
University of British Columbia

Computer Science Honours Thesis
COSC 449 201

Multiplayer Math on the go
with Factor Friends

Author:
Paul Moore

Supervisor:
Dr. Ramon Lawrence

April 2013

Chapter 1

Abstract

Smartphones and other internet capable mobile devices are booming in pop-
ularity. Pocket-sized computers are now another welcome distraction to stu-
dents, both in and out of the classroom. Unfortunately, Math is not becoming
any more fun to learn. The solution isn’t less technology in the classroom,
but more of it. Mobile devices have proven to be great tools for entertain-
ment and social networking, but now it’s education’s turn. I have created an
iPhone Application which applies elements of game theory in a game designed
to teach arithmetic. Factor Friends makes learning core Math and Computer
Science concepts an engaging, multiplayer competition. By integrating social
networking, Factor Friends becomes a shared learning experience for peers.
The game also pairs opponents together who best match each other skills,
which provides a natural learning curve and level progression. Gamification
is used to not only turn Math into a game, but make it an integral part of the
experience while keeping it fun. Concepts such as precedence, association,
and reduction are the keys to earning more points, achievements, and even
user created content.

i

Chapter 2

Acknowledgements

I would first like to thank my supervisor, Dr. Ramon Lawrence, for his
guidance and willingness to help me with this project. Secondly, this game
was made possible by the talented artist Morgan Long1. Finally, my friend
and family’s criticism and role as play testers enabled Factor Friends to be
more than it could have ever been with my ideas alone.

1View more of Morgan’s artwork on her website: http://artworkofmorganlong.
com

ii

Table of Contents

1 Abstract i

2 Acknowledgements ii

List of Figures iv

List of Listings v

3 Factor Friends, the Game 1
3.1 What is Factor Friends? . 1

3.1.1 High Level Concept . 1
3.1.2 Target Audience . 2

3.2 Factor Friends Game Design 2
3.2.1 Core Concepts . 2

3.2.1.1 Learning Targets 2
3.2.1.2 Science Toolbox 4

3.2.2 The Secret Number Game 4
3.2.3 Matches . 5
3.2.4 Meta Game . 5

3.2.4.1 IQ Points . 5
3.2.4.2 Crafting . 9

3.3 Accounts . 12

4 Technology Overview 14
4.1 Design Goals . 14
4.2 An Overview of the Stack . 15

4.2.1 The back-end Stack . 15
4.2.1.1 API Server 15

iii

4.2.1.2 Database . 22
4.2.1.3 Hosting . 22
4.2.1.4 Deployment 22
4.2.1.5 Scaling Out 25
4.2.1.6 Vertical Scaling 25
4.2.1.7 Horizontal Scaling 26

4.2.2 front-end Stack . 30
4.2.2.1 Cocos2d . 30
4.2.2.2 CocosBuilder 31

4.3 REST API . 32
4.3.1 Authentication . 32
4.3.2 Request and Response Structure 33

4.4 Client-side Networking . 35
4.4.1 Airtower . 35
4.4.2 Secure Socket Layer . 38

4.5 Implementing Game Play . 39
4.5.1 Evaluating Equations 39

4.5.1.1 The bet.coffee Infix Equation Evaluator for
CoffeeScript 39

4.5.1.2 API . 40
4.5.1.3 The Shunting-Yard Algorithm 40
4.5.1.4 Custom Operators 43
4.5.1.5 Custom Functions 44
4.5.1.6 Crossplatform Implementation 44
4.5.1.7 Client Wrapper 45

4.5.2 Game Messages . 46
4.5.2.1 Sending a Message 48
4.5.2.2 Receiving a Message 49
4.5.2.3 Long Polling 50
4.5.2.4 Correctness 50
4.5.2.5 Client-side Game Message Handling 50

4.6 Additional Resources . 51

5 Conclusions 52

Bibliography 53

iv

List of Figures

3.1 The Factor Friends login screen. 3
3.2 Player 1, creating a puzzle for the opponent. 6
3.3 The menu scene shows you all of your active games and their

status. 7
3.4 The finish screen, where each round is reviewed and points are

awarded to each player. 8
3.5 The player’s initially empty crafting table. 10
3.6 The player adds items to the crafting table to create a formula. 11
3.7 Visualizing user flow through Factor Friends 13

