

Table 4.1: Write State Truth Tables for a NOR Memory Cell.

(a) Writes to Erased NOR Cell

CSerased Data CSafter write

1 1 1

1 0 1

(b) Writes to an Any State NOR Cell

CSinitial Data CSafter write

1 1 1

1 0 0

0 1 0

0 0 0

to be written is a logical ‘0’ regardless of the data being written, the final
state will be unchanged.

Under normal operation, data is loaded into the SRAM buffer and then
written to a previously erased page. In the case of append type operations,
data is held in the SRAM buffer, new data appended, the target page erased
and then rewritten. In this type of operation where new data is being written
to previously erased locations with existing data being unchanged, it is
hypothesized that the buffer can be rewritten back to the same pages without
having to occur an addition erase operation. Figure 4.2a demonstrates this
overwriting operation for a simplified example where the page and buffer size
are 8 bytes. In this example, locations 0 and 1 have previously been written
by the buffer to flash. In overwriting, new data is appended to location 2
(indicated by dashed outline) and then the buffer is written back to the same
flash page. As the contents of the previously written locations are unchanged,

81

4.2. Hypothesis about Rewrites

only new locations will be modified.
A limiting factor in the overwriting operation is that a write to a previously

written location will still induce CHE oxide degradation. It is hypothesized
that this can be minimized by changing write patterns to previously written
cells. When a logical ‘1’ is transitioned to logical ‘0’, charge is injected into
the floating gate. By examining the state transition diagram (Figure 4.3),
independent of the current cell state, a write with a logical ‘1’ will transition
back to the current state. In the case where the cell is already a logical ‘0’
and a logical ‘1’ write is attempted, no CHE injection will occur leaving the
cell in its previous state. This transition can only physically occur with FN
tunnelling that is developed during an erase cycle. Figure 4.2b demonstrates
this masked overwriting operation for a simplified example where the page
and buffer size are 8 bytes. In this example, locations 0 and 1 have previously
been written by the buffer to flash. In masked overwriting, new data is
appended to location 2 (indicated by dashed outline) and previous written
locations in the buffer are masked to 0xFF (indicated in bold). The buffer is
written back to the same flash page. The contents of the previously written
locations are unchanged due to the forbidden 0 to 1 transition described,
modifying only the unmasked, unwritten area.

For data storage operations this is a desirable operation as it allows new
data to be appended to a page without having to occur additional erase/write
cycles as the page can be rewritten in place. It is estimated that the savings
in terms of page erases and energy consumption is significant compared to
write operations that are written to fresh pages for every commit. This will
offer record level consistency without having to occur high levels of erase
operations, and presents the opportunity for bit vector mutation in place.

4.2 Hypothesis about Rewrites

Given this understanding of the fundamental NOR flash architecture, the
following hypotheses are tested:

Hypothesis 1: A serial NOR Dataflash page can be overwritten in place
with no data loss as long as the only bit transitions are from 1 to 0 or 0 to 0.

Hypothesis 2: The page write time in serial NOR Dataflash is propor-
tional to the number of bit transitions from 1 to 0 written.

Hypothesis 3: When overwriting a serial NOR Dataflash page, utilizing
a bit mask (masked overwriting) of ones for all bits applied to previously
written data in a page will improve performance while maintaining data
correctness.

82

4.3. Experimental Results

4.3 Experimental Results

The experiments were run on a serial NOR Dataflash memory device
(AT45DB161E from Adesto Technologies [Ade15]).

To validate Hypothesis 1, memory pages were continually re-written with
page data that contained an increasing number of zeros. The first write had
zero zeros, the second had one (in the first bit), the third write had zeros
in the first two bits, and so on. Each page consists of 512 bytes (4096 bits).
Each page on the device was written 4096 times with an increasing number
of zeros. This was repeated for each device page for a total memory device
writes of 16 777 216 times without a single bit error.

These results validate Hypothesis 1 that it is possible to overwrite a NOR
flash page without data loss with the constraint that all bit transitions are
from 1 to 0 or 0 to 0.

The second hypothesis examines the correlation between write patterns
and write times. It suggests that there is a correlation between the number
of bit transitions (1 to 0) in a write operation and the amount of time to
complete the buffer write to the main flash page. In this experiment, the
number of 0’s in the SRAM was increased after each write to the same page
in memory. Two test conditions were used to examine if specific patterns
impacted write times: a baseline where the target page was erased before
each write and a test using overwriting (Figure 4.2a). The test conditions
were evaluated with an increasing number of zeros starting with byte zero
incrementally written to a flash page. Two SRAM buffers were used on the
serial NOR Dataflash. One buffer was used for the masking test condition
and the second buffer was used to maintain a mirrored state of data in the
flash page for validation of contents. The test was repeated across multiple
device pages. Least squares analysis was performed on each test condition.
The results and number of observations are presented in Table 4.2 which
shows a strong correlation between the number of 1’s written with respect
to time.

Figure 4.4 shows the time in milliseconds to complete writing the nth

byte under a given test. For the baseline test (Figure 4.4: Erase Before
Write), the flash page was erased before each write. The graph shows that
the time of the device to complete the write of the buffer to the target page
in flash memory is directly related to the number of 0 values being written.
This is supported by the high degree of correlation (Table 4.2) between 1 to
0 transitions per page and write times. The confidence interval for each data
set is also shown on Figure 4.5, but the interval is imperceivable as it is very
small.

83

4.3. Experimental Results

To examine the cost per bit with respect to time, an increasing number of
zeros starting with byte zero were incrementally written to a series of pages.
New data was transferred to the SRAM buffer. As a baseline, the buffer was
written to a previously erased page. This was repeated with the number of
transitioned bytes (from one to zero) increasing by one on every write. After
each write, the flash page was erased with the buffer maintaining state. The
results (Figure 4.4) show the time of the device to complete the write of the
buffer to the target page in flash memory. Results demonstrate a high degree
of correlation and monotonically increasing nature between the number of
write transitions per page and write times.

For the overwriting test (Figure 4.4: Overwrite without Mask), the flash
page was only erased before the initial write. Each subsequent write to
the page in flash used the overwriting technique (Figure 4.2a) where the
SRAM buffer maintains consistency with the values written to flash and
updates a single byte in a previously unwritten area of the target flash page.
The results demonstrate a similar linear relationship and high degree of
correlation (Table 4.2), but faster write times were observed. This is due
to faster equalization times for CHE injection when writing to previously
written location as cells already contain excess electrons.

From the high degree of correlation observed, it is the act of attempting
to modify the floating gate memory cell that is the dominant factor in writing,
but the initial state of the cell in memory and buffer will impact write times.

Hypothesis 3 was that single byte write times could be increased through
strategic management of previously written data in the buffer (Figure 4.4:
Overwrite with Mask). Data within a page that is not actively being written
is masked with a high logic state (Figure 4.2b). From Hypothesis 2, the
write time is linearly related to the total number of 0 bits in the buffer being
written. Thus, when writing a page to the device, it may be valuable to
have all bits in high logic state (1) except for the bits being written (see
Figure 4.2b). This not only decreases page write times but will not degrade
existing cells through additional CHE injection.

As in the previous test, one serial NOR Dataflash SRAM buffer was
used for consistency and validation checking of the flash page being written.
It maintained the true state of what should appear in the flash page after
each write to check the correctness of the masked overwrite. The second
buffer implemented the overwriting technique (Figure 4.2b). The same test
operations were used as in the previous test, except during each write, the
location of the byte being written was unmasked and updated in the second
buffer, written to the flash page and then re-masked. Least squares analysis
was performed on each test condition. The results of each test and number

84

4.3. Experimental Results

Byte Count

T
im

e
(m

s)

0 64 128 192 256 320 384 448 512

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Erased Before Write Overwrite with Mask Overwrite without Mask

Figure 4.4: A timing comparison of overwriting techniques for serial NOR
Dataflash.

Table 4.2: Least Squares Coefficients for Writing Techniques

Write
Strategies

Erase Before Write Overwrite Mask Overwrite

Slope
4.099×10−3∗∗∗ 1.201×10−3∗∗∗ 2.016×10−7∗∗∗

(3.793×10−7) (5.647×10−7) (3.459e-8)

Intercept
3.287×10−1∗∗∗ 3.311×10−1∗∗∗ 3.308×10−1∗∗∗

(1.122×10−4) (1.670×10−4) (1.023e×10−5)
Observations 2 097 152 2 097 152 2 097 152

Standard errors in parentheses.
(***) indicates significance at the p=0.01 level.
Each column contains regression coefficients for the linear model for a given write
strategy.

85

4.3. Experimental Results

Time (ms)

0.3 0.31 0.32 0.33 0.34 0.35 0.36

(a) Measured Single Byte Write Times

Time (ms)

0.3 0.31 0.32 0.33 0.34 0.35 0.36

(b) Single Byte Write Times with Jitter

Figure 4.5: Distribution of Single Byte Write Times with Masked Overwrit-
ting.

86

4.3. Experimental Results

Table 4.3: Timing Comparison of Overwriting and Erase-Before-Write Oper-
ations

Method
Number of

Erase
Operations

Time for
Erase

Operations
(ms)

Time for
Writes (ms)

Total
Cumulative
Time (ms)

Erase-Before-
Write

512 6144 861.38 7005.38

Masked
Overwriting

1 12 190.23 202.23

of observations are presented in Table 4.2.
In examining the results in (Figure 4.4: Overwrite with Mask), it was

found that the write times are not proportional to the actual number of
0’s in the main flash page but to the number of 0’s in the buffer being
written. Unlike the baseline condition or overwriting condition, the page
write times using masking were constant for each append operation as it
prevented additional 0 to 0 writes due to previously written values. This
suggests that strategic use of write patterns by way of masked overwriting
when modifying a previously unwritten field in a page can lead to significant
write time improvements for small data writes over other techniques. From
Figure 4.5, the mean value of the normal distribution is shifted right on
the histogram. It is conjectured that this is due to sampling errors and
the resolution of the timing system compared to actual times to complete
the operations. To accommodate for this in analysis, jitter was added to
the sample set producing the results in Figure 4.5b in order to more clearly
visualize the distribution supporting that isolated single byte write times
across are normally distributed and the uniformity of the behaviour across
the device.

In practice, data management on embedded systems is challenging. Users
often choose to treat the serial NOR Dataflash as a viable re-write-in-place
type device when in fact they are unaware of the high cost associated with
erase-before-write operation that is implicitly being conducted. Using re-
writing versus writing with erase has the potential to significantly reduce
operational times and energy consumption. Consider Table 4.3 which com-
pares write times and masked overwriting and erase-before-write append
operations for appending 1 byte values in a sequential fashion to a 512 byte
page. The table shows the total cumulative time including page erase costs

87

4.4. Use Cases

between each write for non-masked writes. Masked overwriting reduces the
time required for append operations which corresponds to a reduction in
total energy for the operations and number of erase operations. Additionally,
wear on the device is reduced as page erases are not required between each
write and masking reduces oxide degradation on rewrites.

4.4 Use Cases

For embedded applications, utilizing the ability to append or modify
existing data without having to incur erases extends the life of the device as
well as simplifies data management for common applications. The following
use cases show how masked overwriting offers performance improvements in
both time and lifetime.

4.4.1 Data Logging

Data logging applications [FG12] often use serial NOR Dataflash, and
energy consumption and lifetime is paramount with the goal of minimizing
service and maximizing field life. With data logging, the system is config-
ured to take a series of defined measurements at regular periodic intervals.
Devices such as the Arduino have found significant inroads in these appli-
cations [FG12] due to the low cost and ease of use. Common applications
record a 12-bit analogue-to-digital converter every 1 minute and store the
data to persistent storage.

An application logging a 2-byte record every minute writes to the same
logical page 256 times (512 byte page size). Without overwriting, each
record stored causes a full page write to a newly erased flash page. In
comparison, using masked overwriting allows the application to write to
the same page 256 times (appending a new record after each write). Using
masked overwriting is significantly faster for page writes and reduces page
erases by 256 times. For each write operation 2 bytes of data and 2 bytes
of mask are transferred between the host and memory for a total of 4 bytes
per write. Overwriting improves write performance, extends lifetime, and
reduces energy requirements by reducing the ratio of writes to erases while
being able to maintain record level consistency.

Utilizing overwriting with serial NOR Dataflash makes it competitive
with storing data on NAND flash technologies such as a SD card. Although
NAND flash has inherent speed advantages over NOR flash, NAND flash
must always read and write complete pages. SD cards do not maintain
internal buffers, so a complete page must be transferred to the host, modified

88

4.4. Use Cases

Table 4.4: Comparison between raw SD storage and serial NOR Dataflash
(SNDF) using masked overwrite strategy.

Memory
Device

Record
Size

(bytes)

Data
Transfer

Size
(bytes)

Data
Overhead
per write

Time
(ms)

Data
Logging

SD Card 2 512 510 2.61
SNDF

with masked
overwriting

2 4 2 0.40

Bit
Vector

SD Card 1 1024 1023 4.57
SNDF

with masked
overwriting

1 2 1 0.33

and then written back to the SD card. With masked overwriting and serial
NOR Dataflash, only the new record is transferred to the device as it is able
to buffer pages internally using the SRAM buffers and a new page is not
needed for each write.

Table 4.4 presents actual device measurements using these two strategies.
For a single record write, serial NOR Dataflash with masked overwriting
significantly outperforms the SD card. In the course of one day, this translates
to 1440 records. For the SD card this results in 737 280 bytes transferred
versus 5 760 bytes resulting in a savings of approximately 99%. Additionally,
the erase operations have been reduced by a factor of 256 which directly
translates to significant energy savings and increased device lifetime without
having to use a complex page remapping strategy.

4.4.2 Bit Vectors

Bit vectors [RSW05] allow for compact storage of data. Bit vectors are not
as efficient in persistent flash memory as data must be read and written at the
page level. Consequently, updating a single bit in a bit vector in flash requires
a whole page to be written. They are highly desirable structures due to their
compact nature, and can be found in secondary storage systems to indicate
the status of a given record known as a tombstone. This approach requires
little storage overhead but presents a significant I/O overhead especially for
serial accessed memories.

Overwriting with serial NOR Dataflash offers a major advantage when
using bit vectors. Not only can the amount of data be reduced, but using the
masked overwrite strategy, extra page copies and erases can be minimized.

89

4.5. Comments on Overwriting

To accomplish this, a write mask is brought into one of the SRAM buffers
on the memory device. As demonstrated, the mask can be written over
live data without impacting the state of the data. Taking advantage of the
proposed strategy, the host can then update the location of the bit vector
and overwrite the data in memory assuming it is an allowed transition (1
to 0). Since only one field has changed in the buffer, it can be written back
to its original page leaving the original data intact. Compared to utilizing
a bit vector strategy for record management with SD cards, this strategy
significantly reduces data transfers and writes as well as minimizing data
movement and erases on the serial NOR Dataflash. Table 4.4 presents actual
device measurements using these two strategies with masked overwriting
offering a performance improvement.

4.5 Comments on Overwriting

Strategic management and writing of data using masked overwriting has
the potential to increase serial NOR Dataflash lifetime, decrease energy
consumption per operation and reduce average time per write operation.
The result of this work supports the ability to do in-place append operations
or bit manipulations for serial NOR Dataflash and provides an analysis of
device performance based on write patterns.

This strategy reduces the complexity of data management as well as
reducing energy costs and extending serial NOR Dataflash field life through
lower write cost and a lower ratio of erase to writes on device. Understanding
data write patterns can allow for a system to reduce the energy required
(for both write and erase operations) as well as reducing the complexity of
data management on device. Overwriting and Masked overwriting improves
operation times when the system is not required to rewrite an entire page.
It supports the correlation between actual write patterns and write times on
devices. This understanding allows for the use of strategic write patterns
to minimize write times and energy consumption. In the case with masked
overwriting, the time for write can approach the lower feasible bound where
the actual write time directly corresponds to record size.

90

Chapter 5

Flash Translation Layer for
Serial NOR Flash

The secret, I don’t know... I
guess you’ve just gotta find
something you love to do and
then... do it for the rest of your
life. For me, it’s going to
Rushmore.

Max Fischer - Rushmore (1998)

For memory and resource constrained devices, FTL requirements are
different than with general purpose computing systems. A balance must be
struck between SRAM utilization, data transfer, and total energy costs. A
ideal system would have low energy consumption as well as minimize data
movement. Low data movement reduces energy consumption and the risk of
data loss and system inconsistency. Due to the nature of environments where
embedded systems are being used, an FTL should offer data consistency
and recoverability as system faults may occur causing data loss. While page
mapped FTLs offer this solution, currently the page mappings are too large to
be stored in SRAM for these devices. No work to date offers an ideal solution
that balances all of these aspects in a holistic FTL system nor considers
memory device specific algorithms to take advantage of architectural features
that can offer performance gains for these systems. No FTL solution exists
for serial NOR Dataflash for 8-bit resource constrained embedded devices.

5.1 Serial NOR Dataflash

Serial NOR Dataflash is a unique NOR flash device that has a page
orientated design with a high speed serial interface which makes it especially
suitable for resource constrained systems. Unlike other technologies, the
memory device contains two SRAM buffers that are used to hold and transfer

91

5.1. Serial NOR Dataflash

data as it is moved in and out of the main flash memory block (Section 2.2.2
Figure 2.12). Data is transferred to and from the device in a serial fashion
using the SP which is a four wire master-slave synchronous bus. Two
lines, Master Out Slave In (MOSI) and Master In Slave Out (MISO) are
dedicated for the movement of data between the memory device (slave) and
host (master) processor with a Clock (SCLK) being used to synchronize
communications. A fourth line, Chip Select (CS) is used for signalling
between host and memory device. The host indicates to the memory device
the start and end of data transmissions using CS line.

To quantify device input-output performance, the number of command
operations transmitted to the device and the amount of data is analyzed and
expressed in bytes. Three major groups of commands are used to control
data flow between the host device and memory. All operations start with
the transmission of a single command (CMD) byte followed by an additional
number of address or data bytes including:

− internal operations that move data between the main memory block
and SRAM

− write data from the SRAM buffers to main flash block

− erase operations

and are signalled using command transfer mode. Figure 5.1a shows state of
the SPI lines during a command transfer. To transmit a command from the
host to the device, the host initiates the operation by de-asserting the CS
line. The host then transmits the command plus additional addressing bytes
on the MOSI line in serial fashion. Once transmission is complete, the host
signals the end of transmission by reasserting the CS line. Operations within
the memory are self timed and the completion of an operation is determined
by periodic polling of the internal status register via the SPI bus. The cost
(in bytes transmitted) can be expressed as

C = CMDbyte + addrbyte2 + addrbyte1 + addrbyte0 (5.1)

where C is a command operation, CMDbyte is the command byte associated
with the operation and addrbyten is used to encode buffer or page addressing
information for the specific command being transmitted. The number of
bytes is directly related to the time based on bus speed.

The cost of a write operation of n bytes (Figure 5.1b) is

W (n)bytes = CMDbyte + addrbyte2 + addrbyte1 + addrbyte0 + n (5.2)

92

5.1. Serial NOR Dataflash

CS

SCLK

MISO

MOSI cmd addr2 addr1 addr0

(a) Command Mode

CS

SCLK

MISO

MOSI cmd addr2 addr1 addr0 byte0 byte1 byten−1

(b) Write Mode

CS

SCLK

MOSI cmd addr2 addr1 addr0

MISO byte0 byte1 byten−1

(c) Read Mode

Figure 5.1: Serial NOR Dataflash Read and Write Timing Sequences Where
Represents One Byte of Data

93

5.1. Serial NOR Dataflash

where n in the number of bytes being transmitted. This can simplified as
it contains a common command sequence as expressed by Equation (5.1),
producing

W (n)bytes = C + n. (5.3)

For read operations (Figure 5.1c) the cost of a read operation is

R(n)bytes = C + n. (5.4)

In addition to the cost in terms of the number of bytes being transmitted
over the bus, consideration must be given to the internal self-timed operations
of the Dataflash memory. While most internal operations are very fast (order
of nanoseconds), operations such as transferring data from the flash block to
one of the internal buffers or writing data from one of the internal buffers
to the flash block incurs measurable time as well as consumes energy. As a
result, the count of data transfer operations either from SRAM to flash or
from flash to SRAM buffer is considered as a performance metric.

A combination of data movement operations are required to move data
onto the device or off the device. Data movement on the device is facilitated
by the on-board buffers. Figure 5.2 demonstrates the operations required to
write data to an existing page on the device for serial NOR Dataflash. The
host processor first sends a Command message to the host to move data from
a selected page in flash to one of the two SRAM buffers. In the example
(Figure 5.2a), the host is processing write(3,B). The host processor instructs
the memory to move physical page 3 into buffer 0. Once the page has been
buffered, the host processor then issues a write message to update the data
in buffer 0 (Figure 5.2b action ¬) where the data is transferred from the
host and written in a sequential fashion to buffer 0. Due to the physical
constraints of flash memory, the buffer cannot be written back to the same
physical location (unless utilizing operations highlighted in Chapter 4). The
host processor must request that physical page 3 be erased with a command
message (Figure 5.2b action), before proceeding with the transfer of buffer
0 to page 3. Once the erase operation has competed, the host processor
issues a command message to initiate the transfer of buffer 0 to the physical
page in flash (Figure 5.2b).

Figure 5.3a demonstrates the operations required to read data from an
existing page on the device. The host processor first sends a Command
message to the host to move data from a selected page in flash to one of the
two SRAM buffers. In the example, the host is processing read(3) which
attempts to read the contents of physical page 3. The host processor instructs
the memory to move physical page 3 into buffer 0 with a command message

94

5.1. Serial NOR Dataflash

(a)

(b)

(c)

Figure 5.2: Serial NOR Dataflash Write Operations

95

5.1. Serial NOR Dataflash

(a) Buffered Reading

(b) Direct Reads Bypassing Internal Buffers

Figure 5.3: Serial NOR Dataflash Read Operations

(action ¬). Once the page has been transferred to the buffer, the host
processor issues a read command (action) which initiates transferring the
buffer back to the host in a sequential fashion.

One unique feature of the AT45 family of devices is the ability to support
direct reads from the main flash block. Data can be directly accessed without
having to first buffer it in the SRAM buffers and without disturbing data
held in the on device SRAM buffers. The command sequence required to
initiate a direct read operation is the same format as a command to read
from a buffer (Figure 5.1c), thus offering no additional overhead. Unlike
in the example with buffered reading where the host is required to send a
command to initial a page transfer to buffer before reading the memory, the
host processor can issue a single command which will read the data directly

96

5.1. Serial NOR Dataflash

from main flash memory block, bypassing the buffers completely. This offers
a performance increase as it allows data to be accessed from the memory
device without having to first flush data that may be residing in a buffer
in addition to reducing the number of commands issued to the device. The
direct read operation allows data to be accessed from any position in the
page and of any length. This is particularly useful as it allows for a host
system to read small units of data without having to move an entire page to
a buffer or to host memory.

