
Faster Sorting for Flash Memory
Embedded Devices

by James (Riley) Jackson

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

B.A. COMPUTER SCIENCE HONOURS

in

Irving K. Barber School of Arts and Sciences

(Computer Science)

Supervisor: Dr. Ramon Lawrence

THE UNIVERSITY OF BRITISH COLUMBIA
(Okanagan)

April 2019

©Riley Jackson, 2019

Abstract

Abstract—Embedded devices collect and process data in a wide
variety of applications including consumer and personal electronics,
healthcare, environmental sensors, and Internet of Things (IoT) de-
ployments. Processing data on the device rather than sending it over
the network for analysis is often faster, more energy efficient, and sup-
ports decision-making closer to data collection. A fundamental data
manipulation operation is sorting. Sorting on embedded devices with
flash memory is especially challenging due to the very low memory and
CPU resources. Previous work developed customized algorithms that
avoided writes and minimized memory usage. The standard external
merge sort algorithm has limited application on small devices as it re-
quires a minimum of three memory buffers and is not flash-aware. The
contribution of this work is an extension of external merge sort that
requires only two memory buffers and is optimized for flash memory.
The result is an algorithm that improves on the state-of-the-art and
applies to a wider range of devices. Experimental results demonstrate
that when sorting large data sets with small memory the algorithm
reduces I/Os and execution time by about 30%.

Index Terms—sorting, Arduino, embedded, performance, Internet
of Things

1

Contents

1 Introduction 4
1.1 Motivation and Contribution 4

2 Background 5
2.1 Sorting on Flash Memory . 5
2.2 Sorting on Embedded Devices 6

3 External Merge Sort Implementation 7
3.1 Standard Merge Sort Implementation 7
3.2 Implementation . 7

3.2.1 Required Merge Variables 7
3.2.2 Calculating Run Locations 9
3.2.3 Buffers . 10
3.2.4 Handling Undersized Runs 10
3.2.5 Handling Partially Filled Blocks 11

4 Sorting Algorithm 11
4.1 Introduction . 11
4.2 Buffer Management . 12
4.3 Reading Into Buffer 0 . 15
4.4 Reads and Writes . 15

5 Experimental Results 18

6 Conclusions and Future Work 21

2

List of Figures

1 Data written by external merge sort where data is shown as
blocks containing numbers. 8

2 Ordering of the contents of the file when requiring N merge
passes . 9

3 Buffer of external merge sort when using M=3. 10
4 Handling an undersized block created by a merge. The under-

sized block is combined at merge 2 saving a read and a write
at merge 1 . 11

5 Run Generation Code . 12
6 Run Merge Code Part 1 . 13
7 Run Merge Code Part 2 . 14
8 Buffer 0 record being put back into buffer 0 from buffer 1.

Buffer 1 has no records left so it has to be emptied and then
new buffer 1 records are read in. 15

9 Three part diagram showing a read into the output buffer. Top
left: the output block at position 0 is out of records (red num-
bers) but still contains results (green numbers). Top Right:
Results are placed into buffers 1 and 2 and buffer 0 records are
read in. Bottom: Results are swapped back into their original
positions. The read is now done. 16

10 Example for M=2 . 17
11 Theoretical Performance Improvement by M 18
12 Example for M=3. 19
13 Sorting Performance by Time (s) 20
14 Sorting Performance by I/Os 20
15 Sorting Performance by Time (s) 21
16 Sorting Performance by Time (s) 22

3

1 Introduction

Sorting is required for data processing tasks including aggregate calculations,
joins, and result ordering. Performing sorting on devices improves perfor-
mance, reduces network transmissions, and is more energy efficient, allowing
devices to operate longer under battery power. Main-memory sorting algo-
rithms are insufficient for embedded devices that typically have small RAM
(2 to 128 KB) but large flash storage (MBs or GBs). External sorting al-
gorithms such as external merge sort [1] are required, but these algorithms
were developed for servers with different resource and performance features.