4.1 Version 1.0.0 of the API responds with text/plain 20
4.2 Version 2.0.0 requires the client to accept JSON, but knows

to send the error in plain text 21
4.3 Version 2.0.0 responds with JSON, and can accept either /ping

or /test as a route . 21
4.4 AWS EC2 account running the Factor Friends API Server from

an Ubuntu image . 23
4.5 AWS EC2 account running the Factor Friends API Server from

an Ubuntu image . 26
4.6 Additional volumes can be mounted to instances to both in-

crease disk space and enable data to migrate between them. . 27
4.7 CocosBuilder streamlines game development even further with

a visual editor. 31

v

Listings

4.1 A small CoffeScript example 17
4.2 The equivilant compiled JavaScript code 17
4.3 A simple REST web service using Restify 19
4.4 The git post-receive script for version controlled deployment . 23
4.5 Bootstraping the web service to launch worker nodes using the

cluster API . 25
4.6 Shared code for node1 and node2 27
4.7 Code for thread1 . 27
4.8 Code for thread2 . 27
4.9 Code for node1 . 28
4.10 Code for node2 . 28
4.11 Obtaining RedisDC . 28
4.12 Code for node1 using RedisDC 28
4.13 Code for node2 using RedisDC 29
4.14 Server-side impementation of the authentication scheme 32
4.15 Example HTTP request made to the Factor Friends API web

service . 33
4.16 The server selects an appropriate Request Handler based on

the type field . 35
4.17 Example AirtowerRequest implementation 36
4.18 Example AirtowerResponse implementation 36
4.19 Making a request to the web service using the Airtower 37
4.20 Allowing self-signed SSL certificates originating from factor-

friends.com in DEBUG mode 38
4.21 Input to the bet.coffee library 40
4.22 Evaluating an infix equation asynchronously using the bet.coffee

library . 40
4.23 Synchronous API of the bet.coffee library 40

vi

4.24 Pseudocode for the Shunting-Yard Algorithm 41
4.25 Evaluating equations in Reverse Polish Notation 42
4.26 Creating or redefining an operator using bet.coffee 43
4.27 Creating or redefining a function using bet.coffee 44
4.28 Setting up bet.coffee in a web view 45
4.29 Interfacing to bet.coffee . 45
4.30 Evaluating an equation from Objective-C 46
4.31 The Lua script to add an event to a player’s message queue . . 48
4.32 Pseudocode for receiving new messages with a listen request . 49
4.33 The menu scene listining for game messages 51

vii

Chapter 3

Factor Friends, the Game

3.1 What is Factor Friends?
Factor Friends is a multiplayer, mobile, educational game. Unlike a conven-
tional educational game, which takes a game and adds math on top of it,
math in Factor Friends is the game. Factor Friends uses the inherent game
like properties of math to make an interesting, casual game for handheld
devices.

The goal of Factor Friends is to create a fun, social, and educational
experience for all ages. It is not, however, designed to teach a curriculum.
Instead, Factor Friends aims to show how math can be fun, and how games
can be used to teach new ways of learning.

3.1.1 High Level Concept
The game is intended to be a single release onto the Apple App Store. Ad-
ditional content may become available in future App updates. The business

1

model will be based primarily around the monetization of purchasable game-
play elements via In-App Purchases. The initial App cost will be low, or
free, to reduce the barrier of entry.

3.1.2 Target Audience
The App will not be targeted at a specific demographic or age group. How-
ever, an effort will be made to keep the App accessible to a younger audience,
primarily between the ages of 6 and 10.

Recent studies show that tablet and smartphone use is on the rise among
children, where 77% are playing games and 57% are using them for educa-
tional purposes [1]. Since Factor Friends is an educational game, these trends
justify the effort into making the App available to a younger age range.

3.2 Factor Friends Game Design

3.2.1 Core Concepts
3.2.1.1 Learning Targets

Each game and educational feature in Factor Friends will be based one of
the following concepts:

Game Concepts

1. Mathematical and Computer Science operators and functions.

• The player is able to learn, use, share, and craft operators from
math and common programming languages.
• The game progresses from basic operators (addition, subtraction,

multiplication, division) to more complicated ones (exponent, mod-
ulus, square root).
• Computer programming operators are also available (pre/post in-

crement, bit-shifting).
• More advanced players can also use logical and algebraic operators

(AND, OR, etc.).
• In addition to operators, functions can also be used, such as floor,

ceiling, and clamp.

2

Figure 3.1: The Factor Friends login screen.

3

2. Problem solving.

• Players are introduced to problem solving by having to figure out
other player’s puzzles.
• Puzzles are mathematical equations that are created by operators,

as discussed above.
• Players are involved in the puzzle creating process, as well as the

puzzle solving process.

3.2.1.2 Science Toolbox

The Science Toolbox is the inventory system for Factor Friends. Each player
starts with a Toolbox with a few basic operators. As players progress through
the game, they earn more things to add to their Toolbox through various
ways. The toolbox is an essential part to the player’s experience, as it dictates
what the player can and cannot use during a game.

3.2.2 The Secret Number Game
The core game behind Factor Friends is a fairly simple secret number game.
Instead of solving predefined problems, the player participates in the puzzle
creating process, and uses those puzzles to challenge friends online. Below is
how a typical match between two player’s would play out.