Consider the case for direct reads versus buffered reads. The following en-
ergy cost calculations are for the AT45DB161E flash memory device [Atm04]
and demonstrate the advantage of using direct reads over buffered page reads.
The AT45DB161E is a 16 megabit device with 4096x528 byte-pages. The
Low Frequency Continuous Array read supports bus speeds up to 33 MHz
which is higher than the clock speed of many low-power 8-bit processors. This
operation requires four setup bytes followed by one byte for each sequential
data to be clocked onto the SPI bus (Figure 5.1c) which can be represented
by Equation (5.4). In this analysis we exclude edge transition times as they
are considerably smaller than device setup times. The manufacturers nominal
values are used for timing and power analysis. The byte cost for accessing is

R(n)bytes = C + n. (5.5)

where n is the number of sequential bytes to be read from a page. It then
follows that the total time to transfer n bytes of data off the flash device on
an SPI bus is

tDR =
R(n)bytes
SPIclk/8

=
C + n bytes

SPIclk/8
(5.6)

where SPIclk is the SPI clock rate in MHz, and tDR is the time in seconds
to read n sequential bytes.

For a series of bytes to be read from the device using a buffered read, the
page containing the bytes of interest must be first read into one of the two
SRAM buffers and then transferred across the SPI bus. Similar to the direct
read, there is a four byte setup cost to initiate the page transfer to buffer in
addition to a 200 µs delay while the page is being transferred to the buffer.
Once the page is loaded into the buffer the data can then be read requiring
four setup bytes and then one clock byte for each data byte required. From

97

5.1. Serial NOR Dataflash

Equation (5.1) and (5.4), the total time for a buffered read is

tBR =
C

SPIclk/8
+ 200 µs +

C + n bytes

SPIclk/8

=
2C + n bytes

SPIclk/8
+ 200 µs (5.7)

where n is the number of sequential bytes to be read from a page, SPIclk is
the SPI bus speed in MHz and tBR is the byte time is seconds for a buffered
read. The SPI clock speed is expressed in bits per second.

Operation time can be directly related to energy consumption. The total
energy per byte for a direct read can be expressed as

EDR = IRead ∗ V ∗ tDR (5.8)

where IRead is the current draw for the flash memory device for a read
operation, V is the operating voltage, and EDR is the energy cost per byte
in Joules or a direct read operation.

It then follows from Equation (5.7) that the energy to read n bytes with
a buffered page read is

EBR = IRead ∗ V ∗ tBR (5.9)

where EBR is the energy cost per byte in Joules for a buffered read.
Consider the following example based on typical component val-

ues [Ade15] for accessing a one byte value from the flash memory using
direct read where the operating voltage V=3 volts, the nominal read current
IRead=0.007 amp, and an SPI bus speed is 4 MHz From Equation (5.6) the
total access time is calculated as

tDR =
C + n bytes

SPIclk/8

=
4 + 1

4 MHz/8

= 10 µs. (5.10)

The estimated total energy cost for a byte read from Equation (5.8) is

EDR = IRead ∗ V ∗ tDR

= 7 mA ∗ 3.0 V ∗ 10 µs

= 0.21 µJ. (5.11)

98

5.1. Serial NOR Dataflash

Consider the same single byte operation utilizing a buffered page read
with the same configuration using Equation (5.7). Using Equation (5.6) the
access time for the operation is calculated as

tBR =
2C + n bytes

SPIclk/8
+ 200 µs

=
8 + 1

4 MHz/8
+ 200 µs

= 218 µs (5.12)

The estimated total energy cost for a byte read from Equation (5.8) is

EBR = IRead ∗ V ∗ tDR

= 7 mA ∗ 3.0 V ∗ 218 µs

= 4.478 mJ. (5.13)

In comparing the two different read methods, direct reads have signifi-
cantly lower overhead compared to buffered reads, regardless of length as
presented in [FL11] where tDR � tBR. This is directly related to the time to
move data from flash to the internal SRAM buffer. Direct reads are favoured
over buffered page read regardless of size due to the constant overhead of
transferring to data to the buffer and should be exploited in embedded
system design. The fixed overhead in comparing the two methods can be
determined by subtracting Equations (5.6) and (5.7) as

toverhead = tBR − tDR (5.14)

=
2C + n bytes

SPIclk/8
+ 200 µs− C + n bytes

SPIclk/8
(5.15)

=
C

SPIclk/8
+ 200 µs (5.16)

In cases where data is being consecutively read from a single page without
any other operation, direct reads offer a small advantage over buffer reads as
the data can be held in the buffer after it has been loaded from flash thus
incurring a one time cost (Equation 5.7) for the command and delay to load
the page. All subsequent reads are at the same cost for both direct reads
and buffered reads.

The direct read is especially suitable for operations were a small amount
of data is required from flash in between other operations that utilize buffers.
In the case where a single byte field is required to be accessed from a location
a direct read offers significant advantages not only in speed but in flexibility.

99

5.2. The Flash Resident FTL

In the case where a buffered read is utilized, data that is currently in the
buffer may have to be evicted forcing the system to incur an additional write
in the worst case. By utilizing direct reads, not only is read performance
increased, it frees the buffers for write only operations. This is a key design
consideration in the development of the FTL as it relies on the ability to
access mapping structures directly from flash memory, eliminating the need
for mapping structures to be stored in memory on the host processor while
maintaining flexibility with memory buffers in addition to fast data retrieval.

5.2 The Flash Resident FTL

A significant limitation with raw device access with flash memory is that
data cannot be re-written in place without the page first being erased. This
limitation is addressed with using a flash translation layer.

Flash Resident FTL (FlaReFTL) is a flash translation layer that is
transactionally robust with a small static RAM footprint targeted for small
sensor nodes and resource constrained 8-bit devices. It strives to balance
addressability, speed, robustness, consistency and data transfer against
energy, wear and utilization The FlaReFTL system is targeted for the Adesto
family of AT45 Dataflash memory devices. Unlike other FTLs presented in
Section 3.5, FlaReFTL maintains the entire flash translation structure in
flash memory resulting in an FTL with a small memory footprint. This makes
it suitable for use with the most resource constrained devices. It utilizes
direct read operations to efficiently access translation data from flash memory
without having to transfer data pages to either internal SRAM buffers or
host memory. Additionally, it utilizes masked overwriting (Chapter 4) to
reduce erase operations and improve write append operations.

Key features of FlaReFTL include:

− Robust and consistent flash translation layer targeted to exploit physical
characteristics of serial NOR flash

− A small SRAM footprint

− Fast, low energy reads that are well suited for data analysis problems

− Deterministic wear levelling and garbage collection

− Tunable consistency levels for improved energy management

− In-place appends for data.

100

5.2. The Flash Resident FTL

5.2.1 A Fully Associative Mapping Strategy

One of the numerous challenges found when developing algorithms for
resource constrained devices is the lack of RAM. As previously noted, many
of the existing FTL strategies are unsuitable for use due to their large SRAM
requirements. On the one extreme, page-mapped schemes allow for the
most efficient utilization of memory, but the mapping sizes are too large to
fit into SRAM. At the other extreme, block level and hybrid schemes can
produce reduced mapping structures, but the increased block size becomes a
management issue as large amounts of data must be moved between flash
memory and SRAM during merge operations. Not only does this increase the
complexity of data management, it increases the window of risk for data loss.
If a fault is generated while non-committed data is on the bus, it will result
in overall data loss. The block size for merging must also be able to fit in
SRAM which is not feasible on many small devices. Ideally, a system suitable
for resource constrained devices will minimize the amount of uncommitted
data being transferred between host and device.

FlaReFTL maintains almost the entire structure of the FTL in external
flash memory minimizing the need for large volumes of uncommitted data
to be transferred off device. Data is never removed from the memory for
modification, but utilizes the flash SRAM buffers as temporary storage.
FlaReFTL utilizes a page level mapping to ensure full block utilization
without consuming large amounts of SRAM. The lowest level of the system
provides physical to logical page translation as well as control blocks for
monitoring page status and wear levelling By using the ability to perform
direct reads from the flash memory, on chip buffers are used strictly for
writing data. As a result, no page data is buffered in microprocessor RAM,
leaving memory free for other application components. A buffer manager is
responsible for controlling the allocation of the buffers on the device thus
allowing the flash SRAM buffers to function as paged memory. This allows
FlaReFTL to function on even the most memory constrained device and
eliminates the need for a user to manage the state of the buffers. Unlike other
FTLs, no separate garbage collection is needed as the garbage collection is
an integral part of the FTL design.

5.2.2 Read and Write Operations for FlaReFTL

FlaReFTL allows a user to read and write data to flash memory, and
exposes logical pages to the user. Users are prevented from accessing physical
pages as the FTL is responsible for managing the movement and storage of

101

5.2. The Flash Resident FTL

Figure 5.4: FlaReFTL Data Movement During Read Operations

data on the memory device.
For read operations, FlaReFTL manages access to the translation tables

and reading data from physical flash pages. Consider the example where
the user wants to read the contents of logical page 3 as shown in Figure 5.4.
For this example it is assumed that logical page 3 has been previously
allocated by the system. The user first issues a read(3) to the system. The
FTL will initially resolve the physical address for logical page 3 (action ¬).
Unlike other FTL systems that may be required to load mapping table pages
from flash to SRAM, FlaReFTL utilizes direct reads (Section 5.1) to access
translation information without inducing additional burden onto the system.

In this example the logical page resolves to physical page 1. The FTL
then presents the requested data to the user (action) using direct reads. By
exploiting direct reads, the FTL is able to provide data to the user without
having to disrupt the contents of the memory SRAM buffers. No noticeable
additional operation time is incurred as data is not moved from flash block
to a buffer during a direct read.

For write operations, FlaReFTL manages access to the translation tables,
the physical movement of data between buffers and the tracking and allocation
of logical and physical pages. Consider the example where the user wants
to write data to logical page 3 as shown in Figure 5.5. For this example it
is assumed that logical page 3 has previously been allocated by the system.
The user first issues a write(3,B) to the system. The FTL will initially
resolve the physical address for logical page 3 (Figure 5.5a action ¬) utilizing
direct reads. In this example the logical page resolves to physical page 1
(action ¬). The FTL selects a buffer from the available pool of SRAM buffers

102

5.2. The Flash Resident FTL

(a)

(b)

(c)

Figure 5.5: FlaReFTL Data Movement During Write Operations

103

5.2. The Flash Resident FTL

available on the memory device and transfers the physical page to the buffer
(Figure 5.5a action). Once the page is in the buffer, the data is updated
(Figure 5.5b action ¬). In this example, two data movement operations
(flash block to buffer (load operation) and buffer to flash block write (store
operation)) are used.

FlaReFTL supports multiple write modes. If page level consistency is
selected, the page will be held in the buffer until it is forcibly evicted at
which time it will be written to flash. This mode allows for subsequent
writes to the same logical page without having to occur additional flash
write operations and consuming free, erased physical pages. This operation
reduces the number of store (write) operations required.

The second mode allows for record level consistency where after each write
to a page, the buffer is written to a new physical page. To accommodate this
operation the FTL requests a new physical page and transfers the updated
buffer to the new physical page ((Figure 5.5b action). To complete the
operation, the FTL then updates the translation pages with the new physical
address of the logical page (Figure 5.5b action ®) consuming free, erased
physical pages. The process of selecting a new page and updating translation
table addresses is discussed in Section 5.4. This mode also incurs a larger
number of load and store operation are a result of continually updating table
translation addresses.

Whenever a page is written to flash, the FTL will allocate a new physical
page from its reserves of available pages and exchange the old physical
address and new physical address. Physical pages that are returned to the
system will eventually be erased by the garbage collector. When the system
is able to complete an action without having to exchange a physical page,
it effectively staves off the chance of the system being required to garbage
collect and erase pages which is a high energy and time costly activity.

The third write mode utilizes masked overwriting (Chapter 4) to reduce
free, erased page consumption. The operation is termed as a low-energy
write as it does not require a new physical page to be allocated by the system.
This write operation is only available for append operations to a given page
to previously unwritten locations. It is left to the user to manage their data
but is well suited to sequential data logging operations. If the user is using
the append write operation, write(3,B) will append to the page (Figure 5.5c
action ¬) that was loaded into the buffer. Instead of requesting a new
physical page (and engaging in a page exchange), the data in the buffer will
be overwritten back to the same physical page ((Figure 5.5c action). This
operation offers record level consistency without burdening the system with
addition page writes as well as reducing the failure opportunity window.

104

5.2. The Flash Resident FTL

Figure 5.6: FlaReFTL Core Architecture

5.2.3 Architectural Overview

The FlaReFTL system has three different page designations that serve
different functions as shown in Figure 5.6. Table Translation Pages (TTP)
store the physical address of each logical page in the system as they are
allocated. Each logical page is stored as a two byte integers starting at index
0. The byte address of each logical page in a TTP is calculated by dividing
the logical page number by 2. At each position, the physical page address
of the given logical page is stored. The system has one Master TTP and
numerous Secondary TTPs. The Master Table Translation Page stores the
physical addresses for all other TTPs in the system. The MTTP is always
allocated to logical page 0, with the STTPs following in the immediate logical
pages. For example, a system with 4096 x 528 byte pages will map to one
MTTP and 15 STTPs. User data is stored in Data pages. Records are
inserted to a logical data block by a user.

Definition 5.1. A Record is a contiguous number of bytes written from
user space to a logical data page.

Management and placement of records are the responsibility of the
application functions.

All pages contain and rely on an out-of-band data section for encoding
page metadata. For a 528 byte page, 512 bytes are used for data while
the remaining 16 bytes are used to store metadata. Each page has a class
identifier which indicates the type of page it is along with the timestamp of
the last time the page was fully written to flash. Physical pages that are
associated with a logical page contain a reverse logical page pointer which
identifies which logical page is assigned to a specific physical page. This

105

5.2. The Flash Resident FTL

information is used by the wear leveller to enforce consistency as well as
determining if a page is live. A special bit vector page is used to control the
allocation and status of logical pages in the system. The Logical Busy Page
(LBP) encodes the status of each logical page in the system. The state of a
single page is encoded via a bit vector. When a logical page is allocated, a
single bit is set to indicate the state of the either the physical or logical page.
A single 528 byte page can be used to encode the status of 4096 pages in the
system as a bit vector but is expandable for larger devices. In the LBP, each
byte segment maps to a physical 8 page block which aligns with the device
erase block. If a page is free, the corresponding bit is set to 0; if it is busy
the bit is set to 1. Unlike other designs, the system does not record or care
about the erase state of a page due to the nature of operation for the wear
leveller and garbage collector.

Storage Structure

Figure 5.7: Memory Allocation Overview

Figure 5.7 shows the structure of memory after initialization. During the
initialization of a new storage space, the system will write out the required
TTPs and BP. During this operation, the LBP is written out to the system
for the allocated logical pages required to maintain the TTPs. New pages will
be available and allocated to the TTPs. The last physical block written out is
the MTTP. This space indicates the start of the write frontier (Section 5.3.3).

Physical Page Allocation

Physical page operations are divided into three operational classes: new
physical page allocation where the system provides a new physical page
resource, physical page exchange where a previously allocated physical page
is exchanged for a new physical resource and physical page return where a

106

5.2. The Flash Resident FTL

previously allocated physical resource is returned to the pool of available
physical pages.

The allocation of physical pages is not directly tracked by the FTL.
Physical pages are allocated in a greedy fashion by the system and are
provided by the garbage collector. The detailed operation of the garbage
collector is discussed in Section 5.4. The system accesses free physical pages
at the write frontier. (Section 5.3.3) and the provisioning of a new physical
page does not incur any additional memory operations. Physical pages can
be linked, unlinked and exchanged from logical and control pages.

When a physical page is requested by the system, the page allocation
algorithm will retrieve the address of the next available physical page from
the write frontier memory pointer stored in SRAM. Physical pages when
allocated are bound to either a logical data page, logical TTP or a control
page (LBP). The pages metadata is updated to reflect this state change and
will not be considered allocated until the linking is competed.

During the normal operation of the FTL, when a page that is already
defined in an existing 2-tuple is written back to flash memory, the existing
physical page must be written to a new physical address as in the general case
page data cannot be written back to the same physical location due to the
erase-before-write constraint. This is called an exchange operation. During
this operation produces a new physical address for the logical page. This is
accomplished by retrieving a free physical page from the system and writing
the updated logical page data to the new physical location. The system then
links the new physical page to the corresponding logical page in the TTP.
This unlinks the original physical page which will be eventually reclaimed by
the garbage collection mechanism. After a successful exchange operation, the
FTL will update the 2-tuple with the new page binding information (5.2.4).

When the system is done with a physical resource, it is returned to the
system and is accomplished by unlinking the physical in the TTPs or from a
control page memory pointer in SRAM. This will allow the garbage collection
mechanism to eventually reclaim the page.

Logical Page Allocation

Logical page operations are divided into two operational classes: new
logical page allocation where the system provides a new logical page resource,
and logical page return where a previously allocated logical resource is re-
turned to the pool of available logical pages. Logical page exchanges are not
required as logical pages are bound to a physical resource which is the level
where exchanges occur. Unlike other pages in the system, the LBP is not

107

5.2. The Flash Resident FTL

Figure 5.8: The Management of Page State with Bit Vectors

mapped to a logical page. The FTL manages the physical location of this
page directly and maintains its addresses directly in host SRAM. Figure 5.8
demonstrates the operation of the LBP when a logical page is allocated by
the system. Consider the operation where a new logical page is requested
assuming that the LBP has been loaded into an available flash SRAM buffer.
Logical pages are allocated in a greedy fashion. Starting with low bytes
pages, available resources are consumed in incremental order. For logical
pages, this will allow pages to be consumed in an increasing order. The FTL
tracks the position of the next available page in the system. In action ¬, the
page block that the page belongs to is computed and transferred into host
SRAM (action). The bit that corresponds to the next available page is
computed and asserted in action ®. The modified byte is copied back to the
buffer. The LBP is the written to a new physical page and the LBP memory
pointer is updated in the FTL.

Logical pages are not bound to a physical page during allocation. The
system assigns logical page resources based on the page availability in the
LBP but it is the responsibility of the FTL to bind the logical page resource
to a physical page and update mappings.

When a logical page is requested by the system, the page allocation
algorithm requires a new physical page for the updated LBP. As a physical
page for the LBP had previously been allocated by the system, the previous
physical page must be returned to the system in a page exchange similar to
what was described with the operations for exchanging a physical address.

108

5.2. The Flash Resident FTL

In computing the worst case cost for allocating or returning a logical
page, the system is required to load the LBP, allocate or return the logical
page with a bit level operation, exchange the old physical address for the
LBP for a new addresses and then write the LBP to the new location. From
Equations (5.1), (5.4) and (5.3) the cost of byte transfer overhead is calculated
as

LPnew = Cload log +Rlog(1) +Wlog(1) + Cstore log (5.17)

= 2C +R(1) +W (1)

= 2C + (C + 1) + (C + 1)

= 4C + 2

= 16 + 2 = 18 B (5.18)

where the LPnew is the cost in bytes to request a new logical page, Cload log

is the cost of loading the LBP, Rlog is the cost of loading the page block bit
vector for modification, Wlog is the cost of writing back the page block bit
vector and Cstore log is the cost of writing the LBP back to flash. After the
operation is complete, the LBP pointer is updated in the FTL to point to
the new physical location of the LBP. If the operation was a request, the
system will also maintain the new logical number for binding to a physical
page.

In the analysis of Equation (5.17), a logical page allocation will incur one
load operation (Cload log) and one store operation (Cstore log) in addition to
the cost for data transfer.

5.2.4 Address Translation

The core translation concept with FlaReFTL is that the logical to physical
page translation is encoded in flash memory and not in host SRAM. This
reduces the risk of failure in the event of a fault as well as reducing host
memory requirements. A system consists of a logical address space containing
N pages numbered 0 to N − 1. The FTL is responsible for mapping the
logical page address to a physical page address such that the user is unaware
of the physical address of the logical page. The FTL is required to update
and move the position of the data due to erase-before-write and write-in-place
constraints. The mappings can be expressed as a collection of 2-tuples as

(PageNumlogical, PageNumphysical) (5.19)

where PageNumlogical is the logical page number for a given page and
PageNumphysical is the physical page number. The mappings are ordered

109

5.2. The Flash Resident FTL

by logical page numbers. The size of N determines the number of bytes
required to encode a single page address (Section 5.2.3).

The mapping pages are logically ordered from page 0 to page 15. The first
page, labelled M, is the Master Table Translation Page (MTTP) followed by
fifteen Secondary Table Translation Pages (STTPs). Each Table Translation
Page (TTP) stores physical addresses of logical pages in the system. The
MTTP stores the physical addresses for the first 255 logical pages including
the 15 STTPs in a two level tree. This structure reduces the host memory
requirements as FlaReFTL only is required to store the physical address for
logical page zero in SRAM.

By exploiting direct reads and the physical to logical mapping structure,
the physical address of any page in the system can be determined in at most
2 direct reads of 2 bytes each. To lookup the physical address of a logical
page, the TTP is determined as:

TTPnumber = LPN/(number of pages per TTP) (5.20)

and the position of the Logical to Physical Page translation in a given TTP
is determined as:

LPindex = LPB mod (number of pages per TTP). (5.21)

If the logical page is located in the MTTP, then the physical address of the
logical page can be accessed in a single direct read operation. Figure 5.9
highlights the process for resolving the physical page address for a logical
page within the first 256 address tuples.

110

5
.2

.
T

h
e

F
lash

R
esid

en
t

F
T

L

Figure 5.9: FlaReFTL Address Resolution Using Master Translation Table

111

5.2. The Flash Resident FTL

Consider the example where the physical address for logical page 6 needs
to be resolved. The FTL first calculates the logical page group (translation
page) for the given logical address. In Figure 5.9, action ¬ the logical page
group is computed using Equation (5.20) where the logical address is divided
by the number of logical pages per translation page resulting in a logical
page group of 0. This indicates that the logical page is found in the master
table translation page. After the correct translation page is computed, the
page index is computed using Equation (5.21) in action resulting in an
address index of 12.

With the correct index computed, the FTL utilizes a direct read operation
to read 2 bytes at index 12 which encodes the physical address of logical
page 6. From Equation (5.4), the cost in byte transfer overhead for physical
address resolution is

RMTTP = C + 2 = 6 B (5.22)

where RMTTP is the cost in bytes to resolve an address from the Master
Table Translation page, and C is the command overhead for a direct read
operation.

From the calculation of the logical page group, the FTL determines if
the address being resolved is not in the master table translation page. If
the logical page group is not 0 (that being the the address that is being
resolved is not found in the first table translation page), the FTL will use
the logical page group to access the physical address of the corresponding
secondary table translation page. Secondary Table Translation Pages are
assigned to logical pages 1 though 15 and their respective physical page
addresses encoded in the MTTP. The physical address of the STTP is read
from the MTTP using the TTPnumber which is determined by the lookup
index for the respective logical page. After the physical address of the STTP
is read, the physical address for the pages being resolved can read from the
LPindex position in the corresponding STTP.