External merge sort has been adapted for use with flash memory and solid
state drives (SSDs) with specific focus on servers. Algorithms such as [6] and
MONTRES [8] use various optimizations such as sort run lengthening, block
value indexing, and dynamic merge on-the-fly to increase performance. The
general techniques of these algorithms are beneficial but cannot always be
directly adapted to the embedded context due to high memory usage.

Previous research has also developed sorting algorithms specifically for
embedded devices such as FAST [3] and MinSort [4]. These algorithms in-
crease sorting performance by using more reads rather than writes due to the
asymmetric costs of reading and writing in flash memory. They also adapt
to the lower memory environment. However, performance may be reduced
due to the increased number of reads.

1.1 Motivation and Contribution

The contribution of this work is an optimized external merge sort for sorting
with minimal memory. Specifically, no prior work has supported a minimum
of two memory buffers by eliminating the output buffer during merging.
For devices with minimal memory (i.e. a few KBs), reducing the memory
usage is a critical factor. Requiring fewer buffers during merging decreases
the number of merge passes, which reduces I/Os, especially costly writes.
Another optimization is that only a single continuous memory area is used
for sorting which makes the algorithm easily adaptable to raw flash chips
where no flash translation layer or file system is available. Performance
results show that the number of I/Os and time can be reduced by about 30%
when sorting large data sets with small memory.

4

2 Background

Sorting algorithms have been extensively researched for database operations
[1] as they are fundamental for data processing involving ordering, joins,
and aggregation. The standard external merge sort algorithm works in two
phases. Assume M blocks are available in memory. The first phase is the run
generation phase that reads chunks of M blocks from the input into memory,
sorts them using a main memory sort, then writes the sorted data to storage
as an intermediate file called a run. The run merge phase combines runs into
a sorted output. The merge phase merges M − 1 runs at a time and uses
the other memory buffer as an output buffer. If there are more than M − 1
sorted runs, the merge phase is performed recursively. Given input data size
of N blocks, the number of merge passes S is dlogM−1(dNM e)e. The number of
block reads is 2 ∗N ∗S, and the number of block writes is 2 ∗N ∗S (includes
the cost of writing the final output).

Various optimizations [1] have been performed on external merge sort
such as run generation with replacement selection, double buffering, and
parallelization during merging. [7] defines a natural page run to be a sequence
of blocks whose values do not overlap but are not necessarily sorted. During
run generation, these natural page runs are detected and indexed but not
sorted. Natural page runs are sorted during the merge phase which reduces
I/Os during run generation.

2.1 Sorting on Flash Memory

Storage devices based on flash memory such as solid-state drives (SSDs) have
two important characteristics. First, the cost of writing can be multiple times
larger than the cost of reading. Second, writing data in the same location
requires an expensive erase operation, so it is often more efficient to write
in a different location rather than overwriting the same location. In SSDs
and SD cards, a flash translation layer (FTL) handles the mapping of logical
addresses to physical addresses in order to provide wear-leveling across the
device and maintain performance.

External sorting optimizations for flash memory fall into two common
approaches. The first is to reduce the number of write operations performed
during the run generation phase. This can be achieved by reading the input
multiple times [3] or using random reads to search for minimum values [4,
5]. The second technique is to optimize the run merge phase by indexing the

5

data and using random reads to retrieve tuples in minimum order [7].
MONTRES [8] is a sorting algorithm designed for SSDs that uses three

optimization techniques during run generation: ascending block selection
(using a minimum value index), continuous run expansion to generate larger
runs, and merge on-the-fly to reduce the number of values merged. It was
shown to improve on external merge sort in cases when the input size is a
large multiple of the memory size. During the run merge phase, MONTRES
proceeds in a single pass by using an index that stores the minimum value
of each block in every run in order to determine the next block to read.
MONTRES assumes all blocks can be indexed in memory which consumes
too much memory for embedded devices. Flash-specific sorting was also
developed in [6] which used a decision rule to determine when to use clustered
(sequential-based) or unclustered (index-based) sorting.