Game Flow

1. Player 1 (P1), and Player 2 (P2) enter a game match together.

2. It is P1’s turn first.

3. A random selection of numbers and operators are selected from P1’s
Toolbox.

4. P1, using that random selection, creates a Puzzle using all, or some of
those numbers and operators.

5. The answer to the Puzzle (limited to a numerical value) is sent to P2.

6. P2 then uses the same Toolbox selection in an attempt to solve the
Puzzle.

4

7. Points are awarded based on how close P2 came to figuring out what
P1’s original equation was.

3.2.3 Matches
A Match in Factor Friends is two game rounds between two players. A round
is when one player creates a puzzle, and the other player solves that puzzle.
Therefore, a match can be described by this sequence:

Game Rounds

1. P1 creates a puzzle for P2.

2. P2 solves the puzzle P1 created.

3. P2 creates a puzzle for P1.

4. P1 solves the puzzle P2 created.

Points are awarded only at the end of a match. Thus, equal opportunity
is provided for each player to score points if one player decides to quit.

A match can be instigated by either player, however, only one match can
be in play at a time between two players. This makes it easier for players
to organize their matches (one match per friend at a time), and avoids game
creation spamming.

3.2.4 Meta Game
A meta game is the game beyond the core game experience. In Factor
Friends, the core game is the secret number game, and the meta game (dis-
cussed below) is the reason for players to continue playing the core game.

3.2.4.1 IQ Points

IQ Points is the currency system behind Factor Friends. At the end of a
match, players are rewarded IQ based on how well they did. These points
are persistent across matches, and can be accumulated by the player.

Once obtained, IQ can be spent in the following ways:

5

Figure 3.2: Player 1, creating a puzzle for the opponent.

6

Figure 3.3: The menu scene shows you all of your active games and their
status.

7

Figure 3.4: The finish screen, where each round is reviewed and points are
awarded to each player.

8

Toolbox Upgrades - The Toolbox Store A player’s Toolbox can be
expanded with new operators, functions, and numbers. Using an in game
store, a player can exchange IQ Points for these things. Each new purchase
is followed by a small, micro tutorial of how to use it.

When a player gets a new addition to his or her Toolbox, it becomes
immediately available to use the next time the player enters a new round.
For immediate positive feedback, new purchases are always a part of the next
round the player controls; this way they get to try out their new skills quickly
and be satisfied with them.

A Note on Microtransactions - The IQ Point Store Though not the
main focus of the project, the game may be monetized by offering In-App
Purchases for more IQ Points. These purchases allow the player to ’top up’
their IQ, allowing them to reach their goal of buying a particular skill sooner.
This sort of model monetizes on a player’s impatience.

This store would be separate, but directly accessible, from the Toolbox
store. The IQ store currently has the following available purchases:

IQ Store In-App Purchases

• 10 IQ Points: $0.99

• 30 IQ Points: $1.99 (10 IQ free!)

• 50 IQ Points: $2.99 (20 IQ free!)

3.2.4.2 Crafting

The Second component to the meta game is a Crafting component. Crafting
in Factor Friends works by taking existing items from your Toolbox inventory,
and using them to create new items for yourself.

For example: Assume a player has the addition operator, +, as part of
his or her Toolbox. The player’s crafting table will initially look empty, like
this:

The player can then drag the addition operator, and other symbols into
the crafting space. In this example, the player adds one to a number, which
results in the increment operator, ++.

Through crafting, the player has found a new recipe of sorts for the equa-
tion x = x + 1. The player can now use this new operator as part of his or
her Toolbox. The original operator, +, still remains in the player’s toolbox.

9

Figure 3.5: The player’s initially empty crafting table.

10

Figure 3.6: The player adds items to the crafting table to create a formula.

11

Crafting encourages experimentation and rewards the player with discov-
ery. The goal is to have the player build intuition about math and to help
them see similarities which may help them in the puzzles.

3.3 Accounts
To play Factor Friends, each user must first create an account. There are
currently two options for creating an account.

If you just want to try the game without having to sign in or give any
personal information, you can play as an anonymous user. The disadvantage
to playing anonymously is that your information is not saved when you log
out, and you cannot use the IQ Store.

The other option is to sign in with Facebook. This method allows you
to easily connect with your friends that also play Factor Friends. Using this
method, your data is saved permanently. In addition, you can play Factor
Friends on multiple devices using the same account.

12

Figure 3.7: Visualizing user flow through Factor Friends

13

Chapter 4

Technology Overview

The architecture of Factor Friends is broken into two major components: the
forward facing client and the back-end stack. This section will discuss the
major components of how Factor Friends was designed and implemented, and
what technologies were used.