112

5
.2

.
T

h
e

F
lash

R
esid

en
t

F
T

L

Figure 5.10: FlaReFTL Address Resolution Using Secondary Translation Table

113

5.2. The Flash Resident FTL

Consider the example where the physical address for logical page 256
needs to be resolved. The FTL first calculates which logical page group
(translation page) that the logical address is located in. In Figure 5.10,
action ¬ the logical page group is computed using Equation (5.20) where
the logical address is divided by the number of logical pages per translation
page resulting in a logical page group of 1. This indicates to the FTL that
the address being resolved is located in one of the secondary translation
pages. In action , the FTL uses the logical page group number to compute
the index offset which contains the physical address for the first secondary
translation page. A direct read operation is used to read 2 bytes at index 2
which encodes the physical address of the first secondary translation page
at physical page 4. The page index is computed using Equation (5.21) in
action ®, and the physical page address resolved in action .

With the correct index computed, the FTL utilizes another direct read
operation to read 2 bytes at index 0 in physical page 4, which encodes the
physical address of logical page 9. From Equations (5.4) and (5.22), the cost
in byte transfer overhead for physical address resolution is

RSTTP = RMTTP +R(2)

= C + 2 + C + 2

= 2C + 4 = 12 B (5.23)

where RSTTP is the cost in bytes to resolve an address from a Secondary
Table Translation page and C is the command overhead for a direct read
operation.

By using direct memory reads, page address resolution look ups can
be accomplished orders of magnitude faster in terms of energy and time
and without having to use flash buffers or host RAM to store translation
information. No addition load or store operations are required

Updating Address Resolution Information

When a logical page is updated by the FTL, the address in the translation
tables is required to be updated with the new physical page where the given
logical page is now stored. To determine the TTP page that is associated
with the given logical address, the logical page group of the page is computed
using Equation (5.20). If the logical page group is 0, then the address is
located in the MTTP and can be done in a single update operation whereas if
the logical page group is not 0, then the address is located in a STTP which
requires updates to both the STTP (for the logical page address update) as
well as updates to the MTTP for the updated address for the STTP.

114

5.2. The Flash Resident FTL

(a)

(b)

(c)

Figure 5.11: FlaReFTL Updating Master Translation Table

115

5.2. The Flash Resident FTL

In the case where the address is located in the MTTP, the page index
is computed using Equation (5.21) and the MTTP is brought into a buffer
for writing. The physical address of the logical page is then updated at the
correct page index. Before the MTTP can be written to flash memory, a new
physical address is required for the MTTP which is accomplished using the
page exchange operation. The new physical page address is then written to
index 0 (which corresponds to logical page 0 for the MTTP) and finally the
MTTP is written back to flash at the new physical address and the pointer
for the MTTP updated in SRAM.

Consider the example where the physical address for logical page 6 is
to be updated with the new physical address 12. The FTL first calculates
which logical page group (translation page) that the logical address is located
in. In Figure 5.11a, action ¬ the logical page group is computed using
Equation (5.20) resulting in a logical page group of 0, indicating that the
logical page is found in the master table translation page. The MTTP is then
brought into an available buffer on the memory device for updating. The
page index is computed using Equation (5.21) in action resulting in an
address index of 12. The physical address for logical page 6 is then updated
with the new physical address of 12 (Figure 5.11b). Once the address has
been updated, a page exchange for the MTTP is undertaken.

In this example, the MTTP was previously stored in physical page 2
and after the exchange a new physical page of 13 has been provided. The
calculation of the next available physical page is determined by the write
frontier and incurs no memory access operation. Then physical page address
of logical page 0 is then updated to 13 (Figure 5.11c) at which time the
MTTP can be written back to physical page 13 in flash.

The cost for updating an address in the MTTP is computed with Equa-
tions (5.1), (5.3) and (5.17) as

UpdateMTTP = Cload +WLP (2)

+WMTTP (2) + Cstore (5.24)

= 2C + 2W (2)

= 2C + 2(C + 2)

= 4C + 4

= 16 + 4 = 20 B (5.25)

where Cload is the cost to load the MTTP, WLP is the cost for updating the
physical address for the logical page, WMTTP is the cost of updating the
physical address for the MTTP (logical page 0) and Cstore is the cost for

116

5.2. The Flash Resident FTL

writing the MTTP back to flash as the new physical page address. In this
case as the page being accessed is located in the MTTP, an address resolution
is not required for the MTTP as the physical address of the page is stored
by the FTL in host SRAM. The MTTP memory pointer then updated in
the FTL in SRAM to reflect the new physical location. From the analysis of
Equation (5.24), updating a logical address in the the MTTP incurs a one
load operation (Cload) and one store operation (Cstore).

In the case where the address computed by Equation (5.20) is not in
logical page group 0, the FTL must first locate the physical address of the
corresponding STTP. Using a direct read from the MTTP, the STTP physical
page address is resolved and the STTP is brought into a buffer for writing.
The physical address of the logical page is then updated at the correct page
index. Before the STTP can be written to flash memory, a new physical
address is required for the STTP which is accomplished using the page
exchange operation. The new physical page for the STTP is then written
to the MTTP. The MTTP is brought in the buffer and the new address
for STTP updated. Additionally, a new physical address is requested for
the MTTP using the page exchange operation and the new physical page
address is then written to index 0 (which corresponds to logical page 0 for
the MTTP). Finally the MTTP is written back to flash at the new physical
address and the pointer for the MTTP updated in SRAM.

Consider the example where the physical address for logical page 256 is
to be updated with the new physical address 12. The FTL first calculates
which logical page group (translation page) that the logical address is located
in. In Figure 5.12a, action ¬ the logical page group is computed using
Equation (5.20) resulting in a logical page group of 1, indicating that the
logical page is not found in the master table translation page. The address
of the STTP is then accessed with a direct read (Figure 5.12a action).
The STTP is then brought into an available buffer on the memory device for
updating. The page index is computed using Equation (5.21)(Figure 5.12a
action ®) resulting in an address index of 0. The physical address for logical
page 256 is then updated with the new physical address of 12 (Figure 5.12b).

Once the address has been updated, a page exchange for the STTP
must be done. In the example, the STTP was previously stored in physical
page 4 and after the exchange a new physical page of 13 has been provided
(Figure 5.12c action ¬). The STTP is then written out to the new physical
page provided. The physical page address for the STTP must then be
updated in the MTTP which requires the MTTP to be brought into a buffer.
Once buffered, the physical page address of the STTP in the MTTP is then
updated to 13 (Figure 5.11c action). A page exchange for the MTTP

117

5.2. The Flash Resident FTL

(a)

(b)

118

5.2. The Flash Resident FTL

(c)

Figure 5.12: FlaReFTL Updating Secondary Translation Table

must be done before the MTTP is written back to flash. In the example, the
MTTP was previously stored in physical page 2 and after the exchange a
new physical page of 14 has been provided. Then physical page address of
logical page 0 is then updated to 14 (Figure 5.12c action ®) at which time
the MTTP can be written back to physical page 14 in flash (Figure 5.12c
action ¯).

The cost for updating an address in terms of byte transfer overhead in
the STTP is computed with Equations (5.1), (5.3), (5.22) and (5.23) as

UpdateSTTP = RSTTP + CloadSTTP
+WLP (2) + CstoreSTTP

+CloadMTTP
+WSTTP (2) +WMTTP (2)

+CstoreMTTP (5.26)

= 4C + 5(C + 2)

= 9C + 10

= 36 + 10 = 46 B (5.27)

where Cload is the cost to load the MTTP and STTP, WLP is the cost
for updating the physical address for the logical page, RSTTP is the cost
to resolve the address of the STTP, WSTTP and WMTTP are the costs of
updating the physical addresses for the STTP and MTTP and Cstore is the
cost for writing the STTP and MTTP back to flash at the new physical page

119

5.3. Consistency and Recovery with Zero-Overhead Logging

addresses. From the analysis of Equation (5.26), updating a logical address
in the STTP incurs a two load operations (CloadSTTP

and CloadMTTP
) and

two store operation (CstoreSTTP and CstoreMTTP).

5.3 Consistency and Recovery with
Zero-Overhead Logging

As embedded systems can suffer from unexpected resets or faults, it is
critical that the FTL system used to store data is robust enough to withstand
these failures while remaining consistent. As a number of pages are required
to be written to the memory device during operations, it is possible that
a failure may occur before completing a given operation. In this event the
system is required to roll-back to the last known good state before the failure.

5.3.1 Keystoning

FlaReFTL uses a technique called keystoning which guarantees operation
level consistency.

Definition 5.2. Keystoning is the act of writing a single page element,
known as a Keystone, which allows the system to transition from one state
to another in an atomic fashion.

The keystone page is the MTTP which maintains pointers to all other
data pages in the system. All modifications to data pages or TTP that
result in the pages being written to a new location in flash memory end up
with a write to the MTTP. Similar to a logging file system but without the
need for a separate logging operation, updates are recorded to the Dataflash
without overwriting old data. Unlike other logging strategies, the system
uses Zero Overhead Logging to manage data. A separate logging system is
not maintained which would required additional read and write operations.

Definition 5.3. Zero Overhead Logging writes modified data pages o a
previously erased area while leaving the original pages unchanged in storage
with the ability to convert the logged pages to become live data without
additional read/write overhead.

With FlaReFTL, new data is written out in a logging fashion, leaving
the old data intact and then converting the data in place. In the event of
a failure, the system will be able to recover be examining the operations
written. New data is written to a location called the write frontier.

120

5.3. Consistency and Recovery with Zero-Overhead Logging

Definition 5.4. The write frontier is the location is memory where new
data pages will be written. It denotes the start of a region of contiguous
pages that have been previously erased. The write frontier advances through
flash page addresses in a circular fashion.

In advance of the write frontier are free and erased pages where the
system is able to write to without obstruction. The management of the
free pages in front of the write frontier is managed by the FTL. The write
frontier pointer is maintained by the FTL. Pages in advance of the write
frontier have been erased and are immediately available for use. The allows
the system to allocate new pages quickly without having to search for free
resources. The size of the extent of free pages in front of the write frontier is
controllable but the size of the frontier extent is set such that enough free
pages will always be available for an operation to complete. This guarantees
that all operations that mutate data can complete and not be blocked by
the system waiting to reclaim pages that are dirty.

Definition 5.5. A dirty page is a page that has been previously written but
the data in the page is no longer valid and is waiting to be erased by the
system.

The assumption is made by the FTL that any page that is located in front
of the write frontier extent and is not allocated to live data has previously
been used and is dirty.

When the FTL is engaged in write operations, data and TTP pages will
be written to new locations in advance of the write frontier. During the
write operations, the system will maintain in flash memory, two categories
of the pages; the original TTP pages that maintain the initial location of
the data pages being modified and any modified pages containing updated
information which may include data and TTP pages.

As an operation proceeds, the system will load, modify and write back to
memory the pages at a position as required by the requested operation. Once
the operation has completed, the TTPs will then be written out indicating
the end of the operation. As all TTPs are linked through the MTTP, the
write of the MTTP to flash will commit the changes, transitioning the system
from the previous state to the current state.

Figure 5.13 demonstrates the order of operations for keystoning. In
the initial state (Figure 5.13a), a data page (D) can be referenced through
the MTTP and STTP. When the data page is mutated, the data page will
be moved into a buffer, changed and then written back to a new physical
location in flash in advance of the write frontier (Figure 5.13b action ¬)

121

5.3. Consistency and Recovery with Zero-Overhead Logging

(a) Initial State (b) Data Mutation (c) Keystone Com-
mit

Figure 5.13: FlaReFTL Updating Master Translation Table

resulting in two copies of the same page existing in memory. After the data
page is updated, the corresponding STTP is buffered, modified with the
new physical page number of the resource and the written to a new physical
location in flash in advance of the write frontier (Figure 5.13b action)
resulting in two copies of the same STTP existing in flash. From the view
of the system, the original data has not been changed as the MTTP is still
pointing at the unmodified STTP even though data has been written to the
system. It is only after the MTTP has been buffered, modified with the
new physical address of the STTP and written to a new location in flash in
advance of the write frontier (Figure 5.13c) does the system change state
from the original state of unmodified data to the new state with the modified
data records.

In the event of a failure as write operations always happen to previously
erased pages, the system with either see the original MTTP or the new,
successfully written MTTP. Any new data pages are not accessible until the
completion of the MTTP write.

5.3.2 Record Modification

To further expand on how FlaReFTL functions, consider the following
example of inserting a record into an existing data set. When inserting a
record in a page, the physical address of the logical page is determined from
the MTTP and a STTP. New physical pages are allocated by the system. For
a record insert, pages must be requested for the data page, and for any TTP
that will be updated as all pages will be updated and cannot be overwritten.

Data in the MTTP

Consider the example in Figure 5.14 which demonstrates how pages are
allocated for the case where a record in a data page D is being modified

122

5.3. Consistency and Recovery with Zero-Overhead Logging

(a) Initial State

(b) Updating Data Page

(c) Updating MTTP

Legend
PPN Physical Page Number M MTTP
D Data Page

Figure 5.14: Updating Records in Data Page with MTTP

and the logical address of D is within the scope of pages managed by the
MTTP. The initial state of the system is shown in Figure 5.14a. A physical
page exchange is requested by the system for the data page (D). The D page
is then written to flash at PPN 82 (Figure 5.14b) with the write frontier
advancing to PPN 82. While data has been written out, the FTL is unable
to reference the new data page as the current MTTP (M) is still active in
PPN 81. To finish the write operation, the MTTP (M) must be updated
with the new physical address (PPN 82) for D. After the MTTP is buffered
and updated with the change, the old PPN 80 for MTTP is exchanged for a
new PPN and the MTTP will be updated at page 83. The system completes
the data modification operation by writing the MTTP to PPN 83 with the
write frontier advancing to PPN 83. Once the MTTP is written, the FTL is
now consistent and maintains valid pointers to the current D.

Data in the STTP

In the event that the data page D is not within the scope of pages
managed by the MTTP, the FTL updates both the corresponding STTP
followed by the MTTP. The write operation for D proceeds as in Figure 5.14b
where the D page is then written to flash at PPN 82 and the write frontier

123

5.3. Consistency and Recovery with Zero-Overhead Logging

(a) Updating STTP

(b) Updating MTTP

Legend
PPN Physical Page Number M MTTP
S STTP D Data Page

Figure 5.15: Updating Records in Data Page with STTP

advancing to PPN 82.
The system must update the new physical address (PPN 82) for D in

the STTP. After the STTP is buffered and updated with the change, the old
PPN for STTP is exchanged for a new PPN, and the STTP will be updated
at page 83 (5.15a). To complete the write operation, the MTTP (M) must
be updated with the new physical address (page 83) of the modified STTP.
After the MTTP is buffered and updated with the change, the old PPN 80
for MTTP is exchanged for a new PPN and the MTTP will be updated at
page 84. The system completes the data modification operation by writing
the MTTP to PPN 84 (5.15b) with the write frontier advancing to PPN 84.
Once the MTTP is written, the FTL is now consistent and maintains valid
pointers to the current D.

Allocation of Logical Pages

Figure 5.16 demonstrates how the FTL allocates a new logical data (D′)
page. When generating a new logical page, the FTL also allocates a physical
page. The system first allocates a new physical page that will be bound
to the logical page. A new PPN is requested for the new logical data page
(PPN 82) (Figure 5.16b). The write frontier is advanced for PPN 82. While
the data page is allocated by the system, nothing is written to the page until
the logical binding occurs. The system then requests a new logical page from
the LBP which triggers a page exchange for the LBP (PPN 74) and the LBP
is written to a new location in memory (PPN 83) (Figure 5.16c). Once the
logical page has been allocated to the system, this information is updated in

124

5.3. Consistency and Recovery with Zero-Overhead Logging

(a) Initial State

(b) Allocation of Physical Page

(c) Allocation of Logical Page

(d) Allocation of Data Page

(e) Updating MTTP

Legend
PPN Physical Page Number M MTTP
L LBP D Data Page

Figure 5.16: Allocation of a Logical Page

125

5.3. Consistency and Recovery with Zero-Overhead Logging

the OOB area of the data page and written to the flash memory at PPN 82
(Figure 5.16d). After the allocation of the logical page, the TTPs is updated
with the new physical address (page 82) of the data page.

In this example, the logical page allocated is in the scope of the MTTP.
If the page allocated was in the scope of the STTPs, the system would incur
additional operations for the STTP exchanges. After the MTTP is buffered
and updated with the change, the old PPN 81 for MTTP is exchanged for
a new PPN and will be updated at page 84 (Figure 5.16e). The system
completes the data modification operation by writing the MTTP to PPN 84
with the write frontier advancing to PPN 84. Once the MTTP is written,
the FTL is now consistent and maintains valid pointers to the current D′
and the logical page is available for use.

5.3.3 Consistency and Recovery

When pages are written to memory, they are written in the order: data
page, STTP and then MTTP. In this way, the MTTP correctly points to
the most up to date version of any logical data pages and STTPs. Due to
the order of writing out the blocks, if a failure occurs before writing the
MTTP, the previous version of the MTTP still points to the previous data
(Section 5.3.1) and will be used at restart. Only after the MTTP write has
occurred will the system reflect the changes. The system now maintains
the pointer to the new MTTP allowing the changes to come into view. All
TTPs have an associated timestamp such that on a restart the most current
master block can be located. By controlling how and when blocks are erased
in relation to the write frontier, the system guarantees that live data pages
being updated will never be erased until the current operation is complete.
During the write process, the data from previous operations is consistent
as it maintains a view of the previous MTTP. All changes to the system
occur in previously erased memory locations and only with the write of the
MTTP does the system transition to a new consistent state. On a restart
or recovery, the most current master block can be located by scanning the
OOB area of each page using direct reads. The availability of erased pages
in the write frontier extend is a critical component to the design of the FTL.

Recoverability

Consider Figure 5.17, where a new record is being inserted into an existing
data page where the updated data page is written into the free space at the
write frontier, leaving the original data page in place. After the data pages

126

5.3. Consistency and Recovery with Zero-Overhead Logging

(a) Allocation of Data Page

(b) Adjustment of the Write Frontier

(c) Erasure of the Write Frontier Extent

(d) State Has Returned to Last Consistent State

Legend
PPN Physical Page Number M MTTP
L LBP D Data Page
S STTP

Figure 5.17: Recovery in the Event of a Failure

127

5.3. Consistency and Recovery with Zero-Overhead Logging

are updated, the STTP is written to the frontier (Figure 5.17a). If there
is a failure at any point in the transaction, the FTL system will still see
the consistent image of the data before any of the changes have occurred
through links in the yet unchanged MTTP. On a failure, the FTL locates the
latest copy to the MTTP (Figure 5.17b) and the write frontier to the last
known previous MTTP. The FTL then proceeds to erase the write frontier
extent removing any dirty pages that resulted from the failed operation
(Figure 5.17c). A series of erase commands using Equation (5.1). The
memory device supports erase units of both page and blocks (consecutive
runs of 8 pages) level erases where all memory cells within the erase unit are
restored to a value of 0xFF.

After the erase, the system is left in a consistent state from the last oper-
ation that successfully completed before the failure occurred (Figure 5.17d).

Recovery in the event of an unexpected system failure is greatly simplified
due to the structure of FlaReFTL. On restart, while other systems must
buffer and scan each page for consistency, FlaReFTL uses the direct read to
access the relevant OOB information for each page scanning for the current
MTTP and LBP based on timestamps. Due to the order of write operations,
valid LBPs are pages with timestamps ≤MTTPtimestamp as the MTTP will
always be written last with respect to time. Once located, the position of the
write frontier can be determined by the write position of the MTTP (and
associated LBP) as it is the last page written for every write transaction.
Once the last valid MTTP has been located, it contains consistent pointers
to the rest of the data in the system. By the properties of write frontier
extent, any pages within the extent can be considered dirty and the extent
erased. For example, for a 4096 page device using a 4 MHz SPI bus speed,
with a header of 13 bytes will only require data access time of 0.14 s to
recover the file system to its last known consistent state.

Record Level and Page Level Consistency

Two levels of consistency are offered by FlaReFTL. Record level con-
sistency ensures that for every record written to the logical page will be
committed to the flash block. This can incur a larger number of erase/writes
but guarantees that data records will not be lost in the event of a sys-
tem failure. A looser level of consistency is also offered to improve energy
consumption. Page level consistency reduces the number of erase/write
operations by holding data in the Dataflash buffer until the page is full or
the buffer needs to be flushed for other use. The data is held in the buffer as
long as the device is powered. Page level consistency will not block the read

128

5.3. Consistency and Recovery with Zero-Overhead Logging

Table 5.1: Load, Store and Data Transfer Costs for FlaReFTL Operations

Operation Load Store
Data

Transfer
(B)

Logical Page Allocation/Return 1 1 18

Address Lookup (MTTP) - - 6

Address Lookup (STTP) - - 12

Address Update (MTTP) 1 1 20

Address Update (STTP) 2 2 46

Data Page Load 1 - 4

Data Page Store - 1 4

Record Level Consistency Data Write
where n is bytes written (excludes TTP up-
date cost and assumes that page is loaded
separately)

- 1 4 + n

Page Level Consistency Data Write where
n is bytes written(excludes TTP update
cost and page is separately loaded and
stored)

- - 4 + n

of data due to the use of direct reads and the data will be held in the buffer
until it is evicted by the FTL if the buffer allocated to the data is required
for another operation.

5.3.4 Operation Cost Summary

The cost in terms of data transfer to/from the Dataflash and the number
of load and store operations is summarized in Table 5.1. For the values
presented for record level consistency with data writes, the total cost involves
loading the target page to the SRAM buffer, writing the data out to a new
page for every records being writing and then updating the TTP with the
new information. The worst case cost in terms of load and store operations
where the page is located in the STTP is

CostRLCW (n) = LoadData + n× StoreData

+2n× LoadSTTP + 2n× StoreSTTP

= (1 + 2n)× LoadPage + 3n× StorePage (5.28)

where n is the number of records being written, LoadDataandLoadSTTP

are the operations to load the corresponding flash page to an SRAM buffer,

129

5.3. Consistency and Recovery with Zero-Overhead Logging

StoreDataandStoreSTTP are the operations to store the corresponding SRAM
buffer to a flash page, and CostRLCW is the total load and store cost for a
record level consistency write. LoadPageandLoadPage are generalized storage
operations.

Consider the example were a two byte record is written out 256 times
using record level consistency. From Equation (5.28), the total cost for
writing is

CostRLCW (256) = (1 + 2× 256)× LoadPage + 3× 256× StorePage

= 513× Load+ 768× Store. (5.29)

Consecutive record level write operations will require 513 distinct page load
operations in addition to 768 store operations. In addition, this operation
will exchange 768 distinct pages from the pool of available pages, leading to
increased levels of garbage collection as at then end, only one data page and
two TTPs will be live.