2.2 Sorting on Embedded Devices

Embedded devices are characterized by limited memory and CPU resources
and data storage on flash memory such as SD cards. Increasingly, embedded
devices are performing more substantial data processing rather than just
data collection and transmission. A particular target device for this research
is the Arduino Uno [9] that uses a 8-bit, 16 MHz microcontroller and has
2 KB of SRAM. The Arduino was designed to be an easily programmable
prototyping tool for students, however it has since become a popular and
inexpensive option for rapid prototyping and sensor deployment in a variety
of fields.

Embedded external sorting algorithms avoid writes extensively for in-
creased performance. FSort [2] uses replacement selection during the run
generation phase to increase the average size of runs to 2 ∗M , which reduces
the number of runs. Flash MinSort [4] uses memory to build an index that
stores the minimum value in each region. A region may contain one or more
adjacent data blocks. The algorithm uses the index to determine the next
smallest value, reads only the region containing this value, and then outputs
the record. This process repeats until the data is sorted. Random reads are
used, and the algorithm does not perform writes as it combines run genera-
tion and merging into a single phase. FAST [3] also performs in one phase
and scans the input file several times. Each time it retrieves and outputs
the next smallest m values where m is the number of records that can fit
in memory. FAST performs up to M/N scans on the input to save N write

6

operations. This algorithm is generalized to process larger files by using runs
generated by FAST as initial runs for the external merge sort algorithm. Ex-
perimental results [4] show than MinSort is significantly faster than FAST
[3] when sorting data sets on embedded devices with small memory.

No prior algorithm considered reducing the minimal memory usage of
external merge sort to make it more competitive on small embedded devices.

3 External Merge Sort Implementation

A custom, open source implementation of external merge sort was created for
this project. The custom implementation uses less memory and only requires
one file to be open at a time. Another advantage is that this implementation
can handle different record and key sizes as well as comparison functions.

3.1 Standard Merge Sort Implementation

External merge sort creates the initial sorted runs and must be able to per-
form recursive merging (see Fig. 1). Several implementations of external
merge sort were examined on GitHub. Most of these implementations de-
pended on storing runs in different files. Creating multiple files and having
them open is not ideal for use on the Arduino. An open file may require
several variables to be stored in memory. Variables may include information
about the file’s directory and storage, cursor position, cursor block position
and file size.

3.2 Implementation

An implementation that is not dependent on creating and opening several
files was created for this project. Runs are written to the end of the original
file instead of to their own files as shown in Fig. 2. The locations of runs
are calculated using file offsets instead of using separate files, which saves
memory.

3.2.1 Required Merge Variables

The start (read) position and end (write) position of the last merge are stored.
At the very start of the algorithm, the read location will point to the start

7

Figure 1: Data written by external merge sort where data is shown as blocks
containing numbers.

of data and the write location to the end. The first stage of the algorithm
creates several runs of size M . After this stage of the algorithm the read
position will be at the start of the first run and the write position will be
at the end of the last run. The subsequent merges will update the read and
write position in the same manner. This allows merges to locate runs from
the last merge for reading, merges always write to the end of the last merge
which means they usually write to the end of the file.

The number of remaining runs, number of blocks per run and some infor-
mation about the runs needs to be stored. Two arrays are allocated to the
size of (M − 1) ∗ sizeof(int), each array has one space of memory available
for each run being merged. One array stores the current block of the run
that records are being taken from. The other array stores the position of
the record that is being examined in the current block of that run. This
information is required to iterate through the runs.

8

Figure 2: Ordering of the contents of the file when requiring N merge passes

3.2.2 Calculating Run Locations

Run size is counted in blocks, all runs in a merge are normally the same size.
Merges will reduce the number of runs as well as increase the size of runs in
a predictable manner.

runsInNextMerge =
runsInMerge

M − 1

Runs are created by combining M-1 runs so their size after a merge is
described by the following formula.

runSizeNextMerge = runSizeThisMerge ∗ (M − 1)

Merges continuously combine M-1 groups of runs until there is no runs
left to merge. The file position in bytes of the run at the start of the next
group to merge is determined with the following formula.

groupF ilePos = readPos + groupNum ∗ (M − 1) ∗ runSize ∗ blockSize

where blockSize = size of a block in bytes,
groupNum = number of groups merged so far,
readPos = file position of the start of the last merge,
runSize = number of blocks per run for this merge

The location of each run in a group denoted as i, where i = 0..groupSize−
1, is determined with the following formula

9

runFilePos[i] = groupF ilePos + i ∗ runSize ∗ blockSize

Note that these calculations assume that all initial runs (except for the
last one) are the same size.