4.1 Design Goals
As the game mechanics of Factor Friends changed often, and with the possi-
bility of a sequel in the future, the system needed to be robust and adaptive
to change. This led to decisions that favoured quick development and fast
turnaround. Below are the key attributes I was looking for when I choose
which technologies I was going to use on the back-end:

Desired Attributes

1. Fast development of new features

2. Easy to deploy and test

3. Client agnostic

4. Built upon popular open standards

The first two points are self-evident and are desired properties of any
technology. However, since I was the sole developer on both the client and
server, these points became increasingly important to reduce workload and
focus on more critical pieces of the application. Furthermore, an integrated

14

build system was also needed to reduce the time between compiling, deploy-
ing, testing, and debugging new code.

Additionally, the server should be independent of the client application.
This is to enable the future development of a client or service which is cre-
ated using a different platform than the original. For instance, an HTML5
version of the game may be a possibility. Or, should the API server expand
into a platform, developers may wish to interface with it using a different
technology.

Finally, with the possibility of additional clients or services that need to
interface with the API server, I wanted something that was easy to com-
municate with in any language. Creating a custom protocol creates more
opportunity for bugs, and the unfamiliarity will reduce developer adoption,
and my will to do any further work with the project. This lead to the decision
of adopting a RESTful-like approach which will be discussed later.

4.2 An Overview of the Stack

4.2.1 The back-end Stack
We can divide the back-end architecture further into three separate sub-
components: the API Server, the Database, and the Hosting Platform.

4.2.1.1 API Server

The API Server is responsible for handling all requests from clients to per-
form virtually any action. For instance, a user who uses a new device with
his or her account will require all account and game information he or she
has accumulated. It is the server’s responsibility to fetch and serve this in-
formation to the client. In addition, the API Server acts as an authoritative
multiplayer game server. This means the server also oversees all activity that
goes on between games. For every move made, the server validates it and
records it in the Database before notifying the player’s opponent. This has
the advantage over a peer-to-peer or non-authoritative system that needs to
handle the case when two clients are in conflict over an action.

15

Build on Node.js As for the platform, Node.js1 was chosen for the API
Server. Node, at its core, is essentially just Google’s V8 JavaScript engine2

with an event loop (using the libenv3 library). In addition, Node extends
JavaScript by adding many rich APIs such as networking, cryptography,
and filesystem operations implemented natively in C++ for performance.
JavaScript own it’s own has a very bland API, which is why it was chosen
for Node to begin with according to Node’s creator [2].

This has two interesting consequences.
First, the server can be written in a lightweight,
dynamic scripting language. Secondly, unlike a
traditional web server, Node is not simply a di-

rectory of files. What this means is that an HTTP request to:

GET /index.html

does not have to resolve to an actually HTML file residing in the website’s
document root. Instead, we can decide to respond to any request however we
want. While this functionality is useful for view based applications, writing
REST APIs like this becomes tedious. This is evident when we need to
implement a rich API for requests such as:

DELETE /user/123/cart/item?count=2

Finally, Node has a very strong development community for writing third
party packages. For these reasons Node.js was chosen to quickly develop a
fast, adaptive, and portable API server.

CoffeeScript While Node has the advantage of offering fast development
via a dynamic scripting language, it is, unfortunately, JavaScript. JavaScript
is known for being fairly verbose in comparison to other languages such as
Python or Lua. It adopts much of its syntax from languages such as C
and Java instead. In addition, JavaScript suffers scope issues with the this
variable and offers some features of, but does not fully implement, the OOP
and Functional paradigms.

1Node.js: http://nodejs.org/
2Google V8: https://code.google.com/p/v8/
3libenv: http://software.schmorp.de/pkg/libev.html

16

In recent years, many compile-to-JavaScript
languages have been born to avoid the bad
parts of JavaScript. One of the most popular

of these is called CoffeeScript4, and is the language I choose to develop the
API server in. CoffeeScript offers a less verbose and more Functional looking
syntax. At the same time, it offers more OOP features and syntactical sugar.
Observe:

Listing 4.1: A small CoffeScript example
1 unravel = (obj, arr = []) ->
2 arr.push k, v for k, v of obj
3 arr
4 ravel = (arr, obj = {}) ->
5 obj[n] = arr[i + 1] for n, i in arr when i % 2 is 0
6 obj
7 obj =
8 name: ’Paul’
9 degree: ’Computer Science’

10 arr = unravel obj, [’school’, ’UBC’]
11 # ["name", "Paul", "degree", "Computer Science", "school", "

UBC"]
12 console.log arr
13 # {"name": "Paul", "degree": "Computer Science", "school": "

UBC"}
14 console.log ravel arr

Listing 4.2: The equivilant compiled JavaScript code
1 var unravel = function(obj, arr) {
2 var k, v;
3 if (arr == null) {
4 arr = [];
5 }
6 for (k in obj) {
7 v = obj[k];
8 arr.push(k, v);
9 }