For page level consistency with data writes from the values presented
in Table 5.1, the total cost involves loading the target pages to the SRAM
buffer, buffering the writes to the SRAM buffer and then writing the data
out to a new page at the end of the sequence of writes. Once writing, the
TTP with the new information. The worst case cost in terms of load and
store operations where the page is located in the STTP is

CostPLCW (n) = LoadData + StoreData

+2× LoadSTTP + 2× StoreSTTP

= 3× LoadPage + 3× StorePage (5.30)

where n is the number of records being written, LoadDataandLoadSTTP

are the operations to load the corresponding flash page to an SRAM buffer,
StoreDataandStoreSTTP are the operations to store the corresponding SRAM
buffer to a flash page, and CostPLCW is the total load and store cost for a
page level consistency write. LoadPageandLoadPage are generalized storage
operations.

Consider the example were a two byte record is written out 256 times
using page level consistency. From Equation (5.30), the total cost for writing
is

CostPLCW (256) = 3× LoadPage + 3× StorePage. (5.31)

Thus the consecutive record level write operations will require only two
distinct page load operations and two store operations for TTP modification

130

5.3. Consistency and Recovery with Zero-Overhead Logging

in addition to a single load and store for the data page. Page level consistency
results in the same number of live pages as record level consistency writes. In
contrast to record level consistency, this operation will only exchange three
distinct pages from the pool of available pages, leading to decreased load on
the garbage collector. This offers improved performance but sacrifices record
level consistency in the event of a device fault.

5.3.5 In-Place Writes

FlaReFTL offers the user the ability to use masked overwriting to sig-
nificantly reduce the number of erase cycles and extra data movement. As
demonstrated in Chapter 4, with NOR flash, certain allowed rewrites can be
accomplished without disturbing neighbouring cells. This allows data to be
appended to a page without having to occur additional erase/write cycles
which is particularly suited for logging applications (Section 4.4.1).

Similar to record level consistency presented in Table 5.1 and Equa-
tion (5.28), in-place writes will load the data page that is being appended to,
but as it is using overwriting, the page will be written back to the existing
location. As a result, no TTPs updates are required. Thus the cost for an
in-place write operation is

CostIPW (n) = LoadData + n× StoreData

= LoadData + n× StoreData (5.32)

where CostIPW is the total load and store cost for an in-place write with
record level consistency write. In comparison to the record level consistency,
in-place writes utilizing overwriting, requires 1/3 fewer store operations and
only a single page load.

The savings in terms of page erases and energy consumption is significant
compared to write operations that are written to fresh pages for every commit.
This offers record level consistency without having to occur high levels erase
operations.

Consider the example were a two byte record is written out 256 times
using page level consistency. From Equation (5.32), the total cost for writing
is

CostIPW (256) = LoadData + 256× StoreData. (5.33)

In-place writes require a single page load operations and 2 store operations.
In-place writes exchange zero pages, placing no additional load on the garbage

131

5.4. Frontier Advance Wear Levelling and Garbage Collection

collector. This operation record level consistency without additional burden
on the system.

A summary of the write methods is presented in Table 5.2 comparing
the total operations for each method.

Table 5.2: Comparison of Load and Store Costs for FlaReFTL Write Opera-
tions

Write Operation Cost (for n bytes)
Number of Pages

Exchanged

Record Level Con-
sistency

(1 + 2n)× Load+
3n× Store 3n

Page Level Consis-
tency

3× Load+ 3×
Store

3

In-Place Writes Load+ n× Store 0

5.4 Frontier Advance Wear Levelling and
Garbage Collection

The garbage collector (GC) is a key component of the FTL, responsible
for reclaiming dirty pages and returning them to a free and erased state. As
discussed in Section 5.3.1, pages are allocated at the write frontier, which
sweeps through memory pages linearly. A key challenge with all flash memory
technologies is inconsistent wear across the device which leads to early device
failure. With flash memory, wear levelling (WL) is critical to ensure that
certain pages in the memory device do not experience accelerated, non-
uniform wear compared to others, which impacts overall device performance.
The wear levelling operations spread erase/writes across the entire device
and thus extend the life of the device. With FlaReFTL, whenever a new
page is allocated or an existing page is updated with new data, it is written
to the page pointed to by the write frontier. Pages located in advance of the
write frontier are clean as they have been guaranteed to have been erased by
the wear leveller and garbage collector.

Unlike other systems, there is no separate garbage collection process
to reclaim dirty pages. Instead, a dynamic wear levelling and cleaning
strategy is used called Frontier Advance Wear Levelling (FAWL). It uses
a greedy approach to keep the write frontier extent continually clean and
available for use. Unlike other systems, the FTL does not need to track
the individual erase cycles for pages in the system making it suitable for

132

5.4. Frontier Advance Wear Levelling and Garbage Collection

resource constrained systems. FAWL prevents the need for non-deterministic
GC and WL operations during a write cycle which can potentially impact
performance. The FTL checks the number of available pages in the write
frontier extent before a write operation and initiates a FAWL operation in a
deterministic fashion if the current size of the write frontier extent is unable
to support the operation without being interrupted. In advance of the write
frontier, the algorithm attempts to keeps a minimum number of blocks free
to guarantee that a write operation can fully complete. As data is written
to the device, the write frontier advances into the clear space, ensuring that
no old data has been inadvertently overwritten which decreases the size of
the write extent. Located in front of the write frontier extent is the sweep
frontier extent (SFE). Pages at the sweep frontier are inspected to see if
they are live or not. Under operation, the sweep frontier advances through
its extent, inspecting pages. Dirty pages are reclaimed, while live pages are
moved from the sweep frontier to the write frontier to maintain a minimum
size write frontier extent. The number of pages inspected is determined by
the size of the extent. FAWL allows the write extent to fluctuate between
a minimum and maximum size. The minimum size of the write extent is
determined by the maximum number of pages that can be moved during one
FAWL operation, in addition to the number number of control pages. Let
C(x) be the number of live pages that are equal to a given page type. The
minimum write frontier extent is then calculated as

sizeWFE = sizeSFE + C(TTP) + C(BP) (5.34)

where C(TTP) is the count of table translation pages in the system, C(BP)
is the count of busy pages in the system and sizeSFE is the size of the sweep
frontier extent. In the worst case, the wear levelling activity must completely
copy all live data from the SFE as well as writing out a compete set of control
pages. This produces a write amplification effect which provides an upper
bound on system performance.

The state of the page is immediately determined from a direct read of
the page OOB area. The LPN stored in the OOB is them compared to the
PPN stored in the TTP. If the addresses are consistent, then the page is
considered to be live, otherwise it will be treated as dirty. Live data pages
will be copied to the write frontier as the sweep frontier advances through
the page space, decreasing the size of the write extent. Use of the SRAM
buffers prevents extra data from having to be transferred to the host and
back to memory. If a page is dirty, the sweep frontier skips it and does not
copy the page. As live pages are moved, each page’s reverse logical pointer
(from the OOB area) is recorded using a direct read and stored along with

133

5.4. Frontier Advance Wear Levelling and Garbage Collection

the new physical address in host SRAM. Once all live blocks are moved, the
information from the reverse logical pointers are used to update the STTPs
and the MTTP. To complete the transaction, the master table translation
page is written. If the transaction fails before completion, the blocks in front
of the sweep frontier are undisturbed and accessible from the last known
good keystone page. Upon a successful write of the master table translation
page, the sweep frontier extent is erased extending the size of the write
extent. This combined operation ensures the there are a minimum number
of free and erased pages from the system but also ensures that pages are
written in a uniform fashion across the device.

134

5.4.
F

ro
n
tier

A
d

va
n

ce
W

ear
L

evellin
g

an
d

G
arb

age
C

ollection

(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Frontier Advance Wear Levelling and Garbage Collection Operations

135

5.4. Frontier Advance Wear Levelling and Garbage Collection

Consider the example in Figure 5.18 which demonstrates the frontier
advance wear levelling operations. Initially the write frontier is located at
LPN 81 and the sweep frontier is located at page 128 (Figure 5.18a). The
sweep frontier extends forward from page 128 based on the required size.
To start the FAWL activities, the FTL advances the sweep frontier into the
sweep frontier extent (Figure 5.18b) and when a page is encountered, the
system will determine how to move the page. The action is determined by
the type of page encountered. If the page is a data page, using direct reads,
the OOB area of the page will be scanned for the LPN number and resolved
against the current PPN stored in the TTP. If the addresses match, the page
is moved otherwise the page is skipped. If the page is a LBP, then the page’s
address is compared to the current LBP address pointer stored in SRAM
and if the addresses are the same, the page is moved otherwise it is skipped.
If the page is a TTP, the page is skipped as it will be readdressed at the end
of the FAWL operations.

In this example, a data page 24 is encountered at PPN 132. The page is
buffered, a new physical page requested from the system (PPN 82) and the
data page written to the new location. In host SRAM, the FTL maintains
a memory table that temporarily stores the mappings that will be used to
update the TTPs after all data pages have been moved. The sweep frontier
continues to traverse through the sweep frontier extent (Figure 5.18c) until
it encounters the next live page which is data page 244 at PPN 136. The
FTL repeats the page move operation moving data page 244 to PPN 83 and
updating the memory table with the new page mapping for the data page.
The sweep frontier continues advancing (Figure 5.18d) moving additional
data pages. When the sweep frontier reaches the end of the extent, two
copies of each live data page will exist.

Once the sweep frontier reaches the end of the sweep frontier extent,
the FTL them proceeds to update the TTPs reflecting the new locations
of the pages in the system. The FTL groups and sorts the page updates
(Figure 5.18e action ¬), as the system will update the TTP in decreasing
order such that the MTTP will update last. The new PPNs are updated
for each LPN and the required TTPs are written to new physical pages
(Figure 5.18f). Finally the MTTP is updated with the new PPNs for moved
STTPs and written out to a new physical location in memory. Once the
MTTP has been written out, the FAWL operations will complete by updating
the MTTP SRAM memory pointer and erase the sweep frontier extent (which
is the region between the initial location of the sweep frontier extent and its
new location).

136

5.4. Frontier Advance Wear Levelling and Garbage Collection

0.
0

1.
0

2.
0

3.
0

4.
0

O
ve

rh
ea

d
R

at
io

0
50

10
0

17
5

25
0

A
ct

ua
l P

ag
es

 C
op

ie
d

0 32 64 96 160 224
Frontier Extent Size (Data Pages)

Write Overhead Total Pages Copied

Figure 5.19: Write Amplification Overhead During FAWL

Frontier Size Considerations

Trades-offs are considered in the sizing of the write frontier extent, the
trigger point and the size of the sweep frontier extent. In addition to data
pages, a cost for writing out the TTP and potentially the LBP must be
considered. This produces a write-amplification effect during the FAWL
operation. For a small sweep frontier extent, the overhead of writing control
pages can dominate. The maximum number of pages written during a FAWL
is dependent on the number of valid data pages in the sweep frontier extent
as

Wpages = min(C(D), C(TTP)) + C(D) + C(BP) (5.35)

= min(C(D), 16) + C(D) + 1 (5.36)

where Wpages is the count of pages copied, C(D) is the number of data pages
in the extent, C(TTP) is the total number of TTP used in the system, and
C(BP) is the number of bit vector pages used in the system. For a small
number of data pages in the sweep frontier extent, the potential overhead
is high, but as the number of live pages increases the overhead decreases.
Figure 5.19 shows the impact of the maximum number of pages in the sweep
frontier extent and the overhead and total number of pages copied due to

137

5.4. Frontier Advance Wear Levelling and Garbage Collection

write amplification. The Write Overhead demonstrates the relationship
between the number of data pages versus the number of control pages written
whereas Total Pages Copied indicates the worst case total write amplification
for a given number of data pages. For an extent size less than the number
of control pages, the overhead ratio (Write Overhead) is high as the actual
number of pages written out is

Wpages = C(D) + C(TTP) + C(BP) (5.37)

where Wpages is the total count of pages copied, C(D) is the count of data
pages, C(TTP) is the number of TTP utilized to update the data pages
and C(BP) is the number of busy pages copied. The overhead in terms of
additional pages writes is calculated as

OHFAWL =
Wpages − C(D)

C(D)
. (5.38)

In worst case, a TTP must be updated for each data page in addition to the
LBP being updated leading to more control pages being written out than
data pages. Thus it is desirable to maximize the count of data pages to
reduce the overhead during FAWL activities.

From Equation (5.35), as the size of the extent and data pages increase
above the count of control pages in the system, C(D) starts to dominate
leading to a decrease in overhead. This indicates that the size of the sweep
frontier extent needs to be considered to minimize write amplification.

Other factors must be considered in the selection of the frontier extent
size as the increasing the extent size reduced the total available pages for
the user system. The system must ensure that a minimum number of pages
are available for a restart such that the write frontier extent can be erased
without encroaching on the sweep frontier. As the number of pages allocated
by the system increases, the number of pages that will be written out during
FAWL activities increases to the point where the wear levelling operations
will continually write out more pages due to Equation (5.37). This will lead
to average velocity of the write frontier being higher than the average velocity
of the sweep frontier resulting in the write frontier encroaching on the sweep
frontier. This will cause the number of available pages to fall below the
minimum required for consistent operation and halt the system.

As a result, trade-offs must be considered in the selection of the size of
the write frontier and sweep frontier. Selecting too small of write frontier
will lead to the system encountering the scenario where the system cannot
maintain a minimum write frontier size. Too large of a write frontier will

138

5.4. Frontier Advance Wear Levelling and Garbage Collection

0 96 224 352 480 608 736 864 992

0
20

00
45

00
70

00
95

00

Frontier Extent Size (Data Pages)

T
ot

al
 R

es
ou

rc
e

O
ve

rh
ea

d
(P

ag
es

)

Figure 5.20: System Resource Overhead with Respect to Write Frontier
Extent Size

increase the number of pages that must be held in reserve to support wear
levelling operations, reducing the overall capacity. Additionally, a larger
sweep frontier places an increased burden on system resources during wear
levelling operations in terms of SRAM to maintain pointer tables.

From Equation (5.35), regardless of the size of the sweep frontier extent,
the functional worst case is where the system is still able to maintain ac-
ceptable relative write and sweep frontier velocities. At this point, 17 of the
total pages written out are assumed to be TTPs or BPs. The relationship is
expressed as

C(D) + 17 ≤WFEsize. (5.39)

The number of data pages in a given sweep must not exceed the threshold
where the total number of pages written to the write frontier does not exceed
the number of data pages. The system must be able to ensure that the data in
the sweep frontier in addition to the control pages that can be written out to
the write frontier without introducing a system fault. From Equation (5.39),
the amount of reserved space required per operation is calculated as

ER(WFEsize) =
17

WFEsize
(5.40)

where ER(WFEsize) is the size of the extent reserved pages required based
on the size of the write frontier extent. This space is created by the continual

139

5.4. Frontier Advance Wear Levelling and Garbage Collection

mixing of control pages with data pages. The minimum requirement leads to
an overall assumption that for a given memory size, the minimum number of
flash memory pages reserved must be able to support operations allowing
the velocities of the write frontier and sweep frontier to be maintained at a
consistent level. This is expressed as

SRmin(WFEsize) = C(Pages) ∗ ER(WFEsize) (5.41)

= C(Pages) ∗ 17

WFEsize
(5.42)

where SRmin(WFEsize) is the minimum number of system wide reserved
pages required. In addition to the minimum number of pages required to
support FAWL operations, the system must also maintain a minimum write
frontier extent size to allow for system restarts. This represents the write
frontier extent size available. Thus to support FAWL operations, the write
frontier extent fluctuates between WFEsize and 2 ∗WFEsize. Combining
this with Equation (5.41) a model for the relationship between the size of
the write frontier extent and the total number of system reserved pages is
given as

SR(WFEsize) = C(Pages) ∗ Reserved + 2 ∗WFEsize

= C(Pages) ∗ 17

WFEsize
+ 2 ∗WFEsize. (5.43)

This relationship is shown in Figure 5.20 which plots the size of the write
extent against the resulting number of pages that are required to be held in
reserve for the system to maintain functionality. To maximize the number
of pages the are available to the system, the minimum number of reserved
pages is calculated as

SR′(WFEsize) = 2− 17 ∗ C(Pages)

WFE2
size

. (5.44)

The corresponding extent size is then calculated at the minimum by setting
Equation (5.44) to zero and solving for WFEsize

0 = 2− 17 ∗ C(Pages)

WFE2
size

2 =
17 ∗ C(Pages)

WFE2
size

WFEsize =

√
17 ∗ C(Pages)

2
. (5.45)

140

5.4. Frontier Advance Wear Levelling and Garbage Collection

For the memory device being used the number of pages is 4096. It then
follows from Equation (5.45) that the extent size is

WFEsize =

⌈√
17 ∗ 4096

2

⌉
= 192. (5.46)

While this value presents a theoretical minimum feasible extent size, the
value of the extent is required to be a power of 2 to permit wrapping as the
sweep frontier extent sweeps past the end of memory. Hence, the minimum
extent size is 256 pages. Substituting this value into Equation (5.43) the
required system reserve in terms of pages is calculated as

SR(WFEsize) = C(Pages) ∗ 17

WFEsize
+ 2 ∗WFEsize

= 4096 ∗ 17

256
+ 2 ∗ 256

= 784. (5.47)

Using Equation (5.47), the minimum over provisioning required is calcu-
lated as

OP =
SR(WFEsize)

C(pages)− SR(WFEsize)

=
784

4096− 784
= 0.237 (5.48)

From this value it is seen that the minimum value for over provisioning is
required to be 24%, leaving 76% of total capacity available for data. In
practice, system performance degrades significantly as the number of live
pages in the system approaches this limit. This is a result of the FAWL
attempting to find available space in the system. System utilization should
be limited below this value.

Uniform Wearing with FAWL

As a result of the reuse policy of FAWL, FlaReFTL presents extremely
consistent levelling tendencies without the need for excessive overhead such
as page erase counts as found in many other systems. Additionally, due to
the page mapping scheme, complete block use is guaranteed before being

141

5.5. Conclusions

(a) Wear Heat Map (b) Erase Cycle Histogram

Figure 5.21: Results of the Wear Levelling Policy

sent for erasure. Under simulation, data records were created with a record
length of 10 bytes, which is typical of what would be measured from a 12-bit
device including a time stamp. To simulate a large collection period of 100
days where samples were taken every 15 minutes, 10,000 records were written
to memory. The results of the wear levelling policy is seen in Figure 5.21
which presents a heat map and histogram of erase/write counts across the
device. After over 40,000 erase/write cycles data has been uniformly worn
across the entire device with a very small variance.

5.5 Conclusions

The Flash Resident FTL presents a unique and robust solution for
resourced constrained systems that require a consistent solution for managing
data on serial NOR Dataflash. This FTL offers a low static memory overhead
FTL suitable for use on even the most resource constrained device. The
FlaReFTL API is detailed in Appendix B.

With the FlaReFTL, all translation structures are in flash memory and
never fully transferred to the host. In the event of a failure, translation
structures will not be lost.

FlaReFTL offers the the following benefits:

− Minimal SRAM use as translation structures are stored in flash, allowing
for use on the smallest of devices

− Consistent and efficient wear levelling and garbage collection without
the overhead of tracking the number of physical page writes

142

5.5. Conclusions

− Support for three write modes

– Page level consistent

– Record level consistency

– In-place record level consistency with overwriting

− Maintenance and translation lookups exploit direct reads for efficiency

FlaReFTL supports both page level consistency and record level con-
sistency with in-place writes. FlaReFTL offers the ability for page level
consistency where data can be held in the memory SRAM buffer off host
until the page is full at which time it is flushed to storage. This reduces the
number of writes considerably reducing the FAWL operations in addition
to overall writes. It also allows resource constrained systems the ability to
buffer data without having to commit a block of host SRAM to the FTL.
The user must consider the trade-off that data may be lost in the event of a
system failure.

Record level consistency with in-place writes offers significant advantages
for resource constrained systems that require record level consistency specifi-
cally for append type operations. It allows devices to maintain record level
consistency without having to occur additional erase and write operations
from FAWL which can lower the write amplification for operations. Both the
page level consistency and record level consistency with in-place writes sig-
nificantly increase the service life of a memory device while still maintaining
a functional FTL.

143

Chapter 6

Conclusion

Rivers know this: there is no
hurry. We shall get there some
day.

A.A. Milne - Winnie-the-Pooh
(1882 - 1956)

6.1 Conclusions and Future Work

This work has provided an in depth analysis into data persistence issues
using flash memory technologies and the underlying challenges to using flash
memory with resource constrained embedded devices. It presents solutions
to data management using a flash translation layer as an intermediate
structure and strategies for write improvements with NOR flash. While the
FTLs presented are viable for general purpose computing with NAND flash
memories, none of the works in the current body of literature are suitable
for resource constrained devices utilizing serial NOR flash. To address the
short comings of current FTLs, the Flash Resident FTL (FlaReFTL) has
been proposed as a low memory overhead FTL suitable for use on even the
most resource constrained device. It is currently the only FTL available for
serial NOR Dataflash compatible with 8-bit embedded systems.

6.2 Summary of Contributions

The key contributions of this work are:

− Write strategy improvements for Serial NOR Dataflash

− Minimal SRAM memory footprint flash memory management strategy

− A fault tolerant and robust flash translation layer for 8-bit embedded
systems

144

6.3. Future Work

− Consistent and recoverable data management system

− A deterministic, low overhead garbage collection and wear levelling
algorithm

− Efficient buffer management through the use of direct reads

− In place writes for energy and device conservation

Through strategic use of serial NOR Dataflash SRAM buffers, unnecessary
data transfers between the host and memory are limited. The FTL allows
for low overhead page address resolution in addition to low overhead direct
reads making the FTL suitable for use with resource constrained embedded
systems. Additionally, the FTL offers different write consistency methods,
allowing the end user to choose the required level of performance based on
their use case. Page level consistency offers the user the ability to cache a
complete page of data before writing without having to incur an additional
host SRAM burden but risks data loss in the event of a system failure.
Record level consistency utilizing overwriting offers the user the ability to
increase the level of consistency for append type operations without incurring
additional operations by the FTL due to FAWL.

This work also highlights the benefits of using the technique of masked
overwriting to reduce the number of page movements required when append-
ing data records to a given physical page. This helps to extend the field
life of the device by reducing the overall number of pages erases required in
addition to reducing the cost of write operations. It allows devices that are
using append type operations to utilize an FTL while no having to incur
excessive write amplification and as well as energy savings.

6.3 Future Work

Future work will examine improvements to the frontier advance wear
levelling algorithm with efforts focusing on reducing the impact of write
amplification and degree of over provisioning required. As noted in this
work, as the memory utilization increases, more time is dedicated to FAWL
as well as increasing the number of erase operations incurred. A technique
that may improve overall device performance and reduce unnecessary moves
of live data will be investigated for the wear levelling operation. Instead
of compacting and moving any live data page from the sweep frontier to
the write frontier, the algorithm will assess the occupancy of a block and in
conjunction with a coin flip algorithm, and determine if the page should be

145

6.3. Future Work

moved. For pages that have a high percentage of live data pages, the sweep
frontier may choose to skip the block entirely reducing the overhead from
moving live data. Additionally, a coin flipping operation will be implemented
to inject empty pages at the write frontier to maintain a reasonable number
of free pages in a physical region and reduce the packing of live data pages.
This technique may reduce overall write amplification effects as the amount
of data in the system increases.