3.2.3 Buffers

Each block stored in the buffer is assigned a single counter to keep track of
the current record. New records are read in when the counter goes beyond
the number of records that fit in a block. The output blocks counter counts
how many sorted records it contains and is used to determine the position
to place the next sorted record. Records are copied into the output block,
blocks that belong to a depleted run are ignored Fig 3.

Figure 3: Buffer of external merge sort when using M=3.

3.2.4 Handling Undersized Runs

In some cases there will be less than M − 1 runs left during the final run
merge pass of a merge phase. This merge will create an undersized run
which causes problems because the merge sort implementation assumes all
runs are the same size, which saves memory. Saving the location and size
of all undersized runs and then merging them at the end of the algorithm
would require more memory. Continuously writing the undersized run to
the end of future merges, merging it with any other undersized runs, results
in unnecessary reads and writes when the future merges do not produce an
undersized run.

10

Undersized runs were handled by only allowing one undersized run to
exist, and only writing it when necessary. Limiting the number of undersized
runs to one means that the size and file location of only one undersized
run ever has to be stored. The undersized run will be combined with any
other undersized runs that are created which can save reads and writes. An
example is shown in Fig 4.

Figure 4: Handling an undersized block created by a merge. The undersized
block is combined at merge 2 saving a read and a write at merge 1

3.2.5 Handling Partially Filled Blocks

This external merge sort implementation assumes that all blocks are filled
except for the last one. The number of records in the last block is passed as
a parameter if the block isn’t full. When a merge reads from the last block of
its last run it will check if that blocks record counter is equal to the number
of records in the last block. If the record counter is equal to the number of
records in the last block the last run is considered depleted and the partially
filled block is written out.

4 Sorting Algorithm

4.1 Introduction

The no output buffer external merge sort works by eliminating the output
buffer normally used. For small values of M , this can have a dramatic impact
on performance as the number of merge passes (and consequently reads and
writes) is now logM instead of logM−1. It also allows external merge sort
to be used with as little as two buffers (1 KB) which makes it feasible for
very small devices. The trade-off is that more comparisons and movement
of records within the buffers must be performed as well as careful handling
when buffering a new input block.

11

Pseudocode for the run generation phase is in Fig. 5 and the run merge
phase is in Fig. 6 and Fig. 7. The run generation algorithm uses standard
load-sort-store to generate runs. This phase sorts M blocks at a time to pro-
duce sorted runs. Replacement selection was considered, but has challenges
for small memory sizes, as a dedicated input and output buffer is required
during run generation. This is not acceptable for M < 5 and eliminates
any opportunity for generating runs larger than M . Further, runs are now
different sizes which requires maintaining in memory run starting offsets and
lengths. Future work may modify replacement selection to handle very small
M .

dataFile <- file containing data to sort

buffer <- capable of holding M blocks

numRuns = 0

// Create initial sorted runs of size M

while dataFile.hasRecords

run <- read next M blocks of dataFile

sort(run)

dataFile.append(run)

numRuns ++

end

runSize = M

Figure 5: Run Generation Code

4.2 Buffer Management

To enable merging using all M buffers, the algorithm uses a pointer in each
buffer (bufCurrP tr) to track the current record in each run. Buffer index
0 is selected to be the output buffer as that results in the smallest amount
of data movement for sorted or near-sorted data. Note that buffer index 0
stores both the output and records from run 0.