10 return arr;
11 };
12 var ravel = function(arr, obj) {
13 var i, n, _i, _len;
14 if (obj == null) {
15 obj = {};

4CoffeeScript: http://coffeescript.org

17

16 }
17 for (i = _i = 0, _len = arr.length; _i < _len; i = ++_i) {
18 n = arr[i];
19 if (i % 2 === 0) {
20 obj[n] = arr[i + 1];
21 }
22 }
23 return obj;
24 };
25 var arr, obj;
26 obj = {
27 name: ’Paul’,
28 degree: ’Computer Science’
29 };
30 arr = unravel(obj, [’school’, ’UBC’]);
31 // ["name", "Paul", "degree", "Computer Science", "school", "

UBC"]
32 console.log(arr);
33 // {"name": "Paul", "degree": "Computer Science", "school": "

UBC"}
34 console.log(ravel(arr));

CoffeeScript improves readability and reduces overall code clutter. As of
CoffeeScript 1.6, source maps can be optionally generated. Source maps tell
the JavaScript runtime how to display the original CoffeeScript code instead
of the compiled JavaScript. This is useful in development mode when if a
stack trace is printed when an exception is raised, for example.

RESTful Design The REST (Representational State Transfer) architec-
tural style was chosen as the communication model between client and server.
More precisely, the API Server is a RESTful web service, in that it uses REST
style design implemented using HTTP. It should be noted that true REST
implementations are stateless; that is, no session information is stored on the
server. Factor Friend’s implementation does abide by this rule, in that the
client must re-send authentication information with each request. However,
some session data must be stored in the Database for practical reasons, which
will become obvious in the next session. Hence, I refer to the Factor Friend’s
web service as RESTful-like.

These technologies were chosen because they are built upon popular open
web standards, on of the key design goals. HTTP is supported virtually
everywhere, so the opportunity for creating new clients is viable. In addition,
the protocol is expressive and flexible enough to handle the complex nature

18

of a multiplayer game.
The API Server uses the restify5 package for Node. Restify is a frame-

work designed for RESTful web services. It provides facilities to handle con-
tent negotiation, versioning, routing, and error handling for an application.
Here is example of a simple ping server:

Listing 4.3: A simple REST web service using Restify
1 restify = require ’restify’
2 app = restify.createServer name: ’ping-server’
3 app.use restify.acceptParser app.acceptable
4 app.get
5 path: ’/ping’
6 version: [’1.0.0’, ’1.1.0’],
7 (req, res, next) ->
8 res.send ’pong’
9 next()

10 app.get
11 path: /ˆ\/(ping|test)$/
12 version: ’2.0.0’,
13 (req, res, next) ->
14 if req.accepts ’application/json’
15 res.send response: ’pong’
16 else
17 res.send new restify.WrongAcceptError
18 ’You must explicitly accept JSON in version 2!’
19 next()
20 app.listen process.env.PORT, ->
21 app.log.info "Server running on #{process.env.PORT}"

In the above example we create a simple server called ”ping-server”. It
has a single route (a URL which acts as an API end point) to /ping which
sends a simple ”PONG” response. The server has three versions. In version
1.0.0 and 1.1.0, the response is sent back in plain text.

5restify: http://mcavage.github.io/node-restify/

19

Figure 4.1: Version 1.0.0 of the API responds with text/plain

However, version 2.0.0 of the API sends back a response as JSON, and
explicitly requires the client to accept it. Additionally, version 2.0.0 uses a
Regular Expression to define its route, which also accepts /test in addition
to /ping.

20

Figure 4.2: Version 2.0.0 requires the client to accept JSON, but knows to
send the error in plain text

Figure 4.3: Version 2.0.0 responds with JSON, and can accept either /ping
or /test as a route

Restify uses the Accept and Accept-Version headers, among others,
to determine the appropriate handler to send the request to.

21

4.2.1.2 Database

The NOSQL database Redis6 is used to store
non-volatile data. While a traditional SQL
database could have been used, Redis offers
unique features which benefit the design on the
API Server. The publish and subscribe model

and the blocking operations of Redis provide concurrency control when the
API Server is distributed to multiple nodes. These benefits will become clear
in the next section.

As for Redis itself, the API consists of commands to manipulate data
structures. Strings, Lists, Hashes, Sets, and Sorted Sets are all supported
by Redis. However, there is no concept of a relation. In addition, while
Redis does offer some transactional support in a sense that commands can be
pipelined together and executed atomically (by virtue of Redis being single-
threaded), there are no rollbacks. Hence, the Lua scripting feature of Redis
is used to create more durable queries.