As observed in the analysis of the frontier advance wear levelling algo-
rithm (Section 5.4), write amplification at high utilization leads to the over
provisioning requirements. It is observed that the mixing of data with control
pages leads to this effect. A possibility to reduce this effect would be to split
data and control pages into two different memory devices. As the memory
devices utilize the SPI bus, the only additional overhead to the system would
be one assertion line for the new memory. The FTL would partition data
and control page writes between the two devices while utilizing the same
FTL operations on both devices. The would allow the sweep frontier and
write frontier to maintain the same velocities thus eliminating the need for
substantial over provisioning on a single memory device. Additionally, the
FTL would gain increased performance as the second memory device offers
buffers that can now be strictly reserved for address translation operations
with the buffers on the first memory device exclusively reserved for data
operations. This technique will allow FlaReFTL to scale to other sizes of
memory devices as the control pages would not be required to be mixed with
data pages. Improved memory optimization for wear levelling can also be
realized but exploiting the flash SRAM memory buffers to store temporary
page mappings, which would allow the FTL to run on the extremely memory
constrained devices.

Additional improvements will be investigated with masked overwriting
and bit vectors. The logical busy page structure may benefit from the use
masked overwriting but will require modification of the FTL algorithm.
Further improvement will be realized with the removal of the LBP from the
system, by tracking logical page allocation in the OOB area with bit vectors
and masked overwriting The use of bit vectors and masked overwriting will
be expanded for use with other data structures and NOR memory candidates.

Finally, run-time improvements in the core FTL algorithm will be inves-
tigates through source code optimization. The FTL will be integrated into
other key data managements projects in the 8-bit embedded device space.
This will allow users to utilize FlaReFTL in their projects, eliminating the
need to manage flash translation and wear levelling activities on devices
involved in data collection activities.

146

Bibliography

[AA11] Daniel Allred and Gaurav Agarwal. Software and Hardware
Design Challenges Due to the Dynamic Raw NAND Market.
Technical report, “Texas Instruments”, 2011. → pages 9, 76

[AB95] Tel Aviv (IL) Amir Ban. Flash File System. Patent, 04 1995.
US 5404485. → pages 43

[AB99] Ramat Hasharon (IL) Amir Ban. Flash File System Optimized
for Page-Mode Flash Technologies. Patent, August 1999. US
5937425. → pages 29, 55

[Ade15] Adesto Technologies. 16-Mbit DataFlash (with Extra 512-
Kbits), 2.3V or 2.5V Minimum SPI Serial Flash Memory, July
2015. http://www.adestotech.com/wp-content/uploads/

doc8782.pdf. → pages 18, 28, 83, 98

[AF02] D. Abramovitch and G. Franklin. Disk Drive Control: The
Early Years. Annual Reviews in Control, 26(2):229–242, 2002.
→ pages 35

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet
of Things: A Survey. Computer Networks, 54(15):2787–2805,
October 2010. → pages 1, 8, 10, 76

[Ake05] Johan Akerman. Toward a Universal Memory. Science,
308(5721):508–510, 2005. → pages 30

[ASSC02] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
Wireless Sensor Networks: A Survey. Computer Networks,
38(4):393–422, 2002. → pages 1, 10, 11, 76

[Atm04] Atmel Corporation. Atmel at45db161d datasheet, 2004. http:
//www.atmel.com/Images/doc2224.pdf. → pages 6, 18, 25,
28, 29, 31, 97

147

http://www.patentlens.net/patentlens/patent/US_5404485/en/
http://www.patentlens.net/patentlens/patent/US_5937425/en/
http://www.patentlens.net/patentlens/patent/US_5937425/en/
http://www.adestotech.com/wp-content/uploads/doc8782.pdf
http://www.adestotech.com/wp-content/uploads/doc8782.pdf
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://www.sciencemag.org/content/308/5721/508.short
http://www.sciencedirect.com/science/article/B6VRG-44W46D4-1/2/f18cba34a1b0407e24e97fa7918cdfdc
http://www.atmel.com/Images/doc2224.pdf
http://www.atmel.com/Images/doc2224.pdf

Bibliography

[Bar08] Frank Bartos. Life After Flash Memory. Control Engineering,
55(4):26, 2008. → pages 30

[BCDV09] Chiara Buratti, Andrea Conti, Davide Dardari, and Roberto
Verdone. An Overview on Wireless Sensor Networks Technology
and Evolution. Sensors, 9(9):6869–6896, 2009. → pages 10

[BCMV03] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduc-
tion to Flash Memory. Proceedings of the IEEE, 91:489–502,
April 2003. → pages 16, 17, 18, 19, 20, 22, 23, 24, 31, 78

[BN92] R. L. Boylestad and L. Nashelsky. Electronic Devices and
Circuit Theory. Prentice Hall, 5th edition, 1992. → pages 13

[BPC+07] Paolo Baronti, Prashant Pillai, Vince W. C. Chook, Stefano
Chessa, Alberto Gotta, and Y. Fun Hu. Wireless Sensor Net-
works: A Survey on the State of the Art and the 802.15.4
and ZigBee Standards. Computer Communications, 30(7):1655–
1695, 2007. → pages 1, 10, 76

[Bri97] Brian Matas and Christian de Suberbasaux. Complete Coverage
of DRAM, SRAM, EPROM,and Flash Memory ICs. Integrated
Circuit Engineering Corporation, 1997. → pages 22, 23, 24

[BsKGyL02] Anyang (KR) Bum-soo Kim and Seoul (KR) Gui-young Lee.
Method of Driving Remapping in Flash Memory and Flash
Memory Architecture Suitable Therefor. Patent, 04 2002. US
6381176. → pages 48

[BTB04] Richard Beckwith, Dan Teibel, and Pat Bowen. Report from
the Field: Results from an Agricultural Wireless Sensor Net-
work. In Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, LCN ’04, pages 471–
478, Washington, DC, USA, 2004. IEEE Computer Society. →
pages 10

[CBCF94] P Cappelletti, R Bez, D Cantarelli, and L Fratin. Failure Mech-
anisms of Flash Cell in Program/Erase Cycling. In Electron
Devices Meeting, 1994. IEDM ’94. Technical Digest., Interna-
tional, pages 291–294. Ieee, Dec 1994. → pages 23

[CCS+07] Alberto Camilli, Carlos E. Cugnasca, Antonio M. Saraiva,
Andr R. Hirakawa, and Pedro L. P. Corra. From Wireless

148

http://www.mdpi.com/1424-8220/9/9/6869/
http://www.mdpi.com/1424-8220/9/9/6869/
http://www.sciencedirect.com/science/article/B6TYP-4MP569D-2/2/2cb7b0fa0bd9d0dec76e4702a4d76937
http://www.sciencedirect.com/science/article/B6TYP-4MP569D-2/2/2cb7b0fa0bd9d0dec76e4702a4d76937
http://www.sciencedirect.com/science/article/B6TYP-4MP569D-2/2/2cb7b0fa0bd9d0dec76e4702a4d76937
http://www.patentlens.net/patentlens/patent/US_6381176/en/
http://www.patentlens.net/patentlens/patent/US_6381176/en/
http://dx.doi.org/10.1109/LCN.2004.105
http://dx.doi.org/10.1109/LCN.2004.105
http://dx.doi.org/10.1109/LCN.2004.105
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=383410
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=383410
http://www.sciencedirect.com/science/article/pii/S0168169907000610
http://www.sciencedirect.com/science/article/pii/S0168169907000610

Bibliography

Sensors to Field Mapping: Anatomy of an Application for Pre-
cision Agriculture. Computers and Electronics in Agriculture,
58(1):25–36, 2007. → pages 10, 24

[CKK10] Tae-Sun Chung, Bum-Soo Kim, and Yong-Seok Kwon. Flash
Memory Access Apparatus and Method. Patent, 02 2010. US
7664906. → pages 66

[CL10] Tyler Cossentine and Ramon Lawrence. Fast Sorting on Flash
Memory Sensor Nodes. In Proceedings of the Fourteenth In-
ternational Database Engineering & Applications Symposium,
IDEAS ’10, pages 105–113, New York, NY, USA, 2010. ACM.
→ pages 11

[CLC99] Mei-Ling Chiang, Paul C. H. Lee, and Ruei-Chuan Chang.
Using Data Clustering to Improve Cleaning Performance for
Flash Memory. Software - Practice & Experience, 29(3):267–
290, March 1999. → pages 43, 44, 45

[CLP09] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. JFTL: A
Flash Translation Layer based on a Journal Remapping for
Flash Memory. ACM Transactions on Storage (TOS), 4:14:1–
14:22, February 2009. → pages 48, 61, 175

[CLRL08] Tae-Sun Chung, Myungho Lee, Yeonseung Ryu, and Kangsun
Lee. PORCE: An Efficient Power Off Recovery Scheme for
Flash Memory. Journal of Systems Architecture, 54(10):935–
943, 2008. → pages 66

[CMMS08] L. Crippa, R. Micheloni, I. Motta, and M. Sangalli. Nonvolatile
Memories: NOR vs. NAND Architectures. In Rino Miche-
loni, Giovanni Campardo, and Piero Olivo, editors, Memories
in Wireless Systems, Signals and Communication Technology,
pages 29–53. Springer Berlin Heidelberg, 2008. → pages 16, 17,
20, 21, 22, 23, 24

[CP07] Tae-Sun Chung and Hyung-Seok Park. STAFF: A Flash Driver
Algorithm Minimizing Block Erasures. Journal of Systems
Architecture, 53(12):889–901, 2007. → pages 48, 63, 177, 183

[CPJK04] Tae-Sun Chung, Stein Park, Myung-Jin Jung, and Bumsoo Kim.
STAFF: State Transition Applied Fast Flash Translation Layer.
In Christian Mller-Schloer, Theo Ungerer, and Bernhard Bauer,

149

http://www.sciencedirect.com/science/article/pii/S0168169907000610
http://www.sciencedirect.com/science/article/pii/S0168169907000610
http://www.sciencedirect.com/science/article/pii/S0168169907000610
http://www.patentlens.net/patentlens/patent/US_7664906/en/
http://www.patentlens.net/patentlens/patent/US_7664906/en/
http://doi.acm.org/10.1145/1866480.1866496
http://doi.acm.org/10.1145/1866480.1866496
http://dx.doi.org/10.1002/(SICI)1097-024X(199903)29:3<267::AID-SPE233>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1097-024X(199903)29:3<267::AID-SPE233>3.0.CO;2-T
http://doi.acm.org/10.1145/1480439.1480443
http://doi.acm.org/10.1145/1480439.1480443
http://doi.acm.org/10.1145/1480439.1480443
http://www.sciencedirect.com/science/article/pii/S1383762108000556
http://www.sciencedirect.com/science/article/pii/S1383762108000556
http://dx.doi.org/10.1007/978-3-540-79078-5_2
http://dx.doi.org/10.1007/978-3-540-79078-5_2
http://www.sciencedirect.com/science/article/pii/S1383762107000458
http://www.sciencedirect.com/science/article/pii/S1383762107000458
http://dx.doi.org/10.1007/978-3-540-24714-2_16

Bibliography

editors, Organic and Pervasive Computing ARCS 2004, volume
2981 of Lecture Notes in Computer Science, pages 199–212.
Springer Berlin Heidelberg, 2004. → pages 63, 182, 183

[CPK11] Tae-Sun Chung, Dong-Joo Park, and Jongik Kim. LSTAFF*:
An Efficient Flash Translation Layer for Large Block Flash
Memory. In Proceedings of the 2011 ACM Symposium on
Applied Computing, SAC ’11, pages 589–594, New York, NY,
USA, 2011. ACM. → pages 65, 183

[CPP+09] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee,
Sang-Won Lee, and Ha-Joo Song. A Survey of Flash Translation
Layer. Journal of Systems Architecture, 55(5-6):332–343, May
2009. → pages 25, 26, 29, 33, 42, 43, 44, 45, 46, 48, 52, 65

[CPRH05] Tae-Sun Chung, Dong-Joo Park, Yeonseung Ryu, and Sug-
won Hong. LSTAFF: System Software for Large Block Flash
Memory. In Doo-Kwon Baik, editor, Systems Modeling and
Simulation: Theory and Applications, volume 3398 of Lecture
Notes in Computer Science, pages 704–712. Springer Berlin
Heidelberg, 2005. → pages 65, 182, 183

[DB07] Gary F. Derbenwick and Joe E. Brewer. Alternative Memory
Technologies, pages 617–740. John Wiley & Sons, Inc., 2007.
→ pages 18

[Des10] Peter Desnoyers. Empirical Evaluation of NAND Flash Mem-
ory Performance. ACM SIGOPS Operating Systems Review,
44(1):50–54, 2010. → pages 25, 27

[DNH04] Hui Dai, Michael Neufeld, and Richard Han. ELF: An Efficient
Log-structured Flash File System for Micro Sensor Nodes. In
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, pages 176–187, New York, NY,
USA, 2004. ACM. → pages 1, 10, 11, 39, 40, 76

[DTV09] A. K. Dwivedi, M. K. Tiwari, and O. P. Vyas. Operating
Systems for Tiny Networked Sensors: A Survey. International
Journal of Recent Trends in Engineering (IJRTE), Issue on
Computer Science, 1(2):152–157, May 2009. → pages 11

[DZ11] Yuhui Deng and Jipeng Zhou. Architectures and Optimization
Methods of Flash Memory Based Storage Systems. Journal of

150

http://doi.acm.org/10.1145/1982185.1982311
http://doi.acm.org/10.1145/1982185.1982311
http://doi.acm.org/10.1145/1982185.1982311
http://dx.doi.org/10.1016/j.sysarc.2009.03.005
http://dx.doi.org/10.1016/j.sysarc.2009.03.005
http://dx.doi.org/10.1007/978-3-540-30585-9_78
http://dx.doi.org/10.1007/978-3-540-30585-9_78
http://dx.doi.org/10.1002/9780470181355.ch13
http://dx.doi.org/10.1002/9780470181355.ch13
http://portal.acm.org/citation.cfm?doid=1740390.1740402
http://portal.acm.org/citation.cfm?doid=1740390.1740402
http://doi.acm.org/10.1145/1031495.1031516
http://doi.acm.org/10.1145/1031495.1031516
http://dx.doi.org/10.1016/j.sysarc.2010.12.003
http://dx.doi.org/10.1016/j.sysarc.2010.12.003

Bibliography

Systems Architecture, 57(2):214–227, February 2011. → pages
11, 18, 24, 27, 42, 43, 44, 45, 46, 48, 175

[ea90] Michael L. Kazar et al. DEcorum File System Architectural
Overview. In USENIX Technical Conference, pages 151–164,
1990. → pages 37

[ea04] G. H. Koh et al. PRAM Process Technology. In Integrated Cir-
cuit Design and Technology, 2004. ICICDT ’04. International
Conference on, pages 53–57, 2004. → pages 30

[Ele05] Samsung Electronics. Samsung k9f5608x0d 32m x 8 nand flash
memory datasheet, 2005. http://www.alldatasheet.com/

datasheet-pdf/pdf/129673/SAMSUNG/K9F5608X0D.html. →
pages 31

[Ele06] Samsung Electronics. Samsung K9WAG08U1A 1G x
8 bit/2G x 16 bit NAND Flash Memory Datasheet,
2006. http://www.alldatasheet.com/datasheet-pdf/pdf/

177488/SAMSUNG/K9WAG08U1A.html. → pages 29

[Eva01] Dave Evans. The Internet of Things: How the Next Evolution
of the Internet Is Changing Everything. Technical report, Cisco
Internet Business Solutions Group, 2001. → pages 1, 76

[FCTL12] S. Fazackerley, A. Campbell, R. Trenholm, and R. Lawrence.
A Holistic Framework For Water Sustainability And Education
In Municipal Green Spaces. In 2012 25th Canadian Conference
on Electrical and Computer Engineering (CCECE), pages 1–6,
May 2012. → pages 10

[FG12] Daniel K. Fisher and Peter J. Gould. Open-Source Hardware
Is a Low-Cost Alternative for Scientific Instrumentation and
Research. Modern Instrumentation, 1(2):8–20, 2012. → pages
88

[FL10] Scott Fazackerley and Ramon Lawrence. Reducing Turfgrass
Water Consumption using Sensor Nodes and an Adaptive Irriga-
tion Controller. In 2010 IEEE Sensors Applications Symposium
(SAS), pages 90–94, Limerick, Ireland, February 2010. → pages
10, 11

151

http://www.alldatasheet.com/datasheet-pdf/pdf/129673/SAMSUNG/K9F5608X0D.html
http://www.alldatasheet.com/datasheet-pdf/pdf/129673/SAMSUNG/K9F5608X0D.html
http://www.alldatasheet.com/datasheet-pdf/pdf/177488/SAMSUNG/K9WAG08U1A.html
http://www.alldatasheet.com/datasheet-pdf/pdf/177488/SAMSUNG/K9WAG08U1A.html

Bibliography

[FL11] S. Fazackerley and R. Lawrence. A Flash Resident File System
for Embedded Sensor Networks. In Electrical and Computer
Engineering (CCECE), 2011 24th Canadian Conference on,
pages 1400–1405, May 2011. → pages iv, 7, 11, 28, 29, 72, 75,
99

[Gia99] Dominic Giampaolo. Practical File System Design. Morgan
Kaufmann Publishers Inc., 1999. → pages 36, 37

[GIMA10] Daniel Giusto, Antonio Iera, Giacomo Morabito, and Luigi
Atzori, editors. The Internet of Things: 20th Tyrrhenian Work-
shop on Digital Communications. Springer, 2010. → pages 1,
8, 10, 76

[Giu13] Giuseppe Burtini and Scott Fazackerley and Ramon Lawrence.
Reducing Data Transfer for Charts on Adaptive Web Sites.
SAC’13 Proceedings of the 28th Annual ACM Symposium on
Applied Computing, March 2013. → pages 2

[GKU09] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL:
A Flash Translation Layer Employing Demand-Based Selective
Caching of Page-Level Address Mappings. In Proceedings of
the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’09,
pages 229–240, New York, NY, USA, 2009. ACM. → pages 45,
46, 50, 51

[GLvB+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesC Language: A Holistic Ap-
proach to Networked Embedded Systems. In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, PLDI ’03, pages 1–11, New York,
NY, USA, 2003. ACM. → pages 40

[GPSZ10] A Ghobakhlou, A Perera, P Sallis, and S Zandi. Modular Sensor
Nodes for Environmental Data Monitoring. In Proceeding of
the Fourth International Conference on Sensing Technology,
pages 372–377, 2010. → pages 10

[GSS09] A Ghobakhlou, S Shanmuganthan, and P Sallis. Wireless Sensor
Networks for Climate Data Management Systems. In Proceed-
ing of the 18th World IMACS/MODSIM Congress, Cairns,
Australia, July 2009. → pages 10

152

http://portal.acm.org/citation.cfm?id=552604
http://doi.acm.org/10.1145/1508244.1508271
http://doi.acm.org/10.1145/1508244.1508271
http://doi.acm.org/10.1145/1508244.1508271
http://doi.acm.org/10.1145/781131.781133
http://doi.acm.org/10.1145/781131.781133

Bibliography

[GT05a] Eran Gal and Sivan Toledo. A Transactional Flash File System
for Microcontrollers. In ATEC ’05: Proceedings of the Annual
Conference on USENIX Annual Technical Conference, pages
7–7, Berkeley, CA, USA, 2005. USENIX Association. → pages
11

[GT05b] Eran Gal and Sivan Toledo. Algorithms and Data Structures
for Flash Memories. ACM Comput. Surv., 37(2):138–163, 2005.
→ pages 11

[Hag87] R. Hagmann. Reimplementing the Cedar File System using Log-
ging and Group Commit. SIGOPS Oper. Syst. Rev., 21(5):155–
162, November 1987. → pages 37

[Hea02] Steve Heath. Embedded Systems Design. Butterworth-
Heinemann, Newton, MA, USA, 2nd edition, 2002. → pages
9

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister. System Architecture Directions for
Networked Sensors. ACM SIGARCH Computer Architecture
News, 28(5):93–104, November 2000. → pages 11

[HZW11] Ping Huang, Ke Zhou, and Chunling Wu. ShiftFlash: Make
Flash-Based Storage More Resilient and Robust. Performance
Evaluation, 68(11):1193–1206, 2011. Special Issue: Performance
2011. → pages 71

[IEE07] IEEE Computer Society. IEEE Std. 802.15.4-2007, August
2007. Available: http://standards.ieee.org/getieee802/
download/802.15.4a-2007.pdf. → pages 10

[IFV11] Massimo Iaculo, Francesco Falanga, and Ornella Vitale. Intro-
duction to SSD. In Giovanni Campardo, Federico Tiziani, and
Massimo Iaculo, editors, Memory Mass Storage, pages 213–236.
Springer Berlin Heidelberg, 2011. → pages 11

[Inc05] Micron Technology Inc. Micron p5q serial phase
change memory (pcm) datasheet, 2005. https:

//media.digikey.com/pdf/Data%20Sheets/Micron%

20Technology%20Inc%20PDFs/P5Q%20PCM.pdf. → pages
30, 31

153

http://doi.acm.org/10.1145/37499.37518
http://doi.acm.org/10.1145/37499.37518
http://doi.acm.org.ezproxy.library.ubc.ca/10.1145/378995.379006
http://doi.acm.org.ezproxy.library.ubc.ca/10.1145/378995.379006
http://www.sciencedirect.com/science/article/pii/S0166531611001015
http://www.sciencedirect.com/science/article/pii/S0166531611001015
http://dxCampardo.doi.org/10.1007/978-3-642-14752-4_5
http://dxCampardo.doi.org/10.1007/978-3-642-14752-4_5
wwww.micron.com
wwww.micron.com
https://media.digikey.com/pdf/Data% 20Sheets/Micron% 20Technology% 20Inc% 20PDFs/P5Q% 20PCM.pdf
https://media.digikey.com/pdf/Data% 20Sheets/Micron% 20Technology% 20Inc% 20PDFs/P5Q% 20PCM.pdf
https://media.digikey.com/pdf/Data% 20Sheets/Micron% 20Technology% 20Inc% 20PDFs/P5Q% 20PCM.pdf

Bibliography

[Inc06] Micron Technology Inc. Nand flash 101 introduction.
Technical Note TN-29-19, Micron Technology, Inc., 2006.
https://www.micron.com/~/media/documents/products/

technical-note/nand-flash/tn2919_nand_101.pdf?la=en.