The next smallest record to output is determined by finding the mini-
mum current record in each buffer. The minimum record is then swapped
with the current record in the output buffer. Since these records must be
retained, each buffer also maintains a count (bufOut) of the records that
were transferred from the output buffer to this buffer. When determining
the next smallest record, it is required to look at both the current records

12

runStartOffset <- get_start_of_runs(dataFile) // Determine start of runs

bufCurrPtr <- int[M] // Current record pointer in each buffer (run)

bufOut <- int[M] // Position of last output buffer (run 0) record in this buffer

runOffsetPtr <- int[M] // Offset in file for next block to read from run

while numRuns > 1

numOutputRuns = ceiling(numRuns / M)

for run=0; run < numOutputRuns; run++

// Read block from each run and initialize pointers

for i=0; i < M; i++

runOffsetPtr[i] <- runStartOffset + i*runSize

buffer[i] <- read_block(dataFile , runOffsetPtr[i]);

bufCurrPtr[i] <- buffer[i] // Position of smallest record in each block

// Position of last output record block in this block

bufOut[i] <- EMPTY

end

while still records to process (either in buffer or on storage)

smallRecordPtr <- get_smallest_record(buffer , bufCurrPtr , bufOut)

smallBlock <- get_block(smallRecordPtr)

// First buffer (index 0) is used as output buffer

if smallRecordPtr == bufCurrPtr [0]

// Smallest record is in buffer 0.

if bufCurrPtr [0] != bufOutPtr [0]

// Empty space in middle of buffer 0, need to hop record over it

copy_record(bufCurrPtr [0], bufOutPtr [0])

//else No movement necessary

bufCurrPtr [0] += recordSize

else if smallRecordPtr is an bufOut record pointer

// Copying a record originally in buffer 0 back to output buffer

// Smallest record is always first record in block

if bufCurrPtr [0] != EMPTY

swap_records(buffer[smallBlock], bufCurrPtr [0])

// Swapped record may not be in order. Use insert sort.

insertSort(buffer[smallBlock], bufOut[smallBlock])

bufCurrPtr [0] += recordSize

else

// No record to swap with. Just copy over.

copyRecord(buffer[smallBlock], bufOut [0])

end if

else

if bufCurrPtr [0] != EMPTY

// Swapping an record in buffer 0 with a record in another buffer

swap_records(bufCurrPtr[smallBlock], bufCurrPtr [0])

bufOut[smallBlock] += recordSize

else

copy_record(bufCurrPtr[smallBlock], bufCurrPtr [0])

end if

bufCurrPtr [0] += recordSize

bufCurrPtr[smallBlock] += recordSize

end if

Figure 6: Run Merge Code Part 1

13

// For buffer 0, bufOut [0] stores offset to write next output record

bufOut [0] += recordSize

// Write full output buffer block

if (bufOut [0] == FULL)

write(buffer [0], dataFile)

// Determine if a new block must be read in from buffer

if bufCurrPtr[smallBlock] == EMPTY && smallBlock != 0

while (bufOut[smallBlock] != EMPTY)

// Move any records from run 0 in this block to others

destBlock <- find_block_with_space_other_than(smallBlock)

put_value_into_block(smallBlock , destBlock)

bufOut[destBlock] += recordSize

end

bufOut[smallBlock] = EMPTY

runOffsetPtr[i] += block_size

if runOffsetPtr[i] != EMPTY

buffer[smallBlock] <- read(dataFile , runOffsetPtr[i])

else

buffer[smallBlock] <- EMPTY

end if

end if

if bufCurrPtr [0] == EMPTY && (bufOut[i] == EMPTY for i=1..M ||

max(bufOut[i])<min(bufCurrPtr[i]))

// Block 0 is empty and bufOut is empty OR

//max value for run 0 < than min in other runs

swap result records into other blocks temporarily

read new run block into output block buffer

swap result records back into output block

end if

end

end

numRuns <- numOutputRuns

runSize <- runSize * M

end

Figure 7: Run Merge Code Part 2

14

bufCurrP tr and the first record in each buffer when bufOut > 0. When
the bufCurrP tr for a buffer is exhausted (past end of buffer), then the next
block of the run must be read into the buffer. If there are records in the buffer
from the output buffer (bufOut > 0), then those records must be transferred
to another buffer (see Fig 8).