4.2.1.3 Hosting

To provide the easiest, most configurable, and
least expensive hosting solution, I decide to
used Amazon’s EC27 (Elastic Compute 2).
EC2 offers virtualized servers that can be cre-
ated and destroyed at will. Each instance can
be assigned an IP address that you allocate,
called an Elastic IP.

4.2.1.4 Deployment

Deploying to the production server is done via git. Git allows you to write
special scripts, called hooks, to be executed after certain events. In this case,
we want to perform some work after someone has pushed new code to the
server. First, git-core was installed and setup on the deploy server. After
that, a bare git repository was initialized. Then, a post-receive hook
was created in the repository’s /hooks directory. It is as follows:

6Redis: http://redis.io/
7Amazon Web Services: http://aws.amazon.com/

22

Figure 4.4: AWS EC2 account running the Factor Friends API Server from
an Ubuntu image

Listing 4.4: The git post-receive script for version controlled deployment
1 #!/bin/bash
2 # Post receive script for git deployment.
3 # Factor Friends API Server.
4 # https://github.com/paulmoore/Factor-Friends-API
5 #
6 # To use:
7 # 1. cd /home/git/ff-api.git/hooks
8 # 2. cp ˜/post-receive ./post-receive
9 # 3. chmod +x post-receive

10 # 4. chown git:git post-receive # for good measure
11 echo "---------------------------"
12 echo "-- POST-RECEIVE --"
13 echo "---------------------------"
14 deploy_dir=/var/www/ff-api
15 deploy_branch=live
16 while read oldrev newrev ref
17 do
18 branch=‘echo $ref | cut -d/ -f3‘
19 echo "Current branch: $branch"
20 if ["$branch" == "$deploy_branch"]; then

23

21 echo "Stopping server..."
22 (cd $deploy_dir && npm stop)
23 echo "Stopped"
24 echo "Checking out build..."
25 GIT_WORK_TREE=$deploy_dir git checkout live -f
26 echo "Changes pushed live"
27 cd $deploy_dir
28 echo "Building and deploying..."
29 npm install
30 echo "Built"
31 echo "Starting server..."
32 npm start
33 echo "Deployed"
34 else
35 echo "Branch is not live, nothing to do"
36 fi
37 done
38 echo "Done"
39 echo "---------------------------"

Post-Receive Hook

1. Check what branch is being pushed to

2. If the branch that is being pushed to is ’live’, execute the rest of the
script

3. Stop the server if it is currently running

4. Checkout a fresh copy of the server to the deploy directory

5. Using the Node package manager, pull down all dependencies

6. Build the project (compile and lint CoffeeScript)

7. Start the server

On the local development machine, a remote is added to the new git
repository.

1 $ git remote -v
2 github git@github.com:paulmoore/Factor-Friends-API.git (fetch

)
3 github git@github.com:paulmoore/Factor-Friends-API.git (push)
4 prod git@factorfriends.com:ff-api.git (fetch)
5 prod git@factorfriends.com:ff-api.git (push)

24

To deploy, instead of pushing the master branch to the origin server (in
this case, GitHub), we push whatever branch we want to deploy to the pro-
duction server’s live branch:

1 $ git push prod master:live

Using this technique to deploy to the production server is simple and very
fast as it is integrated with normal development.

4.2.1.5 Scaling Out

In anticipation that the game will attract thousands of players, or none at
all, there needed to be a plan to quickly increase or decrease the capacity
of the API Server depending on the need. Both vertical and horizontal
scaling techniques were used to reduce headaches later if the game grows in
popularity.

4.2.1.6 Vertical Scaling

Using the cluster API . Since Node.js is single threaded, we can increase
the load capacity of the server by simply taking advantage of all of the
machines cores. The cluster module allows Node to spawn worker threads
which share any ports they listen on. The master thread then forwards
requests evenly to its workers.

Listing 4.5: Bootstraping the web service to launch worker nodes using the
cluster API

1 cluster = require ’cluster’
2 if cluster.isMaster
3 if process.env.NODE_ENV is ’development’
4 cpus = parseInt process.env.

npm_package_config_debugWorkersN
5 else
6 cpus = require(’os’).cpus().length
7 log = require(’./logger’).create require(’../config’).server

.logName
8 log.info "Master process started with #{cpus} processors"
9 cluster.fork() for i in [1..cpus]

10 cluster.on ’fork’, (worker) ->
11 log.info "Worker #{worker.id} forked"
12 cluster.on ’online’, (worker) ->
13 log.info "Worker #{worker.id} online"
14 cluster.on ’listening’, (worker, address) ->

25

15 log.info "Worker #{worker.id} listening on #{address.
address}:#{address.port}"

16 cluster.on ’exit’, (worker) ->
17 if worker.suicide
18 log.info "Worker #{worker.id} committed suicide, not

restarting"
19 else
20 log.info "Worker #{worker.id} has died, restarting"
21 cluster.fork()
22 else
23 require ’./worker’

The server first determines if it is a worker or master thread. If the
current process is the master, it spawns an appropriate amount of workers
and listens for any changes to their state. If if is a worker, we setup the API
routes and begin listening for HTTP requests as normal. It is also possible
for the master to restart one of its workers if it goes down unintentionally.

