
Detection and Speed Estimation of

Vehicles Using Resource Constrained

Embedded Devices

Ryan McQueen
ryan.mcqueen@alumni.ubc.ca

March 2018

Abstract

In this report, a novel approach of automating counting vehicles and
speed estimation for traffic monitoring through the usage of a Raspberry
Pi is explored. This device has a small amount of processing power in
comparison to a modern day laptop and as a result, requires a compu-
tationally inexpensive method for detecting vehicles. Vehicle detection is
performed using morphological processes such as erosion and closing to
filter undesirable objects, background subtraction [1] to ignore minor en-
vironmental changes, and contour detection to identify objects of interest.

1 Introduction

The task of counting vehicles passing on a given road for a municipality is an
extremely costly and time inefficient process. This counting requires individuals
to be hired to watch the traffic and record on paper every time a car passing
by is witnessed. This manual recording may result in errors due to the recorder
being distracted or simply losing count on how many vehicles have passed in
a given time frame. Additionally, there is no way to validate the counting the
recorder has performed is accurate as there is no video recording of the vehicles.
While the problem may be addressed by simply recording the traffic for the
duration the recorder is there and analyzing it afterwards, it results in more
time and money spent and does not provide a way to additionally record the
speed at which the vehicles are travelling. In this report, a generalized system is
introduced which resolves the issue of inaccuracies of manual vehicle counting,
provides a way to measure the speed of vehicles counted, and provides a cost
effective solution.

In a generalized system, the components required to perform such tasks can
be divided into four main components: recording the area of interest, analyzing
video frames to detect vehicles, performing calculations of the speed the vehi-
cle is travelling, outputting a log file of the total count of vehicles with their

1

associated speeds, and saving both a raw video as well as the analyzed video
containing the appropriate car counts. The first component involves deploying
a Raspberry Pi with a Raspberry Pi camera module V2 into an area of interest
for vehicle tracking. This requires placing the camera into a position such that
top down view is achieved and is illustrated further within the Section 2. Sec-
ondly, undesirable objects must be removed from the video frames. This step
contains numerous operations and algorithms in order to obtain only the vehicle
contours. In order to reduce objects which do not follow typical vehicle shapes
or are otherwise unwanted, morphological processes such as opening and clos-
ing are performed. Following from these processes, a background subtraction
model must be utilized in order to remove significant noise such as shadows or
subtle environment changes. Thirdly, once a contour has been detected, it can
be observed as it enters a calibration region to track the amount of time it takes
to reach the end of the region. By doing this, an accurate representation of the
vehicle’s speed can be made due to a known real world distance. Next, a log
file must be generated to capture the speed at which a vehicle was travelling for
later analysis and an associated image capture of the vehicle that was travelling
at this speed.

There exists a wide variety of algorithms to perform object detection and
tracking in the literature [2, 3]. Consideration was placed on the efficiency of the
proposed system. There are algorithms which yield high correct classification
techniques such as that of a neural network [2], however, they require exten-
sive processing power which is not possible on a single Raspberry Pi board.
Due to these computational power constraints, heavy emphasis was placed on
methods which do not require dedicated video cards, or high amounts of pro-
cessing power. The list of available algorithms drastically decreased due to the
computational constraints and as a result, contour detection was found to be
the highest performing solution for real-time detection of objects at no cost of
accuracy if appropriate configurations had been performed to the morphologi-
cal operations. Additionally, background subtraction was found to noticeably
reduce performance due to the number of frames recorded per second and the
amount of frames remembered for the subtraction, however, it was deemed ap-
propriate due to the amount of environmental changes which may occur when
recording.

Assumptions that were made for this work are quite limited and may impact
the results shown in the experimentation section. There are four assumptions
made, the first being that for all frames being read, the vehicles within a frame
were moving horizontally. Secondly, the video being recorded was during the
day or early evening so that there still existed some natural light. Third, there
is a known region of a frame such that a calibration region could be constructed
and related to real world measurements. Lastly, the camera was in a position
such that if two vehicles were to pass each other that the camera would be able
to observe both vehicles as they passed.