→ pages 26

[Inc08] Micron Technology Inc. Micron m25p05-a datasheet, 2008.
https://www.micron.com/~/media/documents/products/

data-sheet/nor-flash/serial-nor/m25p/m25p05a.pdf. →
pages 18, 31

[JKJ+10] Dawoon Jung, Jeong-UK Kang, Heeseung Jo, Jin-Soo Kim,
and Joonwon Lee. Superblock FTL: A Superblock-Based Flash
Translation Layer with a Hybrid Address Translation Scheme.
ACM Trans. Embed. Comput. Syst., 9(4):40:1–40:41, April 2010.
→ pages 24, 29, 45, 49, 61, 62

[JRO+11] V. Jelicic, T. Razov, D. Oletic, M. Kuri, and V. Bilas.
MasliNET: A Wireless Sensor Network Based Environmen-
tal Monitoring System. In MIPRO, 2011 Proceedings of the
34th International Convention, pages 150–155, May 2011. →
pages 10

[KC08] Se Jin Kwon and Tae-Sun Chung. An Efficient and Advanced
Space-Management Technique for Flash Memory using Reallo-
cation Blocks. Consumer Electronics, IEEE Transactions on,
54(2):631–638, May 2008. → pages 48, 61, 169

[KJKL06] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee.
A Superblock-Based Flash Translation Layer for NAND Flash
Memory. In Proceedings of the 6th ACM & IEEE International
Conference on Embedded Software, EMSOFT ’06, pages 161–
170, New York, NY, USA, 2006. ACM. → pages 48, 61, 62,
174

[KK04] K. Kim and G. H. Koh. Future memory technology including
emerging new memories. In Microelectronics, 2004. 24th Inter-
national Conference on, volume 1, pages 377–384 vol.1, May
2004. → pages 30

[KKC+10] Hunki Kwon, Eunsam Kim, Jongmoo Choi, Donghee Lee, and
Sam H. Noh. Janus-FTL: Finding the Optimal Point on the

154

https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2919_nand_101.pdf?la=en.
https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2919_nand_101.pdf?la=en.
https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p05a.pdf
https://www.micron.com/~/media/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p05a.pdf
http://doi.acm.org/10.1145/1721695.1721706
http://doi.acm.org/10.1145/1721695.1721706
http://doi.acm.org/10.1145/1176887.1176911
http://doi.acm.org/10.1145/1176887.1176911
http://doi.acm.org/10.1145/1879021.1879044
http://doi.acm.org/10.1145/1879021.1879044

Bibliography

Spectrum Between Page and Block Mapping Schemes. In
Proceedings of the Tenth ACM International Conference on
Embedded Software, EMSOFT ’10, pages 169–178, New York,
NY, USA, 2010. ACM. → pages 71

[KKN+02] Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min, and
Yookun Cho. A Space-Efficient Flash Translation Layer for
CompactFlash Systems . Consumer Electronics, IEEE Trans-
actions on, 48(2):366–375, May 2002. → pages 48, 58, 174

[KLCB08] Jin Kyu Kim, Hyung Gyu Lee, Shinho Choi, and Kyoung Il
Bahng. A PRAM and NAND Flash Hybrid Architecture for
High-Performance Embedded Storage Subsystems. In Proceed-
ings of the 8th ACM international Conference on Embedded
Software, EMSOFT ’08, pages 31–40, New York, NY, USA,
2008. ACM. → pages 30, 31, 49

[KNM95] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A
Flash-Memory Based File System. In Proceedings of the
USENIX 1995 Technical Conference Proceedings, TCON’95,
pages 13–13, Berkeley, CA, USA, 1995. USENIX Association.
→ pages 25, 39, 57, 58

[KRKC11] Se Jin Kwon, Arun Ranjitkar, Young-Bae Ko, and Tae-Sun
Chung. FTL Algorithms for NAND-Type Flash Memories,
volume 15. Springer Berlin - Heidelberg, March 2011. → pages
18, 29, 33, 48, 52, 54, 55, 57, 58, 61, 62, 65, 66, 69, 166, 169,
175, 183

[KS67] K. Kahng and S. M. Sze. A Floating Gate and its Application
to Memory Devices. IEEE Transactions on Electron Devices,
14(9):629–629, 1967. → pages 15, 78

[Lai08] S K Lai. Flash Memories: Successes and Challenges. IBM
Journal of Research and Development, 52(4):529–535, 2008. →
pages 24

[LBP08] Chul Lee, Sung Hoon Baek, and Kyu Ho Park. A hybrid flash
file system based on nor and nand flash memories for embedded
devices. IEEE Transactions on Computers, 57:1002–1008, 2008.
→ pages 49

155

http://doi.acm.org/10.1145/1879021.1879044
http://doi.acm.org/10.1145/1879021.1879044
http://doi.acm.org/10.1145/1450058.1450064
http://doi.acm.org/10.1145/1450058.1450064
http://portal.acm.org/citation.cfm?id=1267411.1267424
http://portal.acm.org/citation.cfm?id=1267411.1267424
http://www.springerlink.com/index/10.1007/s10617-011-9071-9
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5388612

Bibliography

[Lev08] Adam Leventhal. Flash Storage Memory. Commun. ACM,
51(7):47–51, July 2008. → pages 24

[Lim11] Fujitsu Semiconductor Limited. MB85RS64A 64K
(8K x 8) Bit SPI Memory FRAM, 2011. http:

//www.fujitsu.com/downloads/MICRO/fsa/pdf/products/

memory/fram/MB85RS64A-DS501-00009-0v01-E.pdf. →
pages 30

[LJKK08] Yong-Goo Lee, Dawoon Jung, Dongwon Kang, and Jin-Soo
Kim. µ-FTL: A Memory-Efficient Flash Translation Layer
Supporting Multiple Mapping Granularities. In Proceedings of
the 8th ACM International Conference on Embedded software,
EMSOFT ’08, pages 21–30, New York, NY, USA, 2008. ACM.
→ pages 43

[LP06] Seung-Ho Lim and Kyu-Ho Park. An Efficient NAND Flash
File System for Flash Memory Storage. IEEE Transactions on
Computers, 55(7):906–912, July 2006. → pages 39

[LPC+07] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee,
Sangwon Park, and Ha-Joo Song. A Log Buffer-Based Flash
Translation Layer using Fully-Associative Sector Translation.
ACM Transactions on Embedded Computing Systems (TECS),
6(3), July 2007. → pages 48, 58, 61, 166, 174, 175

[LSKK08] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim.
LAST: Locality-Aware Sector Translation for NAND Flash
Memory-Based Storage Systems. ACM SIGOPS Operating
Systems Review, 42(6):36–42, October 2008. → pages 48, 61,
174, 175

[LSS+09] Juan A. Lapez, Fulgencio Soto, Pedro Snchez, Andrs Iborra,
Juan Suardiaz, and Juan A. Vera. Development of a Sensor
Node for Precision Horticulture. Sensors, 9(5):3240–3255, 2009.
→ pages 10

[LYL09] Hyun-Seob Lee, Hyun-Sik Yun, and Dong-Ho Lee. HFTL:
Hybrid Flash Translation Layer based on Hot Data Identifi-
cation for Flash Memory. IEEE Transactions on Consumer
Electronics, 55(4):2005–2011, November 2009. → pages 49

156

http://doi.acm.org/10.1145/1364782.1364796
http://www.fujitsu.com/downloads/MICRO/fsa/pdf/products/memory/fram/MB85RS64A-DS501-00009-0v01-E.pdf
http://www.fujitsu.com/downloads/MICRO/fsa/pdf/products/memory/fram/MB85RS64A-DS501-00009-0v01-E.pdf
http://www.fujitsu.com/downloads/MICRO/fsa/pdf/products/memory/fram/MB85RS64A-DS501-00009-0v01-E.pdf
http://doi.acm.org/10.1145/1450058.1450063
http://doi.acm.org/10.1145/1450058.1450063
http://doi.acm.org/10.1145/1275986.1275990
http://doi.acm.org/10.1145/1275986.1275990
http://doi.acm.org/10.1145/1453775.1453783
http://doi.acm.org/10.1145/1453775.1453783
http://www.mdpi.com/1424-8220/9/5/3240
http://www.mdpi.com/1424-8220/9/5/3240

Bibliography

[MCO08] Rino Micheloni, Giovanni Campardo, and Piero Olivo. Memo-
ries in Wireless Systems. Springer Publishing Company, Incor-
porated, 1st edition, 2008. → pages 4, 19

[MCP+02] Alan Mainwaring, David Culler, Joseph Polastre, Robert
Szewczyk, and John Anderson. Wireless Sensor Networks for
Habitat Monitoring. In Proceedings of the 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications,
WSNA ’02, pages 88–97, New York, NY, USA, 2002. ACM. →
pages 10

[MDC+09] Gaurav Mathur, Peter Desnoyers, Paul Chukiu, Deepak Gane-
san, and Prashant Shenoy. Ultra-low power data storage for sen-
sor networks. ACM Transactions on Sensor Networks (TOSN),
5(4):1–34, 2009. → pages 11, 40

[MDGS06] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and
Prashant Shenoy. Ultra-low Power Data Storage for Sensor
Networks. In Proceedings of the 5th International Conference
on Information Processing in Sensor Networks, IPSN ’06, pages
374–381, New York, NY, USA, 2006. ACM. → pages 11, 18, 19

[MFL11] Dongzhe Ma, Jianhua Feng, and Guoliang Li. LazyFTL: A
Page-Level Flash Translation Layer Optimized for NAND Flash
Memory. In Proceedings of the 2011 International Conference
on Management of Data, SIGMOD ’11, pages 1–12, New York,
NY, USA, 2011. ACM. → pages 34, 46, 51

[MFM+08] Raul Morais, Miguel A. Fernandes, Samuel G. Matos, Carlos
Serdio, P. J. S. G. Ferreira, and M. J. C. S. Reis. A Zig-
Bee Multi-Powered Wireless Acquisition Device for Remote
Sensing Applications in Precision Viticulture. Computers and
Electronics in Agriculture, 62(2):94–106, 2008. → pages 10

[MGZ+09] A. Matese, S. F. Di Gennaro, A. Zaldei, L. Genesio, and F. P.
Vaccari. A Wireless Sensor Network for Precision Viticulture:
The NAV System. Computers and Electronics in Agriculture,
69(1):51–58, 2009. → pages 10

[MMR08a] R. Micheloni, A. Marelli, and R. Ravasio. NAND Flash Mem-
ories. In Error Correction Codes for Non-Volatile Memories,
pages 85–101. Springer Netherlands, 2008. → pages 16, 20, 21,
22, 23

157

http://doi.acm.org/10.1145/570738.570751
http://doi.acm.org/10.1145/570738.570751
http://doi.acm.org/10.1145/1127777.1127833
http://doi.acm.org/10.1145/1127777.1127833
http://doi.acm.org/10.1145/1989323.1989325
http://doi.acm.org/10.1145/1989323.1989325
http://doi.acm.org/10.1145/1989323.1989325
http://www.sciencedirect.com/science/article/pii/S0168169907002438
http://www.sciencedirect.com/science/article/pii/S0168169907002438
http://www.sciencedirect.com/science/article/pii/S0168169907002438
http://www.sciencedirect.com/science/article/pii/S0168169909001215
http://www.sciencedirect.com/science/article/pii/S0168169909001215
http://dx.doi.org/10.1007/978-1-4020-8391-4_4
http://dx.doi.org/10.1007/978-1-4020-8391-4_4

Bibliography

[MMR08b] R. Micheloni, A. Marelli, and R. Ravasio. NOR Flash Memories.
In Error Correction Codes for Non-Volatile Memories, pages
61–83. Springer Netherlands, 2008. → pages 16, 19, 20, 23

[Mur15] Charles J. Murray. Why 8-bit MCUs Refuse to Go Away: New
Peripherals are Paving the Way for the Continued Success of
the 8-bit Microcontroller. Design News, 70(9):30, 2015. →
pages 2, 77

[ODH+85] John K Ousterhout, Herve Dacosta, David Harrison, John A
Kunze, Mike Kupfer, and James G Thompson. A Trace-Driven
Analysis of the UNIX 4.2 BSD File System. Proceedings of the
Tenth ACM Symposium on Operating Systems Principles SOSP
85, pages 15–24, 1985. → pages 37

[PCK+08] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho Roh,
Wonhee Cho, and Jin-Soo Kim. A Reconfigurable FTL (Flash
Translation Layer) Architecture for NAND Flash-Fased Appli-
cations. ACM Transactions on Embedded Computing Systems
(TECS), 7(4):38:1–38:23, August 2008. → pages 174

[PDD10] Dongchul Park, Biplob Debnath, and David Du. CFTL: A
Convertible Flash Translation Layer Adaptive to Data Access
Patterns. ACM SIGMETRICS Performance Evaluation Review,
38(1):365–366, June 2010. → pages 51

[PE08] F. J. Pierce and T. V. Elliott. Regional and On-Farm Wireless
Sensor Networks for Agricultural Systems in Eastern Washing-
ton. Computers and Electronics in Agriculture, 61(1):32–43,
2008. → pages 10

[PH12] David A. Patterson and John L. Hennessy. Computer Organiza-
tion and Design - The Hardware / Software Interface (Revised
4th Edition). The Morgan Kaufmann Series in Computer Ar-
chitecture and Design. Academic Press, 2012. → pages 9, 10,
11, 33, 36, 43, 49, 50

[PK00] G. J. Pottie and W. J. Kaiser. Wireless Integrated Network
Sensors. Commun. ACM, 43:51–58, May 2000. → pages 2, 11

[PKCH10] Jung Sik Park, Hi-Seok Kim, Ki-Seok Chung, and Tae Hee Han.
PRAM and NAND Flash Hybrid Architecture Based on Hot
Data Detection. In Mechanical and Electronics Engineering

158

http://dx.doi.org/10.1007/978-1-4020-8391-4_3
http://www.designnews.com/author.asp?doc_id=278431
http://www.designnews.com/author.asp?doc_id=278431
http://www.designnews.com/author.asp?doc_id=278431
http://dl.acm.org/citation.cfm?id=323631
http://dl.acm.org/citation.cfm?id=323631
http://doi.acm.org/10.1145/1376804.1376806
http://doi.acm.org/10.1145/1376804.1376806
http://doi.acm.org/10.1145/1376804.1376806
http://doi.acm.org/10.1145/1811099.1811089
http://doi.acm.org/10.1145/1811099.1811089
http://doi.acm.org/10.1145/1811099.1811089
http://www.sciencedirect.com/science/article/B6T5M-4PGXF0V-1/2/d39c7c4c4804ab27cabd6cce0c94d880
http://www.sciencedirect.com/science/article/B6T5M-4PGXF0V-1/2/d39c7c4c4804ab27cabd6cce0c94d880
http://www.sciencedirect.com/science/article/B6T5M-4PGXF0V-1/2/d39c7c4c4804ab27cabd6cce0c94d880
http://www.elsevierdirect.com/product.jsp?isbn=9780123747501
http://www.elsevierdirect.com/product.jsp?isbn=9780123747501
http://www.elsevierdirect.com/product.jsp?isbn=9780123747501
http://doi.acm.org/10.1145/332833.332838
http://doi.acm.org/10.1145/332833.332838

Bibliography

(ICMEE), 2010 2nd International Conference on, volume 1,
pages V1–93–V1–97, August 2010. → pages 30

[PPP11] Youngwoo Park, SungKyu Park, and KyuHo Park. Design of
embedded database based on hybrid storage of pram and nand
flash memory. In Jianliang Xu, Ge Yu, Shuigeng Zhou, and
Rainer Unland, editors, Database Systems for Adanced Appli-
cations, volume 6637 of Lecture Notes in Computer Science,
pages 254–263. Springer Berlin Heidelberg, 2011. → pages 30

[PRP+04] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi,
D. Ielmini, A. L. Lacaita, and R. Bez. Reliability Study of
phase-Change Nonvolatile Memories. IEEE Transactions on
Device and Materials Reliability, 4(3):422–427, September 2004.
→ pages 31

[Ram12] Ramtron International Corporation. Fm24c04b 4kb serial
5v f-ram memory, 2012. http://www.ramtron.com/files/

datasheets/FM24C04B_ds.pdf. → pages 30

[RGA+09] Philip W. Rundel, Eric A. Graham, Michael F. Allen, Jason C.
Fisher, and Thomas C. Harmon. Environmental Sensor Net-
works in Ecological Research. New Phytologist, 182(3):589–607,
2009. → pages 10

[Riq09] Riquelme . Wireless Sensor Networks for Precision Horticulture
in Southern Spain. Computers and Electronics in Agriculture,
68(1):25–35, 2009. → pages 10

[RO92] Mendel Rosenblum and John K. Ousterhout. The Design and
Implementation of a Log-structured File System. ACM Trans-
actions on Computer Systems (TOCS), 10:26–52, February
1992. → pages 5, 37, 38, 39, 57, 58

[Ros02] George Rostky. Remembering the PROM Knights of Intel.
Electronic Engineering Times, page 85, 2002. http://www.

eetimes.com/document.asp?doc_id=1144961. → pages 17

[RR12] Michael E Ruiz and Richard Redmond. Cyber Command and
Control : A Military Doctrinal Perspective on Collaborative
Situation Awareness for Decision Making, pages 29–47. IGI
Global, 2012. → pages 1, 8

159

http://dx.doi.org/10.1007/978-3-642-20244-5_25
http://dx.doi.org/10.1007/978-3-642-20244-5_25
http://dx.doi.org/10.1007/978-3-642-20244-5_25
http://www.ramtron.com/files/datasheets/FM24C04B_ds.pdf
http://www.ramtron.com/files/datasheets/FM24C04B_ds.pdf
http://dx.doi.org/10.1111/j.1469-8137.2009.02811.x
http://dx.doi.org/10.1111/j.1469-8137.2009.02811.x
http://www.sciencedirect.com/science/article/B6T5M-4WBY4YS-1/2/f26d9c6e6c0bcaba497c062f59862d30
http://www.sciencedirect.com/science/article/B6T5M-4WBY4YS-1/2/f26d9c6e6c0bcaba497c062f59862d30
http://doi.acm.org/10.1145/146941.146943
http://doi.acm.org/10.1145/146941.146943
http://ubc.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V3JasMwEBUlvbSXrqFLCobSU3CRJS_SoYc0NPQSWtL0bGRpFEo2iJ1D_76S7XgJ5Ad68cGysfVGzMbMPIQoecbunk4QkhIhgpASmYCIFJY-Bggk960F4rpdqlOR5dX3_oPgJ7AEy_Kx64P6nHyM-_N8YEhaNY60EvI1E05jOmG7OaRInfcn6zSb_7YyBUVVKatTea_jiom4TCZy4hoXymvKmZCmPivodPYmUnuUBSSKjPa248mX6kdmL7Byv7-MJTQOpi2sGw2GxzWPRFiyQhZfO2T8cos-PUdnu9HazqDA8AIdweoSnTYwuEJPDTQdg6Zj0XRKNJ21dnI0r9F09DYdvrsls4Q7M-Gu54oQOHgYROgn2MS4EQHOuPKiiHGBFdHM14IrTHWiAgUAlBFFiRcSybQA2kWd1XoFN8jxE6WTyIQpTJvQlMvEKE2KhQlCGVYM2C16tJuNS0pRc0nzP5yJbZrGjAUB8UN-i7r5U_ZsZRshGwu9HUixSGzyS2ZpTIybz61nad6rltViEVeSuTu0cI9O6qPRQ51ss4WHfOLEH4CJJUc
http://www.eetimes.com/document.asp?doc_id=1144961
http://www.eetimes.com/document.asp?doc_id=1144961

Bibliography

[RSPS02] V. Raghunathan, C. Schurgers, Sung Park, and M. B. Srivastava.
Energy-Aware Wireless Microsensor Networks. IEEE Signal
Processing Magazine, 19(2):40–50, March 2002. → pages 11

[RSW05] Doron Rotem, Kurt Stockinger, and Kesheng Wu. Optimizing
I/O Costs of Multi-dimensional Queries Using Bitmap Indices.
In KimViborg Andersen, John Debenham, and Roland Wagner,
editors, Database and Expert Systems Applications, volume
3588 of Lecture Notes in Computer Science, pages 220–229.
Springer Berlin Heidelberg, 2005. → pages 89

[RUJ+11] Michael G Rodriguez, Luis E Ortiz Uriarte, Yi Jia, Kazutomo
Yoshii, Robert Ross, and Peter H Beckman. Wireless Sensor
Network for Data-Center Environmental Monitoring. 2011 Fifth
International Conference on Sensing Technology, 10(3):533–537,
2011. → pages 10

[SBMS93] Margo Seltzer, Keith Bostic, Marshall Kirk Mckusick, and Carl
Staelin. An Implementation of a Log-structured File System for
UNIX. In Proceedings of the USENIX Winter 1993 Conference
Proceedings on USENIX Winter 1993 Conference Proceedings,
pages 3–3, Berkeley, CA, USA, 1993. USENIX Association. →
pages 38, 39

[SCKS08] M Sanvido, F R Chu, A Kulkarni, and R Selinger. NAND Flash
Memory and Its Role in Storage Architectures. In Proceedings
of the IEEE, volume 96-11, page 18641874. IEEE, 2008. →
pages 9, 16, 18, 31, 76

[Sev14] Charles Severance. Massimo Banzi: Building Arduino. Com-
puter, 47(1):11–12, January 2014. → pages 1, 76

[SFL16] W. Penson S. Fazackerley and R. Lawrence. Write Improvement
Strategies for Serial NOR Dataflash Memory. In 2016 29th
Annual IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), May 2016. → pages iv

[SKF+10] R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga,
T. Uruga, and H. Tanida. Toward the Ultimate Limit of Phase
Change in Ge2Sb2Te5. Nano Letters, 10(2):414–419, 2010.
PMID: 20041706. → pages 30

160

http://www.inderscience.com/link.php?id=40905
http://www.inderscience.com/link.php?id=40905
http://portal.acm.org/citation.cfm?id=1267303.1267306
http://portal.acm.org/citation.cfm?id=1267303.1267306
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4694025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4694025
http://pubs.acs.org/doi/abs/10.1021/nl902777z
http://pubs.acs.org/doi/abs/10.1021/nl902777z

Bibliography

[SOP+04] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael
Hamilton, Alan Mainwaring, and Deborah Estrin. Habitat
Monitoring with Sensor Networks. Communications of the
ACM, 47(6):34–40, June 2004. → pages 10

[Sta13] William Stallings. Computer Organization and Architecture:
Designing for Performance. Pearson Education, Inc, USA, 2013.
→ pages 13, 15, 25, 35

[TBHR15] Amy Teng, Adriana Blanco, Gerald Van Hoy, and Nolan Reilly.
Market Share Analysis: Microcontrollers, Worldwide, 2014.
Technical report, Gartner, Inc., May 2015. → pages 2, 77

[Tec15] EVERSPIN Technologies. MR25H256 256Kb Serial SPI
MRAM Datasheet, 2015. https://www.everspin.com/

getdatasheet/MR25H256. → pages 30

[TS99] Tokyo (JP) Takayuki Shinohara. Flash Memory Card with
Block Memory Address Arrangement. Patent, 05 1999. US
5905993. → pages 49, 52