4.2.1.7 Horizontal Scaling

Amazon Machine Images In addition, you can create custom images
from you devices to launch identical VMs. This way, you only need to setup
a server once, all others can be duplicated. This is useful if you need to scale
out horizontally quickly by creating new VMs. Using Amazon’s EC2 Load
Balancer automatically distributes traffic across your VMs.

Figure 4.5: AWS EC2 account running the Factor Friends API Server from
an Ubuntu image

Additional volumes can also be created and mounted to instances. These
volumes can be used to store important data, such as database files. In this
case, we store the Redis snapshots and AOF files to a separate volume. If
something tragic happens to the EC2 instance running the Database, the
volume can be mounted to a new instance and the original instance can be
disposed.

26

Figure 4.6: Additional volumes can be mounted to instances to both increase
disk space and enable data to migrate between them.

Redis Distributed Concurrency Distributing the workload across mul-
tiple nodes has the disadvantage of being much more difficult to control
concurrency. Traditional control structures such as the semaphore or mutex
cannot be used in a traditional sense when critical sections need to be shared
across multiple nodes. To illustrate this, here is a classical example of a
concurrency problem.

Concurrency problem using threads

1. a1 on thread1 must occur before b2 on thread2

2. b1 on thread2 must occur before a2 on thread1

A traditional approach would be to use semaphores or some other form
of locking mechanism provided by the system. The solution in this case uses
the rendezvous pattern.

Listing 4.6: Shared code for node1 and node2
1 a1Done = Semaphore(0)
2 b1Done = Semaphore(0)

Listing 4.7: Code for thread1
1 a1
2 a1Done.signal()
3 b1Done.wait()
4 a2

Listing 4.8: Code for thread2
1 b1
2 b1Done.signal()
3 a1Done.wait()
4 b2

To solve this problem when some or all events occur on a different node, a
library was developed to use Redis as a concurrency control structure for mul-
tiple nodes. The library, called RedisDC (Redis Distributed Concurrency)

27

uses the blocking operations of lists to emulate semaphores. The same con-
currency problem can be reformulated using nodes instead of threads.

Concurrency problem using nodes

1. a1 on node1 must occur before b2 on node2

2. b1 on node2 must occur before a2 on node1

The BRPOP command blocks until a list is non-empty, then removes the
last element. The LPUSH command pushes an element onto the beginning
of the list, which will cause one of the connections blocking on the list to
become unblocked. If multiple connections are waiting on the same list, they
are served in first come, first serve order [3]. This has the added benefit of
having the behaviour of a strong semaphore8. There isn’t any shared code
between the nodes this time, but it does require that both nodes have access
to the same Redis server or cluster.

Listing 4.9: Code for node1
1 a1
2 LPUSH a1Done signal
3 BRPOP b1Done
4 a2

Listing 4.10: Code for node2
1 b1
2 LPUSH b1Done signal
3 BRPOP a1Done
4 b2

The RedisDC library encapsulates this basic principle. RedisDC is writ-
ten in C and can be downloaded and used for free9.

Listing 4.11: Obtaining RedisDC
1 $ git clone https://github.com/paulmoore/RedisDC
2 $ git submodule update --init
3 $ make

Here is the solution to the rendezvous problem using the library:

Listing 4.12: Code for node1 using RedisDC
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "redisdc.h"
4

8A weak semaphore unblocks threads in random order as opposed to FIFI, and there-
fore might lead to starvation.

9Download RedisDC on GitHub: https://github.com/paulmoore/RedisDC

28

5 // running on node1
6 int main(int argc, char **argv) {
7 char *host = argv[0];
8 int port = atoi(argv[1]);
9 rdc_sem_t *a1Done = rdc_sem_init("a1Done", 0, host, port);

10 rdc_sem_t *b1Done = rdc_sem_init("b1Done", 0, host, port);
11 a1();
12 printf("a1 done\n");
13 rdc_sem_signal(a1Done);
14 rdc_sem_wait(b1Done);
15 printf("a1 and b1 done\n");
16 a2();
17 return 0;
18 }
19

20 // ...

Listing 4.13: Code for node2 using RedisDC
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "redisdc.h"
4

5 // running on node2
6 int main(int argc, char **argv) {
7 char *host = argv[0];
8 int port = atoi(argv[1]);
9 rdc_sem_t *a1Done = rdc_sem_init("a1Done", 0, host, port);

10 rdc_sem_t *b1Done = rdc_sem_init("b1Done", 0, host, port);
11 b1();
12 printf("b1 done\n");
13 rdc_sem_signal(b1Done);
14 rdc_sem_wait(a1Done);
15 printf("a1 and b1 done\n");
16 b2();
17 return 0;
18 }
19

20 // ...