4.3 Reading Into Buffer 0

Figure 8: Buffer 0 record being put back into buffer 0 from buffer 1. Buffer
1 has no records left so it has to be emptied and then new buffer 1 records
are read in.

The most complex case is reading the next block from the run that is in
buffer 0 (the output buffer). In that case, records currently in the output
buffer are transferred to one or more other buffers temporarily. Then, the
next block from the run is read. Records in the output are swapped back
into the output buffer and then the algorithm continues (see Fig 9).

4.4 Reads and Writes

After every second merge pass is completed, the next writes can occur at the
start of the file (memory space) again. Thus, the algorithm requires at least
the input size of space in secondary storage to function. This is a common
requirement for external merge sort.

15

Figure 9: Three part diagram showing a read into the output buffer. Top
left: the output block at position 0 is out of records (red numbers) but still
contains results (green numbers). Top Right: Results are placed into buffers
1 and 2 and buffer 0 records are read in. Bottom: Results are swapped back
into their original positions. The read is now done.

In Fig. 10 is an example execution for M = 2. Buffer 0 is used for
buffering run 0 as well as an output buffer. C represents a current record
pointer in the buffer. O is location of the last record from buffer 0 that was
moved to the buffer. Note that the smallest such record is always in the first
record index, and these records are maintained in ascending order. These
records are also shown in italics. Records in bold and italics are the current
sorted output in the output buffer. At step #5, the output buffer is full and
written to storage. The next block for run #0 can be read immediately as its
maximum value left (6) is smaller than the other buffer value (7). After step
#10, the first block for run #1 has been exhausted. Before the next block
can be read in, the records (pointed to by O) originally in buffer #0 are
swapped back and the current pointer is updated. Then the next block for
run 1 is read in and the process continues. With this technique it is possible
to merge with only two buffers. The technique generalizes to any number M
buffers.

In Fig. 12 is an example execution for M = 3. More comparisons and in
memory swaps are required as M increases. In step two, the three records at

16

Figure 10: Example for M=2

the C counters and two records at the O counters must all be compared to
find the the smallest record. There are several edge cases that occur when
M > 2. At step 6 buffer 0 is emptied with a write and then the 15 value
in buffer 1 is put back into buffer 0 before the next block is read into buffer
0. In step 8 there is a gap between the R and O counters. The buffer 0
value of 15 would have to be copied to the next R position if buffer 2 was
not about to be read in. Having to copy the buffer 0 value differs from most
cases where incrementing the R counter would be sufficient, as the record is
already in the correct location. At the end of step 9 the 16 value is put back
into buffer 0, this shifts the 15 value down and the R counter is incremented
without requiring the 15 value to be copied. This technique can be further
generalized to any greater number of M buffers.

The percentage reduction in I/Os is given by the formula (log(M) −
log(M−1))/log(M). Fig. 11 shows that this is significant for small values of
M but decreases rapidly. Note that in practice there may be some deviation

17

as the number of merge passes is computed by dlogM−1(dNM e)e, and the ceiling
function may cause an extra pass in certain cases.

2 3 4 5 6
∞ 37% 21% 14% 10%

Figure 11: Theoretical Performance Improvement by M

5 Experimental Results

The experimental evaluation was conducted on an Arduino MEGA 2560 [9]
that uses a 8-bit AVR ATmega2560 microcontroller and has 256 KB of flash
program memory, 8 KB of SRAM, 4 KB EEPROM, and supports clock
speeds up to 16 MHz. A 2 GB SanDisk microSD card was attached with
an Arduino Ethernet shield. Benchmark reading and writing tests on the
SD card show sequential read performance of 408 blocks/sec. (204 KB/s)
and sequential write performance of 245 blocks/sec. (123 KB/s). Although
for raw flash chips write performance is signficantly slower than read perfor-
mance, the FTL on the SD card compensates for this and writes are only
66% slower. The results are the average of several runs. The page size is
512 bytes. The record size is 16 bytes with a 4 byte integer key. Records are
generated randomly.

18

Figure 12: Example for M=3.