[WCS+07] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Ying Guo, C. Cross-
man, P. Valencia, D. Swain, and G. Bishop-Hurley. Transform-
ing Agriculture through Pervasive Wireless Sensor Networks.
Pervasive Computing, IEEE, 6(2):50–57, April-June 2007. →
pages 10

[Wit13] Clint Witchalls. The Internet of Things Business Index: A Quiet
Revolution Gathers Pace. Technical report, The Economist
Intelligence Unit Limited, 2013. → pages 1, 76

[WLQS11] Yi Wang, Duo Liu, Zhiwei Qin, and Zili Shao. An Endurance-
Enhanced Flash Translation Layer via Reuse for NAND Flash
Memory Storage Systems. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2011, pages 1–6, March
2011. → pages 49

[WLW+10] Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao, and
Yong Guan. RNFTL: A Reuse-Aware NAND Flash Translation
Layer for Flash Memory. In Proceedings of the ACM SIG-
PLAN/SIGBED 2010 Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES ’10, pages 163–172,
New York, NY, USA, 2010. ACM. → pages 69, 70, 71, 182

161

http://doi.acm.org/10.1145/990680.990704
http://doi.acm.org/10.1145/990680.990704
https://www.gartner.com/doc/3048717/market-share-analysis-microcontrollers-worldwide
https://www.everspin.com/getdatasheet/MR25H256
https://www.everspin.com/getdatasheet/MR25H256
http://www.patentlens.net/patentlens/patent/US_5905993/en/
http://www.patentlens.net/patentlens/patent/US_5905993/en/
http://doi.acm.org/10.1145/1755888.1755912
http://doi.acm.org/10.1145/1755888.1755912

Bibliography

[Woo01] David Woodhouse. JFFS: The Journaling Flash File System.
In Proceedings of the Ottawa Linux Symposium, 2001. → pages
39

[Wu10] Chin-Hsien Wu. A Self-Adjusting Flash Translation Layer for
Resource-Limited Embedded Systems. ACM Transactions on
Embedded Computing Systems (TECS), 9(4):31:1–31:26, April
2010. → pages 61, 71, 176

[ZBT09] Aviad Zuck, Ohad Barzilay, and Sivan Toledo. NANDFS: A
Flexible Flash File System for RAM-constrained Systems. In
Proceedings of the Seventh ACM International Conference on
Embedded Software, EMSOFT ’09, pages 285–294, New York,
NY, USA, 2009. ACM. → pages 19

[ZSI11] Cliff Zitlaw (Spansion Inc.). The Future of NOR Flash Mem-
ory, 2011. http://eetimes.com/design/memory-design/

4215634/The-Future-of-NOR-flash-memory. → pages 4, 9,
18, 76

[ZYLK+05] Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogeraki, Dim-
itrios Gunopulos, and Walid A. Najjar. Microhash: An Efficient
Index Structure for Flash-based Sensor Devices. In Proceedings
of the 4th Conference on USENIX Conference on File and Stor-
age Technologies - Volume 4, pages 3–3, Berkeley, CA, USA,
2005. USENIX Association. → pages 18, 19, 40

[ZYWY09] Yiming Zhou, Xianglong Yang, Liren Wang, and Yibin Ying.
A Wireless Design of Low-Cost Irrigation System Using ZigBee
Technology. In International Conference on Networks Security,
Wireless Communications and Trusted Computing (NSWCTC
’09), pages 572–575, Los Alamitos, CA, USA, 2009. IEEE Com-
puter Society. → pages 33, 42

162

http://doi.acm.org/10.1145/1721695.1721697
http://doi.acm.org/10.1145/1721695.1721697
http://doi.acm.org/10.1145/1629335.1629374
http://doi.acm.org/10.1145/1629335.1629374
http://eetimes.com/design/memory-design/4215634/The-Future-of-NOR-flash-memory
http://eetimes.com/design/memory-design/4215634/The-Future-of-NOR-flash-memory
http://portal.acm.org/citation.cfm?id=1251028.1251031
http://portal.acm.org/citation.cfm?id=1251028.1251031

Index

E2PROM , 18

active, 42

battery backed-up SRAM, NVS-
RAM, 14

Block, 57
BlockBasedLogging, 173
blocks, 26

chip select, CS, 98
consistency, recovery, 132

DFTL, 46
dirty page, 127

EEPROM, 8, 18
EEPROM,Electrically Erasable

Programmable ROM, 17
erase before write, 33

Ferroelectric RAM, FRAM, 30
Flash Aware File Systems, 34
flash translation layer, FTL, 34
Fowler Nordheim tunnelling, FN

tunnelling, 17
free page, 42

garbage collection, GC, 42
GC, garbage collector, 138

hybrid, 48

Internet of Things, 1, 8, 82
invalid page, 42

keystone, keystoning, 126

large block device, 29
LazyFTL, 46
live page, 42
logical block number, LBN, 46
logical page number, LPN, 46

microcontroller, 9
MISO, 98
MOSFET, 13
MOSI, 98
MRAM, magnetoresistive, 30
Multi-Level-Cell, MLC, 24

NOR flash, Channel Hot Electron
injection, 22

Out of Bounds Area, OOB, 49
Out-of-bounds area, OOB, 25

pages, 25
Physical Block Number, PBN, 26
physical page number, PPN, 47
power off recovery, POR, 42

read cost, write cost, 29

SCLK, 98
Single-Level-Cell, SLC, 24
SPI, 98
SSD, 50
sweep frontier, sweep frontier ex-

tent, SFE, 139

163

Index

switch, 60
System-On-Chip,SOC, 10

thrashing, 45

valid, 42

wear, 29
wear levelling, WL, 29
wireless sensor network, WSN, 10
WL, wear levelling, 138
write frontier, 126

zero overhead logging, logging, 126

164

Appendix

165

Appendix A

FTL Algorithms

A.1 FTL Schemes

The following section details further variations on FTL schemes for use
with NAND flash.

A.1.1 Block Based Logging Schemes

FAST

To address the noted limitations of BAST, Lee et al. have proposed a
fully associated sector translation (FAST) [LPC+07] scheme. The primary
difference between BAST and FAST is that unlike BAST where there is a
one to many mapping relationship between data blocks and log blocks, FAST
allows for a many to many mapping strategy; in essence it is a fully associative
strategy where one log block can be shared between many target data blocks.
Additionally, unlike previous strategies, not every live block is associated
with a log block. This strategy attempts to reduce log block thrashing and
the total number of erasures. It presents a significant improvement over
BAST due to the fully associative scheme. Additionally, it segregates data
into random write (RW) and sequential write (SW) logs based on access
patterns to take advantage of switch types merges. When a log block is
written strictly with in-place updates, it can be directly converted to a data
block thus reducing the degree of copying required. With sequential writes,
the chances of a switch merge versus a full merge are significantly increased
which improves overall performance as data access patterns tend to have a
high degree of sequential writes [KRKC11]. This results in a lower number
of potential operations in terms of erase cycles.

The system maintains one log block that is solely used for in-place updates
(SW log-block) as well as a series of RW log blocks that are shared between
all blocks across the entire device. Sequential updates to previously allocated
pages will utilize the SW log under the precondition that the page under
update has a logical page offset of zero (being the first entry in the SW log)
or that the page to be updated has a logical offset that is greater than the

166

A.1. FTL Schemes

last previously entered page. If the page to be updated in the log cannot
satisfy either of the constraints, then it cannot be written to the SW log
and will be placed in the next available entry in the RW log. When the SW
log is full, it will be merged with the target block and converted to a live
data block. While the SW log block is mapped temporarily to a single data
block, the RW log blocks are shared between all blocks on the device in an
effort to increase block utilization before being invalided and erased. The
RW log functions in the same fashion as presented with FMAX where pages
are entered sequentially, in an out-of-place fashion utilizing the OOB area to
store the logical page address.

Consider the following example in Figure A.1 where each block contains 4
pages and the system has two RW log blocks where the operations write(4,A),
write(6,B), write(4,C) and write(6,D) proceed. The logical block number
and page number are calculated using Equations (3.1) and (3.2) respectively
using four pages per block. For the first two write operations (Figure A.1a),
the target pages do not contain any data so the writes proceed directly on
the target pages in physical block 0. For the third operation of write(4,C)
the target page is already allocated so the update must proceed in either the
SW or RW log-block. As the logical offset of the target page as computed by
Equation (3.2) has previously been utilized but nothing has previously been
written into the SW log-block, the page will be written in-place in the SW
log-block with the LPN being recorded in the OOB area. The original target
page in physical block 0 will be invalided to indicate that a more current
version of the page exists in the log. After the write to the SW log-block,
the next valid entry must have a logical page offset of 1 as it is the next
sequential page to be written. For the fourth operation of write(6,D) the
target page has already been allocated so it will also be written to either
the SW or RW log-block. As the logical page has an offset of 2, it does not
satisfy the write preconditions for the SW log-block. The next page that can
be written into the SW log-block must have an offset of 1. As a result, this
page cannot be written into the SW log-block. The operation will proceed
to write the updated page into the RW log-block. In order to track the
pages that exist, a RW log-block mapping table is maintained in SRAM that
maintains page mappings between logical page numbers and physical page
numbers. The page will be logged in physical page 8 and the RW log-block
mapping table is updated accordingly. In the OOB area of the logged page
(physical page 8), the logical page number is recorded and the original target
page is invalidated.

Once the SW or the RW log-blocks are completely filled, they will be
merged with the original target pages and new log blocks selected. For the

167

A.1. FTL Schemes

(a) FAST writing to Unallocated Pages

(b) FAST writing to the SW log-block

(c) FAST writing to the RW log-block

Figure A.1: The FAST FTL Scheme

168

A.1. FTL Schemes

RW log-block merge this may involve merging numerous pages due to the
many-to-one relationship between data blocks and the RW log-block. The
worst case scenario is that every page is mapped to a different block which
will cause a chain of erase operations [KRKC11]. For the SW log-block
merge, as the data is written sequentially for a specific block, FAST will
convert the page using the same strategy as with BAST to being a live block
through a switch merge where the log block becomes the live data as all data
has been written in-place in the log block.

The significant difference between BAST and FAST is that FAST main-
tains sector level mapping for logs which are stored in SRAM. For systems
with significant SRAM resources, this additional overhead may be a rea-
sonable trade-off with performance compared to BAST, but for memory
constrained systems, this significantly reduces its affordability. Similar to
BAST, FAST maintains a dedicated block-level table in flash and a map-
block directory in SRAM. Sector mapping is strictly maintained in SRAM
and must be rebuilt on remount and does not consider any recovery options.
Other limitations in terms of performance exist with the SW log-block. As
there is only one SW log-block allocated for the system at a given time, a
sequential operation may start to utilize the SW log-block. If another series
of sequential writes were to start they would be blocked from using the SW
log-block and be forced to utilize the RW log-block, impacting the overall
performance of the FTL algorithm. As a result, the FAST scheme may suffer
a performance degradation depending on the specific data access patterns as
noted previously.

EAST

Kwon and Chung present EAST [KC08] in response to the poor space
utilization encountered with the FAST scheme. EAST attempts to address
this issue through the use of state transition tracking at the log block
level allowing for more efficient allocation of blocks. They claim significant
performance increases over FAST. Utilizing strategies from both FAST and
BAST, the EAST algorithm allows a 1 to n mapping between target blocks
and log blocks. It is fundamentally a block mapping scheme and hence uses
Equations (3.1) and (3.2) to calculate the logical block number and physical
page offset for any logical page. The differentiating factor with EAST is that
it supports both in-place (FAST) and out-of-place (BAST) updates to the log
blocks in an effort to increase log-block utilization. Based on this technique,
Kwon et al. [KRKC11] claim that a log block will be fully utilized before
allowing a merge to proceed. Unlike with FAST, one notable difference from

169

A.1. FTL Schemes

previous methods is the addition of an in-place/out-of-place state encoded
in the block mapping table. This is used to determine if the target block
is using in-place updates or has been converted to a log using out-of-place
updates and is intended to increase block utilization before erasure.

Initially, a physical block will have associated with it a given number of
log blocks. Writes to the target page will proceed in an in-place fashion as
long as the target pages have not been previously allocated. When a page is
to be written that has previously been allocated, the target page is converted
to support out of place updates and becomes a log type block. Additional log
blocks are allocated to support overflow before a merge operation is required.
Essentially, the technique supports in-place updates on the chance that data
will be written in a sequential fashion but failing that, converts to a logging
system similar to FMAX with the exception that logged data is no longer
restricted to a single block.

Initially, log blocks start out strictly with the in-place structure where
pages are updated at their corresponding logical offset allowing for fast access
and updates. If a page in the log is to be overwritten, the state of the entire
block is changed such that it will only support out-of-place updates and
functions in a logging fashion similar to BAST. Once a block has made a
transition from in-place to out-of-place, it will stay as an out-of-place block
until it is full and needs to be merged with the original page. This allows
log pages to be fully utilized before being sent for erasure.

Consider the following example in Figure A.2 where each block contains
4 pages where the operations write(5,A), write(6,B), write(5,C), write(6,D)
and write(5,E) proceed. The logical block number and page number are
calculated using Equations (3.1) and (3.2) respectively using four pages
per block. For the first two write operations of write(5,A) and write(6,B)
(Figure A.2a), the target pages do not contain any data so the writes proceed
directly on the target pages in physical block 1 as allocated by the block
mapping table. Additionally, logical block 1 is marked as being in-place as
well as the in-place state being recorded in the OOB area of the physical
block.

When the third operation (write(5,C)) proceeds, the system will determine
that the page has previously been allocated and cannot be written in-place.
As a result, the block will be converted to support only out-of-place updates
as shown in Figure A.2b. The state of the block will be changed in both the
block mapping table and in the OOB area of the physical block. The target
page will be invalidated and the algorithm will start scanning at the start of
the block looking for the first unallocated page. When one is encountered,
the data will be written to the page and the logical page number recorded

170

A.1. FTL Schemes

(a) EAST Writing to Unallocated Pages

(b) In-Place to Out-of-Place Conversion

171

A.1. FTL Schemes

(c) EAST Writing Utilizing Out-of-Place Writes

(d) EAST Adding a Log Block

Figure A.2: The EAST FTL Scheme

172

A.1. FTL Schemes

in the OOB area. In this case as the first page is available, write(5,C) will
proceed to store data at that location.

For the forth operation (write(6,D)) as the block has been converted to
supporting only out-of-place updates, the algorithm scans forward locating
the target page, invalidates the page and then continues to scan for the
next available page (Figure A.2c). In this case, physical page 7 is the next
available page that can accommodate data. For the last write operation, the
algorithm determines that there are no pages left in the first page. Thus,
it will attempt to determine if it can allocate another physical block to be
added as an out-of-place log block. The number of blocks allocated to a data
target block as log blocks is a precalculated performance based parameter
as discussed below. If the system is able to allocate a free data block (also
referred to as an “reallocation”block), the write will proceed. In Figure A.2d,
the system allocates physical block 2 as a log block. The algorithm will
invalidate the target page and then proceed to write the data to the first
available page in the new block. If the algorithm determines that a block
can not be allocated for the log, it will proceed with a merge operation,
compacting all data in the original target and log block to a new data block
and erase the invalid pages.

Kwon and Chung compared the performance of EAST with FAST with
a variety of access patterns and on average, it performed better due to the
convertibility of log blocks. No performance comparison was done against
BAST or FMAX. Under most circumstances, a single page re-write will force
a log block to convert to support out-of-place updates and essentially become
the BAST type scheme. The uniquely differentiating feature of EAST is
that the number of logs blocks per target block is configurable depending
on the host specifications. To improve performance, the authors choose the
number of logs blocks such that the time to erase one log block is less than
the time it takes to scan all the pages in the log. This ensures that the
scan time for out-of-order updates will be bounded by the time it would
take to create a new log block using the FAST scheme. In terms of log
block conversion, the merge operation operates similar to BAST with the
conversion being completed when the log block is full and cannot support
any further out-of-place writes. EAST supports the functionality of a switch
merge where the log page is the valid live copy of the entire page.

While it is targeted at small block memory devices, the authors assert
that this is a transportable system to large block devices. This claim presents
technical challenges as noted in Section 2.2.2, as large block devices can only
support sequential updates within a block. As a result, only the out-of-place
updates would be performed, which renders EAST into the same operational

173

A.1. FTL Schemes

state as BAST with the only difference being the number of log blocks
associated with each target block.

Other challenges exist with EAST, particularly for memory constrained
devices. EAST tracks the number of erases per block in SRAM which
introduces significant overhead. Based on erase count, it determines which
block to use next as a log block. When a new block is allocated, it must
scan the erase count list to find the block with the lowest erase count which
introduces significant overhead. Additionally, the mapping table is also
stored in SRAM. Depending on the size of the flash memory and the number
of logs, this presents a feasibility barrier for memory constrained devices.
Kwon and Chung claim that EAST offers significant advantages over previous
methods; while the system can adjust the number of log blocks such that
the timing trade-off between scanning and block erasure is balanced, it still
imposes significant limitations, as the FTL must be maintained in SRAM
as well as the erase block count. Additionally, no performance comparison
was made with BAST which essentially offers the same access patterns for
non-sequential updates and does not offer any recovery options [PCK+08].

LAST

Lee et al. [LSKK08] propose LAST, an FTL that is more suited for
general purpose computing than for resource constrained devices. In general,
previous works have shown that a general-purpose FTL does not offer good
overall performance. They make the claim that it is appropriate to have an
FTL for a specific target and data set. LAST attempts to address the issues
that were found with BAST [KKN+02], FAST [LPC+07] and Superblock
FTL [KJKL06] (Section 3.4.4) to improve overall performance in terms
of merge costs, access patterns and the separation of hot and cold data
performance issues. It is a general purpose FTL that essentially combines
three different FTLs to address three different access patterns that may be
encountered. The key feature is that it examines a request and determines if
it is a sequential or random type pattern. Its key differentiating attribute is
the division of the log block area into sequential and random access patterns.
Once it determines if it is a sequential or random write, it will redirect the
data to the specific area for each type of data. Sequential data is handled in
a similar fashion as with BAST. Sequential writes to a log will be efficiently
switched to data block for the minimal cost using a switch-merge. Random
data will go to the random log buffer where a log block can be associated
with many data blocks, similar to FAST.

LAST also attempts to divide data into hot and cold sections in the

174

A.1. FTL Schemes

random block area which helps to reduce the cost of a full merge. Locality
is inferred from the size of the write. If it is a small write it is considered
to have high temporal locality. Conversely, large writes are considered to
have low temporal correlation [LSKK08]. In reality, the size of the partition
depends largely on how the host operating system has divided or partitioned
data and can influence the hotness of data. The authors note that this
performance can be impacted by a preset level threshold that determines the
difference between hot and cold data. They note that if the threshold values
are tuned incorrectly, LAST may suffer significant performance degradation.
Lee et al. [LSKK08] note that under small size random writes such as may
be encountered with a resource constrained device, log block utilization is
poor leading to a high number of merges. This log block thrashing [LPC+07]
increases the overall cost of merges due to number of reads, writes and
erasures.

Overall they claim that by exploiting temporal locality as well as hot/cold
correlations in data they can reduce the cost of the full merge improving the
overall performance of the flash translation layer. They also assert that their
features can reduce the number of erase operations based on the partitioning
of data. The performance increases realized by FAST are due to the reduction
in erasures; which is claimed to be up to 54% improvement over BAST, FAST
and Superblock FTL [KRKC11] (Section 3.4.4).

JFTL

JFTL [CLP09] is designed to improve the performance of journal-based
file systems such as ext3 by exploiting a journal remapping technique. The
unique feature of JFTL is that all data is written into a new region as an
out-of-place update. In place of using data (D) and update (U) blocks, JFTL
maintains a home location for the data and then a journal space where all
updates are made. While a block mapped strategy, data is journaled on a
page level. This prevents the significant numbers of overwrites and eliminates
redundant data. It is suitable for append type operations. With journaling
file systems, data written to the main data section is first written to a log
which prevents overwrites. Additionally, it adds support for atomic type
operations, redundancy and fault tolerance. Instead of rewriting mutated
data from the logs to flash memory, JFTL converts or remaps journal (log)
pages to become data pages, thus effectively reducing the need for read/write
operations as well as eliminating the need for redundant data [DZ11]. As a
result, the journaling file system will always be left in a consistent state.

Like other FTLs, JFTL includes an erase strategy. As pages become

175

A.1. FTL Schemes

obsolete, they are marked for deletion. Unlike previous works, JFTL attempts
to mark pages that will soon be erased in advance of the erase option thus
eliminating the need for an unnecessary move. The authors claim that this
strategy reduces the number of erase operations incurred through merge
operations. JFTL presents a recovery and remount strategy in the event of
a system failure. On rebuild, JFTL scans the entire data section to look
for transactions that are incomplete and performs journal remapping within
each mapping table. This operation repeats until it finds the end of the
journal which can be either good or corrupt. Once the system has rebuilt
the journal remapping tables, the system is reset. The recovery speed is
dependent on the size of the journal. It is asserted that the recovery speed
is faster than with a standard FTL, but the authors fail to indicate which
FTL it is being compared against and how other FTLs perform recovery
operations.

While JFTL offers significant performance enhancements, it is designed
to use with a journaling file system and a system with significant SRAM
resources. While journal based strategies may prove to be an overall useful
strategy for flash memories, integration with a journal based file systems
renders it an unsuitable choice for use in a memory-constrained embedded
system.

SAFTL

SAFTL [Wu10] is a self adjusting FTL with a smaller memory requirement
than BAST and a low erase strategy, but it has a complicated four stage
collection strategy to select victim pages. This strategy uses both coarse-
grained and fine-grained memory mapping strategies that are maintained in
SRAM. The unique contribution is the ability to switch between mapping
schemes depending on the type of writes. For large chunks of contiguous
data, a coarse-grained mapping structure is used while a fine-grained hash
map is used for fast access with a self adjusting mechanism to control the
number of fine-grained slots available.

On average, it performs better than BAST on page reads due to the
fine-grained translation scheme. In terms of overall address translation
performance, it performs better than BAST but in some cases its performance
was worse due to swapping of the fine-grained translation. This requirement
leads to a complicated and involved reload policy with a high data transfer
overhead limiting its suitability for resource constrained devices as well
as a large SRAM memory footprint. While SAFTL demonstrates good
performance for huge scale flash memories, it is infeasible for small memory

176

A.1. FTL Schemes

devices due to the limited bandwidth channel between the host and memory.
The authors also fail to address issues of performance in recoverability.

A.1.2 State Based FTLs

The follow section discussions further variations on state based FTLs.

STAFF

The STAFF algorithm [CP07] (Section 3.4.5) utilizes partial page pro-
gramming to reduce block erasures in addition to increasing block utilization
via a state machine that encodes the state of each page in the out of band
area of a given block. STAFF allows the encoding of free, obsolete, modified
in-place, complete in-place, and modified out-of-place states in the OOB
area of a block allowing for pages to be modified within a block without the
block having to first be erased.