The goal of this project was to explore an automated, accurate, and cost
effective method to count, track, and estimate the speed of passing vehicles. To
succeed with this goal, one has to compromise on the resolution of the capture

2

video, the quality of the detection algorithms, and perform many configuration
modifications in order to achieve promising results.

2 Existing Work

Applications of embedded devices for the purpose of traffic monitoring are quite
limited within the literature [4]; indicating a large area for innovation through
the usage of cost effective embedded devices such as the Raspberry Pi. The
existing work provides a look into the effectiveness of simply detecting and
counting a vehicle within a given video frame, however, there is no means to
calculate the speed of a detected vehicle. The authors detail a procedure similar
to the one explored within this paper, providing validation for the steps taken.
The approach the authors followed consists of four major components. The first
component begins with reading a frame from the current video source through
the Raspberry Pi camera module with a resolution of 640x480 at 30 frames per
second. Secondly, background subtraction is performed in order to isolate the
moving objects within a frame. Morphological processes are performed in order
to remove objects which fall below, or above a certain size. Lastly, contour
detection is performed and a bounding rectangle is drawn around each detected
contour. From this, the usefulness of calculating a vehicle’s speed can be identi-
fied. Enforced policing can be directed to the region being monitored to ensure
the safety of motorists along a particular roadway, prompt discussions on the
implementation of speed reduction techniques such as speed bumps, or simply
alert the appropriate authorities of a potential issue within their community.

3 Approach

The approach taken within this paper is demonstrated within Figure 1. This
figure outlines the processing of each video frame taken by the Raspberry Pi
camera module. For the current frame, background subtraction is performed
in order to isolate only the moving objects within a frame. Given the moving
objects, morphological processes are performed in order to enhance the potential
objects within the frame. From the enhanced objects within the frame, contours
are able to be detected and tracked, and a speed calculation can be made. The
results of the speed calculations are outputted into a log file, the raw, and
analyzed videos are output in H264 format to disk.

3

Figure 1: High Level System Overview

3.1 System Requirements

All data collection and analysis was performed using a Raspberry Pi 3 Model B+
board. The nature of this work requires a modest CPU in order to handle the
extensive video processing, and as a result, boards with lower specifications than
that of the board used may have difficulties handling the processing operations.
An illustration of what the Raspberry Pi 3 Model B+ board (Figure 2).
The specifications of the board are as follows:

• Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz

• 1GB LPDDR2 SDRAM

• CSI camera port for a Raspberry Pi camera module (V2 used)

• Micro SD port for an operating system and data storage

• 5V/2.5A DC power input

4

Figure 2: Raspberry Pi 3 Model B+ Board. Source: By Efa2 (Own work) [CC
BY-SA 4.0] (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia
Commons

The specifications for the camera module are as follows:

• Sony IMX219 8-megapixel sensor

Any additional configuration settings on the Raspberry Pi such as increasing
the amount of available GPU memory for processes were left at the default value.
Increasing these may enhance performance of the system.

3.2 OpenCV Library (C++ 11)

This implementation is written in C++11 and utilizes the OpenCV [5] library’s
existing functionality for the video source, background subtraction, and contour
detection. A brief summary of the functions used are listed below:

• cv::Mat is to store each frame from a video

• cv::BackgroundSubtractorMOG2 for background subtraction

• cv::VideoCapture for reading from the Pi cam module

• cv::VideoOutput to store each analyzed frame

• cv::findContours for contour detection

5

3.3 Live Video

In order to begin counting and tracking vehicles, a means to obtaining live
video must be introduced. A Raspberry Pi camera module V2 was used for this
project due to its higher megapixel count and higher quality lens as opposed to
the V1 version. A USB web cam may also be used for this process, however, it
may introduce some additional latency due to the speed at which a serial port
can read data. In order for the reduction of false-positives caused by shadows,
or obstructed vehicles due to one passing by another, an angled view is required.
This view is demonstrated within Figure 3.