19

Figure 13: Sorting Performance by Time (s)

Figure 14: Sorting Performance by I/Os

The standard external merge sort was compared with the optimized ver-
sion that uses no output buffer. The sort time in seconds (Fig. 13) and
number of I/Os (Fig. 14) were captured.

The results show merge sort without an output buffer for the M = 3
and M = 2 cases. For M = 3, the theoretic I/O improvement is 37%
and that is seen in the results. The time improvement is close but not
quite the same due to CPU and memory transfer overhead. Further, the
M = 2 case has performance characteristics almost identical to the regular

20

external merge sort with M = 3. Thus, it has all the same performance
with 33% less memory usage. Performance was also compared with MinSort
with M = 1586 bytes given to MinSort. For small data sizes up to N = 128
blocks, MinSort had comparable performance. By time N = 1024, MinSort
was over 9 times slower and the performance difference was increasing. This
makes sense as MinSort was designed for non-random data and for very small
memory.

Using a a heap instead of shifting the values did not greatly alter the
speed for M = 1024 bytes and M = 1536 bytes, as shown in Fig. 15 and Fig.
16. This was not consistent with the prediction that using a heap should
reduce the number of memory transfers and improve performance.

Figure 15: Sorting Performance by Time (s)

6 Conclusions and Future Work

External sorting on embedded devices with small memory is challenging.
This work presented an optimization of external merge sort to only require
two buffers during merging and uses all M buffers. This improves perfor-
mance for small memory cases and makes sorting more practical. Future work
will investigate if any run generation optimization is feasible and examine how
to combine the indexing technique used in MinSort [4] and MONTRES [8]
with the external merge algorithm to achieve even better performance.

21

Figure 16: Sorting Performance by Time (s)

References

[1] Goetz Graefe. “Implementing Sorting in Database Systems”. In: ACM
Comput. Surv. 38.3 (Sept. 2006). issn: 0360-0300. doi: 10.1145/1132960.
1132964. url: http://doi.acm.org/10.1145/1132960.1132964.

[2] Panayiotis Andreou et al. “FSort: external sorting on flash-based sensor
devices”. In: DMSN’09: Data Management for Sensor Networks. 2009,
pp. 1–6. isbn: 978-1-60558-777-6.

[3] Hyoungmin Park and Kyuseok Shim. “FAST: Flash-aware external sort-
ing for mobile database systems”. In: Journal of Systems and Software
82.8 (2009), pp. 1298–1312. issn: 0164-1212. doi: DOI:10.1016/j.jss.
2009.02.028.

[4] Tyler Cossentine and Ramon Lawrence. “Fast Sorting on Flash Memory
Sensor Nodes”. In: Proceedings of the Fourteenth International Database
Engineering and Applications Symposium. IDEAS ’10. Montreal, Que-
bec, Canada: ACM, 2010, pp. 105–113. isbn: 978-1-60558-900-8. doi:
10.1145/1866480.1866496. url: http://doi.acm.org/10.1145/
1866480.1866496.

22

[5] Yang Liu et al. “External Sorting on Flash Memory Via Natural Page
Run Generation”. In: The Computer Journal 54.11 (2011), pp. 1882–
1990. doi: 10.1093/comjnl/bxr051.

[6] Chin-Hsien Wu and Kuo-Yi Huang. “Data Sorting in Flash Memory”.
In: Trans. Storage 11.2 (Mar. 2015), 7:1–7:25. issn: 1553-3077. doi:
10.1145/2665067. url: http://doi.acm.org/10.1145/2665067.

[7] J. Lee, H. Roh, and S. Park. “External Mergesort for Flash-Based Solid
State Drives”. In: IEEE Transactions on Computers 65.5 (May 2016),
pp. 1518–1527. issn: 0018-9340. doi: 10.1109/TC.2015.2451631.

[8] A. Laga et al. “MONTRES: Merge ON-the-Run External Sorting Al-
gorithm for Large Data Volumes on SSD Based Storage Systems”. In:
IEEE Transactions on Computers 66.10 (Oct. 2017), pp. 1689–1702.
issn: 0018-9340. doi: 10.1109/TC.2017.2706678.

[9] Arduino Homepage. url: http://arduino.cc.

23