Consider the two following examples with the first following the state
changes for in-place operations and conversions (Figure A.3) and the second
following the state changes for out-of-place operations (Figure A.4), where
each block contains 4 pages. The logical block number and page number are
calculated using Equations (3.1) and (3.2) respectively using four pages per
block. For both cases, consider that the system contains only free blocks (F
state).

To demonstrate the in-place operations, consider the operations
write(4,A), write(5,B), write(6,C), write(7,D), write(4,E), write(5,F),
write(6,G), write(7,H). When the first operation write(4,A) is processed,
the physical block and logical page offset are calculated (Figure A.3a). The
system resolves the state of the block from the state mapping table, deter-
mines that the block is in a free state and proceeds to write the directly to
the calculated logical page offset. The state of the block is changed from F
to M state in the state mapping table to indicate that the block contains
only in-place data. For the next three operations of write(5,B), write(6,C),
write(7,D), the process proceeds in a similar fashion as all blocks can be
written in-place (Figure A.3b). After the last write operation, the block is
completely filled and can no longer have data added to it. Since all the pages
contain live data and are in-place, the state of the block is changed from
M state to S state in the page mapping table. This allows the system to
correctly index data on reads directly and not have to perform a linear scan
to find target pages.

For the next operation of write(4,E), the system checks the state of the

177

A.1. FTL Schemes

(a) STAFF writing to Unallocated Pages (M-state)

(b) STAFF Completing an In-Place Block (S-State)

178

A.1. FTL Schemes

(c) STAFF Allocating an In-Place Log Block (M-State)

(d) STAFF Releasing a Block (O-State)

Figure A.3: The STAFF FTL Scheme for In-Place Operations

179

A.1. FTL Schemes

(a) STAFF writing to Unallocated Pages (M-state)

(b) STAFF Converting to an Out-of-Place Block (N-State)

(c) STAFF Allocating an In-Place Log Block (M-State) For
N-State Block

Figure A.4: The STAFF FTL Scheme for Out-of-Place Operations

180

A.1. FTL Schemes

physical block and determines that it is full thus it needs to allocate a new
block for the buffer (Figure A.3c). Unlike other FTL schemes, STAFF does
not need to delineate between log and data blocks due to the variable state of
each block and thus refers to added blocks as buffers. In this case, physical
block 1 is allocated and as the block in the F state, the system can directly
write the target page at the correct physical offset and invalidate the original
target page in physical block 0. The state of the new block in the state
mapping table is changed from F to M to indicate that it now contains
in-place updates. The state of the original target page is unchanged as it still
is complete-in-place with live data. It will remain in the state until all pages
in the block become invalid (Figure A.3d). As the operations write(5,F),
write(6,G), write(7,H) proceed, the same process continues where the data
is invalidated in the target page and the data can be written in an in-place
fashion to the buffer block. Once the buffer block is completely full using
in-place updates, its state transitions from M to S in the state mapping
table. It is now the complete in-place live version of the block. As a result
of this, the block mapping table entry for logical block 1 is updated to point
to physical block 2. Finally, as the original target block contains only invalid
pages, the state of the block is changed in the block mapping table from
S to O to indicate that it is obsolete and can be erased by the system. As
a result of the state transition, the buffered block which is the shadow for
the original target block is able to supersede the original data block when it
becomes invalid without having to go through a merge type operation.

To demonstrate the out-of-place operations, the operations write(4,A),
write(4,B), write(5,C), and write(5,D) proceed. When the first operation
write(4,A) is processed, the physical block and logical page offset are cal-
culated (Figure A.4a). The system resolves the state of the block from the
state mapping table, determines that the block is in a free state and proceeds
to write the block directly to the calculated logical page offset. The state
of the block is changed from F to M state in the state mapping table to
indicate that the block contains only in-place data for the first page write.
For the next operation of write(4,B) (Figure A.4b), the page will attempt to
write the first logical page in block one as the state of the block is M, but
cannot as the page is already occupied. As a result, the state of the page
will be changed from M state to N state, allowing the block to be updated in
an out-of-place fashion. The state of the page will be updated in the state
mapping table and the system will then perform a linear scan of the physical
block from logical page offset of 0 looking for the first empty page. Once an
empty page is located, B will be written to the page and the logical page
number will be updated in the OOB area. In order to facilitate better access

181

A.1. FTL Schemes

to N state blocks, STAFF maintains a page mapping table in SRAM for all
N state blocks that maps logical page numbers to physical page numbers.

As the block has now been converted to the N state the operations will
proceed in an out-of-place fashion and be written into the next available free
pages with the last write being the most current version of logical page 5 as
shown in Figure A.4c ¬. As a result, the page at the logical page offset of
4 (the last free page filled) will contain the correct logical page number in
the OOB area. After the N state block is filled the system will allocate a
new buffer block (block 1) and copy live pages from the original target block
into the new block (Figure A.4c). The state of block 1 is then updated
in the state mapping table from F state to M state as the valid pages were
entered into the new block at the correct logical offsets thus allowing the
page to be in order. Additionally, the state of the original target block is
then changed to O state as it can be erased and the physical block number
for logical block 0 is updated from 0 to 1 to reflect the new mapping.

LSTAFF and LSTAFF*

LSTAFF [CPRH05] was first proposed by Chung et al. in 2004 as a large
block extension of the early presentation of STAFF [CPJK04]. The scheme
uses the same state machine proposed by STAFF to track the state of each
block. They observed that with large block devices, the page size was often
larger than that of the sector size dictated by the host operating system.
LSTAFF assumes that it will be operating under a host operating system.

Unlike small block devices where logical sector size maps approximately
to page size, with large block devices, device data is typically written in 1 kB
to 4 kB chunks; this represents multiple logical sectors. Large block devices
also have significant write constraints where pages within a single block must
be written in sequential order. Most FTLs do not satisfy this constraint and
will not work with large block devices. Additionally, this feature of large
block flash will prevent other log block-based strategies from using out of
place updates such as RNFTL [WLW+10].

LSTAFF uses a three level mapping scheme to allow operating system
sectors to be mapped to logical pages on device. They store the mapping
area in the OOB area as well as the state information for each block. As a
result of the three level mapping, a degree of parallelism could be achieved
on a read or write basis. As multiple sectors are stored or read from a single
page in a large block device, the LSTAFF scheme exploits this parallelism.
The authors offer a cost estimation analysis to show the potential gain from
using this technique with large block devices.

182

A.1. FTL Schemes

LSTAFF* [CPK11] is an extension of LSTAFF [CPJK04, CPRH05,
CP07] which has been further optimized for large block flash memory. It
assumes that the host operating system will now have a many to one mapping
between the logical operating system pages and physical device paged as is
the case with large block devices. Similar to LSTAFF, LSTAFF* assumes
that it will be operating under a host operating system.

One unique feature that LSTAFF and LSTAFF* offers is parallelism
in terms of page reads and writes due to the large block mapping. As
reads or writes will generally require the entire large block to be brought
into the SRAM buffer, physically adjacent pages to the target page will be
simultaneously buffered. If the adjacent pages are spatially or temporally
adjacent, the host system may achieve additional benefit. While the page
level parallelism offers significant increases for enterprise level systems, it
offers little value for memory and bandwidth constrained devices that may
not be able to buffer a single large block page due to limited memory. For a
memory limited device, multiple pages would need to be stored in SRAM
then flushed to the device. This introduces significant overhead in terms of
space and transfer time thus making this strategy infeasible.

Similar to STAFF, LSTAFF* uses a state machine to track the state
of cache pages, which presents significant overhead. Further, it offers no
advantage for devices that do support out of place updates. Linear probing
is required to determine and change state tables. Additionally the in-order
write restriction reduces overall utilization This also increases complexity
when merging log data blocks to enforce in-place rights.

LSTAFF* maintains a cache for data, thus exploiting a feature of large
block flash memory that allows for the outputting of random data from
within a page. This is achieved through the use of the memories internal
buffer. LSTAFF* will then gather and reorganize pages based on state to
improve performance. While Kwon et al.[KRKC11] attribute this buffering
feature to the initial LSTAFF paper [CPRH05] in 2005, the buffering and
random access concept was only presented in the LSTAFF* paper [CPK11]
in 2011.

LSTAFF and LSTAFF* were compared under simulation to STAFF and
FAST but only consider performance in terms of the number of writes. The
strategy is not suitable for embedded devices due to the overall memory
constraints. They did not consider the overhead of the state machine, as well
as the increased complexity of the algorithm, or the impact on wear levelling,
garbage collection and block utilization

183

A.2. Comparison of FTLs

A.2 Comparison of FTLs

Table A.2 summarizes the presented FTLs and highlights the type of
mapping scheme used for each, as well as the key contribution of each
algorithm in addition to any special requirements.

184

A
.2

.
C

om
p

arison
of

F
T

L
s

Algorithm Type Target Memory Special Requirements Key Contributions

DAC

Fully
Associative
Page Level

Scheme

NAND
Data(D) and Update(U) block separation;
seminal work that presents update blocks

to minimize erase count

DFTL

Fully
Associative
Page Level

Scheme

NAND Enterprise SSD
Caching of mapping pages in memory as
opposed to maintaining entire page map

in SRAM.

CFTL

Fully
Associative
Page Level

Scheme

NAND

Caching of mapping pages in memory as
opposed to maintaining entire page map
in SRAM. Tracking of hot/cold data to

control access patterns.

LazyFTL

Fully
Associative
Page Level

Scheme

NAND Enterprise SSD

No merges required due to page mapping
scheme, lazy page mapping replacement

strategy for cached pages in SRAM using
LRU.

Mitsubishi
Block Level

Scheme
NAND

Seminal block level scheme; logical page
number stored in OOB area. Introduced

merging operations.

185

A
.2

.
C

om
p

arison
of

F
T

L
s

ANAND

Block Level
Scheme

with Page
Based

Logging

NAND

Device must
support

non-sequential
writes at the
block level

Separation of physical blocks into data
and log blocks to minimize erase

operations.

FMAX

Block Level
Scheme

with Page
Based

Logging

NAND

Device must
support

non-sequential
write at the block

level

Separation of physical blocks into data
and log blocks to minimize erase

operations. Treats log block as a linear log
to which reduces the number of merges.

BAST

Block Level
Scheme

with Block
Based

Logging

NAND

Targeted at
Compact Flash
market. Device
must support
non-sequential

write at the block
level

Introduces a one-to-many between log and
data blocks which reduces the number of
log blocks required in the system. Uses
block level mapping for data blocks but

page level mapping for log blocks.
Introduces map blocks that are

specifically used to store mapping
information and are brought into memory

using an on-demand caching model.

FAST

Block Level
Scheme

with Block
Based

Logging

NAND
One log block can be shared between
many data blocks. Separate logs for

random and sequential writes.

186

A
.2

.
C

om
p

arison
of

F
T

L
s

EAST

Block Level
Scheme

with Block
Based

Logging

NAND

Device must
support

non-sequential
write at the block

level

Combines attributes of BAST and FAST,
supporting both in-place and out-of-place

updates in log to improve log block
utilization. Lowest erase count victim

block selection.

LAST

Block Level
Scheme

with Block
Based

Logging

NAND

For general
purpose

computing due to
large resource
requirements.

Combines FAST, BAST and Superblock
FTL schemes and dynamically selects

based on data access patterns. Separation
of hot/cold data.

JFTL

Block Level
Scheme

with Page
Based

Journaling

NAND

For using with
journaling file

system and large
SRAM.

All updates are written to journal using
page level mapping which reduces the

number of overwrites before being written
to data section. Journaled pages are

converted to data pages to minimizing
read/write operations.

SAFTL

Self
Adjusting
Mapping
Scheme

NAND
Large SRAM
requirement

Suitable for large memories with variable
write characteristics.

Superblock
FTL

Block Set
Scheme

NAND
Designed for
Large Block

Devices

Combined adjacent blocks into larger
Superblocks. Using page level mapping

within Superblock which is stored in OOB
area. Uses FAST type scheme for

mapping Superblocks.187

A
.2

.
C

om
p

arison
of

F
T

L
s

STAFF

State Based
FTL

utilizing a
Block Level

Mapping
Scheme

NAND

Device must
support

non-sequential
writes at the

block level and
partial re-writes.

Large SRAM
requirement as

both state maps
and block maps

are maintained in
memory.

Targeted for
general purpose

computing

Individual page states are encoded in
OOB area of block allowing for more

efficient use of block. State block mapping
is maintained in SRAM. Improved

performance over other algorithms due to
low cost swapping and merge operations.

LSTAFF

State Based
FTL

utilizing a
Block Level

Mapping
Scheme

NAND

Designed for
Large Block

Devices were flash
page may be
larger that

operating system
sector.

Three level mapping scheme stored in
OOB area along with state information.
High degree of parallelism possible for

adjacent operating system sector writes.
Supports Large Block Devices with

sequential write constraints.

188

A
.2

.
C

om
p

arison
of

F
T

L
s

LSTAFF*

State Based
FTL

utilizing a
Block Level

Mapping
Scheme

NAND same as LSTAFF
Improves performance of LSTAFF as it

maintains a data cache though the
internal memory buffer.

PORCE

Recovery
Scheme for

Block
Based FTLs

Will only work
with FTLs that

use in-place
updated

Recovery strategy for Block Based FTLs.

Reuse-
Aware
NAND
FTL

Block
Reuse

Strategy
NAND

Device must
support

non-sequential
writes at the
block level

Minimizes erase operations by analyzing
the utilization dirty blocks and will reuse

dirty blocks with low utilization as log
blocks.

JanusFTL

Self
Adjusting
Mapping
Scheme

(Hybrid)

NAND

Targeted for SSD.
Device must

support
non-sequential
writes at the
block level

Allows for dirty page reuse. Self adjusts
to specific workload patterns.

189

A
.2

.
C

om
p

arison
of

F
T

L
s

ShiftFlash
Data

Consistency
Scheme

NAND

Targeted for SSD.
Requires

multi-chip storage
device for

inter-chip wear
levelling and

garbage
collection.

Allows for high level roll-back through the
use of snapshots. Enforces sequential

writes through buffering in SRAM

AVR NOR AVR32 core only
Pre-compiled for AVR32 32-bit core only.
Required large SRAM memory footprint.

Closed source.

Table A.1: Summary of FTL Schemes for Flash Memory

190

Appendix B

The FlaReFTL Interface

The following section details energy public interface for the FTL.

B.1 FTL Instances

Listing B.1 shows the main instance structure for the management of
a single instance of the FTL. When an instance of the FTL is created, the
values are populated. The masterBlock is used to track physical location
of the active master translation page. The timestamp parameter is used to
track and stamp write operations to the translation pages and is used for
recovery operations. The leveller parameter is used to manage and access
the wear levelling module of the code. The writeMode parameter controls
overwriting operations.

Listing B.1: Control Structure for Flare FTL.

typedef struct FlareFTL{
volat i le b l o c k a d d r e s s t masterBlock ;
volat i le f l a r e t i m e s t a m p t timestamp ;
volat i le wearLeve l e r t wearLeve ler ;
volat i le f l a r e b y t e t writeMode ;
} f l a r e FTL t ;

An instance of the flare FTL t struct is created in code by the user and
is required to be passed to all operations of the FTL.

B.1.1 System Control Functions

The following functions are public and are used for the mounting, un-
mounting and creation of system.

function flare Mount(volatile flare FTL t *instance)
Mount the drive and create the cache buffer for FTL. Creates the cache buffer for

FTL if it is needed depending on strategy and rebuilds and mounts FTL. On a successful
mount, the instance variable is populated with the pointers required for operation.

return The status of the mounting operation.
end function

191

B.1. FTL Instances

function flare Unmount(volatile flare FTL t *instance)
Free all resources of the FTL. Flushes any buffered data and commits keystone pages,

leaving a consistent system.
return The status of the unmounting operation.

end function

function flare createFTL(volatile flare FTL t *instance)
Initializes a serial NOR Dataflash device with Flare FTL. Formats the device and

creates initial management pages. On successful creation, the instance variable is
populated with pointers for the logical busy page, physical busy page and master table
translation page.

return The status of the creation operation.
end function

B.1.2 Page Management Functions

The following functions are public and are used for the allocation and
destruction of logical pages in the system. This operation allocates both a
physical and logical page for the user. Updates metadata in OOB area of a
page with the correct LPN.

function flare getPage(volatile flare FTL t *instance, flare logical page t *lpn)
Allocates a logical and physical page in the system and populates the lpn parameter

with its logical address as an integer value.
return The status of the allocation.

end function

function flare ReturnPage(volatile flare FTL t *instance, flare logical page t logi-
cal page number)

Returns a logical page to the available pool of pages.
return the status of the return operation.

end function

B.1.3 Read Functions

The following functions are public and read a series of bytes from a given
location.

function flare ReadPage(volatile flare FTL t *instance, flare logical page t logical -
page number, void *buffer)

Reads the entire page at the given logical address into the user supplied buffer.
return The status of the read page operation.

end function

function flare ReadBytes(volatile flare FTL t *instance, flare logical page t logi-
cal page number, void *buffer, flare offset t offset, flare length t length)

Reads a series of bytes from logical page at logical address with a given offset and
length into the user supplied buffer.

return The status of the read bytes operation.

192

B.1. FTL Instances

end function

Private Read Functions

The following functions are private and are used by the FTL.
function loadLogicalPage(int logicalAddress, char bufferNumber)

Loads a logical page into specified buffer in preparation for writing.
end function

B.1.4 Write Functions

The following functions are public and are used for writing data to a
logical page in the system.

function writeBytes(int logicalAddress, char * data, int length, int offset, char
commitLevel)

Writes byte* of size length to offset in logical page to the specified buffer.
The commitLevel will determine if the page will be written with record level
consistency or page level consistency. If using record level consistency, the logical
page stored in the buffer will be immediately flushed to the flash block. If using
page level consistency, the page will not be flushed until it is full or a pageWrite
operation is specified.

end function

Private Write Functions

The following functions are private and used by the FTL.
function writePage(int logicalAddress, char bufferNumber, char writeMode)

Writes a page out from the specified buffer to flash block at the corresponding
logical addresses. The writeMode parameter is used to control if the logical page
will be written an a new location in memory or use the proposed low energy
append-in-place write.

end function

193

B.1. FTL Instances

B.1.5 Buffer Management Functions

The following functions are private and are used to manage the buffers
on the serial NOR Dataflash device.

function bm RequestBuffer(void)
Allocates an on device buffer for use by the system (used strictly for writing data)
return The buffer number allocated.

end function

function bm ReturnBuffer(char bufferNumber)
Returns the specified buffer number to the buffer pool for reuse.

end function
function bm Instantiate(void)

Initializes the buffer manager.
end function

The buffer manager is responsible for managing the state of the SRAM
memory buffers on the serial NOR Dataflash. The buffer manager abstract
the allocation of the buffers from the FTL.

Listing B.2: Control Structure for Flare FTL.

typedef struct b u f f e r p a g e {
f l a r e p a g e t y p e t type ;

/∗∗ type o f page t h a t i s s t o r e d ∗/
f l a r e t i m e s t a m p t timestamp ;

/∗∗ the timestamp o f the page ∗/
f l a r e l o g i c a l p a g e t lpn ;

/∗∗ the lpn o f the page , i f need be ∗/
f l a r e p h y s i c a l p a g e t ppn ;

/∗∗ the ppn o f the page , i f needed ∗/
b m b u f f e r s t a t u s t s t a t u s ;

/∗∗< The s t a t u s o f the b u f f e r ∗/
} bm buf f e r page t ;

In the buffer manager, each buffer maintains information about the page
that has been stored in it (Listing B.1.5. When a page is buffered, the type
of page that is being stored is recorded as well as the timestamp of when
the page was last written which is generated by the FTL. Additionally, the
physical and logical page numbers are recorded as well as the status of the
page in the buffer. The buffer also maintains a timestamp for each page
in terms of when it was last used and is controlled by the buffer manager
and used for buffer selection. Each buffer is permitted to have the following
states:

buffer active The data in the buffer is the same as what is stored in the
corresponding page in flash.

194

B.1. FTL Instances

buffer active written The data in the buffer has been changed from from
what originally loaded.

buffer flushed The data in the buffer has been flushed to flash but is still
active.

buffer invalid The state of the data in the buffer is uncertain.

The consumer of the buffer is responsible for updating the status and
timestamp values for each individual buffer page when conducting opera-
tions.

195

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Dedication
	1 Introduction
	2 Storage Architectures
	2.1 Embedded Devices
	2.1.1 Wireless Sensor Networks

	2.2 Memory Stores
	2.2.1 EEPROM
	2.2.2 Flash
	2.2.3 Other Storage Technologies

	3 Data Persistence Strategies
	3.1 Data Management Strategies
	3.2 Flash Aware File Systems
	3.2.1 Log Based File Systems
	3.2.2 Logging Based File Systems for Flash

	3.3 Flash Translation Layers
	3.3.1 FTL Taxonomies

	3.4 FTL Schemes
	3.4.1 Page Level FTL Schemes
	3.4.2 Page Based Logging Schemes
	3.4.3 Block Based Logging Schemes
	3.4.4 Block Set FTL Schemes
	3.4.5 State Based FTL Schemes
	3.4.6 FTL Improvement Schemes
	3.4.7 Suitability of FTL Schemes for Serial NOR Memories

	3.5 Open Research

	4 Write Strategies for Serial NOR Flash
	4.1 Write Strategies for Improved Performance with Serial NOR Dataflash
	4.1.1 Write Operations for Serial NOR Flash

	4.2 Hypothesis about Rewrites
	4.3 Experimental Results
	4.4 Use Cases
	4.4.1 Data Logging
	4.4.2 Bit Vectors

	4.5 Comments on Overwriting

	5 Flash Translation Layer for Serial NOR Flash
	5.1 Serial NOR Dataflash
	5.2 The Flash Resident FTL
	5.2.1 A Fully Associative Mapping Strategy
	5.2.2 Read and Write Operations for FlaReFTL
	5.2.3 Architectural Overview
	5.2.4 Address Translation

	5.3 Consistency and Recovery with Zero-Overhead Logging
	5.3.1 Keystoning
	5.3.2 Record Modification
	5.3.3 Consistency and Recovery
	5.3.4 Operation Cost Summary
	5.3.5 In-Place Writes

	5.4 Frontier Advance Wear Levelling and Garbage Collection
	5.5 Conclusions

	6 Conclusion
	6.1 Conclusions and Future Work
	6.2 Summary of Contributions
	6.3 Future Work

	Bibliography
	Index
	Appendix
	A FTL Algorithms
	A.1 FTL Schemes
	A.1.1 Block Based Logging Schemes
	A.1.2 State Based FTLs

	A.2 Comparison of FTLs

	B The FlaReFTL Interface
	B.1 FTL Instances
	B.1.1 System Control Functions
	B.1.2 Page Management Functions
	B.1.3 Read Functions
	B.1.4 Write Functions
	B.1.5 Buffer Management Functions