Figure 3: Angled Camera Viewpoint

Following the placement of the camera module, a pre-determined area must
be selected from an image at the defined height. This will ensure there are
consistencies with the speed measurements as the position will be fixed. This
component is the most important as it will set the accuracy for the system in the
following components. Failure to define the correct dimensions and the appro-
priate real world measurements will result in inaccurate tracking and potentially
result in failure of contour detection. An example of how the calibration may
look is shown within Figure 4

6

Figure 4: Selected Calibration Region

3.4 Contour Detection

For each frame read by the camera module, analysis was required to remove
any potential noise in the image such as pedestrians walking by, animals within
the frame, or cyclists. This component involved numerous algorithms in order
to achieve the desired result of obtaining only vehicles for analysis. The first
step applied to each frame is to subtract the background image. When the
background has been isolated, minor environmental changes or shadows are
effectively eliminated and thus reduces the complexity of vehicle detection. An
example of the extracted background from the frame is shown within Figure 5.
It can be seen there resides some residual fragmentation from the subtracted
object, however it was found to cause no effect on the detection of contours.

With only the moving objects left to examine within a frame, some filtering
operations must be applied to further eliminate any potential objects which are
not desired to be matched. The operations used to perform such filtering are
known as morphological operators. An erosion operation was initially applied to
remove any small noise within the image caused by thresholding values of pixels
to match that of a binary representation where 0 signifies a black pixel and 1
signifies white pixel. Following from this, the closing operation was performed
on a frame. The closing operation performs dilation such that any objects
which do not fit within some pre-defined shape and size are filled in and set as
white pixels, followed by erosion. For the purposes of this project, closing was
performed to maintain some of the form of the vehicle which erosion may have
removed. This can be useful in the scenario in which a bird has flown into the
frame, or a pedestrian is walking by as they will be removed from the frame by
the erosion operation. An example of the effects of erosion and closing is shown
within Figure 6

7

Figure 5: Background frame after segmentation from foreground frame

Figure 6: Outcome of Morphological Operators on a Frame (Left: Raw frame
after thresholding, Right: Morphological operators applied)

With the contours now clearly identifiable, a contour detection algorithm
implemented within OpenCV [5] was applied. This resulted in the convex hulls
of each contour as well as the area of each contour. From this, a bounding box
could be constructed around each contour.

8

3.5 Speed Calculation

From the bounding box of each contour, a means to tracking when a vehicle
would enter and exit a region became possible. An example of what this looks
like can be seen within Figure 7. In order to track the speed of a vehicle, the
calibration region discussed within the Live Video section will be referenced.
Upon the vehicle’s successful detection and determined direction of travel, the
right or left side of the bounding rectangle will be used to identify whether or
not it has entered or exited the calibration region. Upon entering the calibration
region, a flag for monitoring the vehicle’s distance is enabled. With this flag
enabled, the number of frames it has travelled since entering, and the distance
in pixels is stored. Upon successful exit, the time can then be calculated based
on the total amount of frames covered and a distance can be determined by
converting the pixels to a measurement in meters. The for distance is rather
trivial and shown below:

Distance =
|Pend − Pstart|

c

where P represents a pixel, and c represents a constant conversion value.
Following this, the timing method cannot use a simple wall clock timing

method as the time is dependent on the frame rate of the video. The equation
to determine the vehicle’s time spent within the calibration region in seconds is
defined by the following:

Time =
total frames travelled

frame rate

Figure 7: A detected vehicle with a bounding box drawn around it

9

With both of these values a simple velocity calculation is performed and the
resulting meters per second is converted to kilometers per hour. This equation
is shown below:

v =
d

t
∗ 3.6

3.6 Data Logging

After a vehicle has been detected and a speed has been associated with it, the
data must be logged for future analysis and validation for testing purposes.
The speeds are saved in a comma separated value format to allow for easy
importation and manipulation into languages such as R. With the speeds, an
associated identification number is written to allow for a relation to be applied
to each speed. In order to identify potential reoccurring speed violators, images
are saved of each detected vehicle upon passing the calibration region. An
example of a saved vehicle image can be seen within Figure 8.

Figure 8: Snapshot of a detected vehicle upon passing the calibration region

Raw and analyzed videos from the system are required to be saved to identify
any potential missed edge cases, or signs of a false detection and are saved in a
h264 format. This allows for efficient video compression while maintaining high
video quality.

10

4 Case Study

Numerous tests and hours of video data were collected in order to gauge the
efficiency and accuracy of the proposed system. These tests included expected
cases of failure such as the scenarios when a large amount of shadowing is
trailing a vehicle, unexpected cases of failure such as two pedestrians walking
together and being detected as a vehicle, and finally, scenarios in which the
system should accurately detect and track a vehicle. The system was deployed
in a residential environment to allow for a large exposure of vehicles, animals,
and pedestrians to be observed. Additionally, a testing run was performed on a
pre-existing video of cars travelling on a freeway to gauge the initial effectiveness
of the system. The results of the vehicle counts and speed estimations can be
found within Table 1 & 2. Figures shown within this segment range from early
morning to late in the afternoon with varying brightness levels caused by the
movement of clouds. In addition, subsets of the recorded frame have been used
to focus the reader’s attention onto the important information presented within
each image, indicating the varying view points among each image.

In Figure 9, it is shown that a pedestrian walking their dog was not detected
as a vehicle, thus verifying the system’s ability to filter out smaller objects
within a frame.

Figure 9: Undetected pedestrian walking their dog

In Figure 10, it is shown the vehicle was detected, however, a large chunk of
the vehicle has been ignored due to apparent shape destruction caused by the
filtering process.

11

Figure 10: Poorly detected vehicle

In Figure 11, an interesting result was found. It is shown that the vehicle was
initially detected, but upon passing through the calibration region, the tracking
stopped, and only began again once the vehicle had passed through the region.
It was later found this was caused by an issue with reading multiple frames at
once.

Figure 11: Demonstrates a tracked vehicle being dropped upon passing through
the calibration region

Environment Expected Count Actual Count Correctness in %

Residential 5 5 100%
Freeway 52 52 100%

Table 1: Vehicle Count Results

12

Environment Expected Speed (mp/h) Actual Speed (mp/h) Correctness in %

Residential 30 27.595 91.98%
Freeway 40 35 87.5%

Table 2: Vehicle Speed Results

5 Discussion

A fast and highly accurate automated vehicle detection and speed calculating
system has been presented which expands on the existing work of [4]. Future
work for this system would include two main components. Removing the re-
quirement for real world measurements of the desired road area would greatly
improve the usability of this system. The need to measure the region of interest
and select the pixel range the calibration region falls under as it is extremely
time consuming. Additionally, finding a way to classify the vehicles which have
been detected would further improve the data logging as a count of certain ve-
hicles classes can be constructed from this. For example, if a large amount of
commercial trucks are found to be travelling on a residential road, a solution
can be constructed by a municipality to resolve this issue.

6 Conclusion

From the results this paper, it has been demonstrated in Section 4 that the pro-
posed problems are able to be satisfied. The problems entailed are producing a
highly accurate, cost effective, and automated solution. In the literature, [4], it
is noted that vehicle detection is possible on a resource-constrained device such
as a Raspberry Pi, and from the results of this paper, the functionality of speed
calculation and detailed data logging has been included. Additional functional-
ity to implement includes the classification of vehicle types i.e, car, truck, and
commercial truck. In Section 4 of this paper, vehicles have been shown to have
a 100% detection accuracy followed by speed calculations having an accuracy
of greater than 80%. In summary, a cost efficient and automated solution is
plausible for replacing the manual, expensive task of counting vehicles.

13

References

[1] P. Kaewtrakulpong and R. Bowden. “An improved adaptive background
mixture model for real-time tracking with shadow detection”. In: Proceed-
ings of 2nd European Workshop on Advanced Video Based Surveillance
Systems. Vol. 5308. 2001.

[2] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position”. In:
Pattern Recognition 15.6 (Jan. 1982), pp. 455–469. issn: 00313203. doi:
10.1016/0031-3203(82)90024-3. url: http://dx.doi.org/10.1016/
0031-3203(82)90024-3.

[3] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv:
1506.01497. url: http://arxiv.org/abs/1506.01497.

[4] M. Kochláň et al. “WSN for traffic monitoring using Raspberry Pi board”.
In: 2014 Federated Conference on Computer Science and Information Sys-
tems. Sept. 2014, pp. 1023–1026. doi: 10.15439/2014F310.

[5] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

14