The above example illustrates the two main semaphore functions, wait
and signal. A semaphore is created with the rdc_sem_init function which
takes a unique name for the semaphore, an initial value, and a host and
port to the Redis Database. In addition to the standard wait and signal
functionality, there are some added utility functions.

29

The function:
rdc_sem_signal_n(rdc_sem_t *rdc_sem, unsigned int n)
will signal the semaphore n times. Unlike the strict definition of a semaphore,
this operation is atomic (and more efficient due to pipelining). A non-atomic
version may be implemented in the future.

The function:
rdc_sem_wait_timeout(rdc_sem_t *rdc_sem, unsigned int timeout)
will set a timeout in seconds on the blocking operation. If the operation timed
out before the semaphore signalled this connection, the function will return
0, and > 0 in all other cases.

RedisDC is not used in the current release of the game, but was built as
a proof of concept based on a potential need for it in the future. Bindings to
Node.js have yet to be created. Currently, only semaphores are supported,
but it is feasible to add other control structures such the mutex, barrier,
turnstile, and light switch at a later time.

4.2.2 front-end Stack
The front-end is the application that the user interacts with on their device.
It uses a game engine to handle the display logic, and several custom modules
to connect to the back-end. Several platforms are available for mobile appli-
cation development. In the end, I decided to create a native iOS application
based on budget, device availability and previous experience.

4.2.2.1 Cocos2d

Cocos2d10 is a game engine originally written
in Python. Its popularity caused it to even-
tually be ported to Objective-C to target iOS.
Since then, numerous improvements have been
made. At its core, cocos2d is a game engine

which wraps OpenGL. In addition, it provides an object-oriented library to
manage scenes, sprites, particle effects, action sequences, and a variety of
other game related features. It also interfaces cleanly with physics engines
such as box2d11.

10Cocos2d iPhone port website: http://www.cocos2d-iphone.org/
11Box2d is a well known physics engine designed for games: http://box2d.org/

30

4.2.2.2 CocosBuilder

CocosBuilder12 is an application designed as a GUI editor for cocos2d based
projects. It enables developers to create scenes and animations visually as
opposed to writing code. Code connections will enable you to assign items to
instance variables and even wire up callbacks for certain events. Version 3.0
and higher is capable of generating sprite sheets from individual assets, and
exporting them to different resolutions for different devices and platforms.

Figure 4.7: CocosBuilder streamlines game development even further with a
visual editor.

12CocosBuilder website: http://cocosbuilder.com/

31

4.3 REST API
The RESTful web API is based largely on JSON. This section will go over
the basic protocol and how client’s are authenticated.

4.3.1 Authentication
The Factor Friend’s API Server uses a token based authentication scheme.
When a user performs a login, a new, randomly generated 16-byte token is
generated and sent to the user. For all subsequent requests, the token is not
sent in either direction and becomes a shared secret between the client and
server.

The client makes an authenticated request by taking the full request body
plus timestamp and generating an HMAC using the authentication token as
the key. This HMAC is then sent as part of the route, along with the request
body, to the server.

The server can then validate the request by recomputing the HMAC with
the authentication token. If the HMAC matches the one sent by the client,
the user is authenticated.

Listing 4.14: Server-side impementation of the authentication scheme
1 if not player.pid @params.pid
2 @log.warn ’Bad request, invalid player ID’
3 next new InvalidArgumentError ’Missing player ID’
4 else
5 @redisConn (conn) =>
6 conn.hget "player:#{@params.pid}", ’token’, (err, token)

=>
7 # The token maybe null if the user was deleted.
8 if err?
9 @log.error err

10 next new InternalError err
11 else if not token?
12 @log.warn ’Player is not logged in - no token’
13 next new NotAuthorizedError ’You are not logged in’
14 else
15 # The HMAC will use the player’s token as the key.
16 cipher = createHmac hmac.algo, token
17 # Add a shared salt to the data as well.
18 # This is insecure without also using the token as the

key,
19 # but adds more unpredictability.

32

20 cipher.update @body + hmac.salt
21 hash = cipher.digest ’hex’
22 if hash is @params.hmac
23 # Session validated, both keys are the same.
24 next null, conn
25 else
26 # The keys don’t match, either the message
27 # was tampered with or the session is invalid.
28 @log.warn ’Invalid session or HMAC’
29 next new NotAuthorizedError "I’m afraid I can’t let

you do that, Dave"

This has two benefits. First, by signing the entire request body with the
authentication token, the server is ensured that an attacker did not modify
its contents en route. Secondly, if an attacker manages to retrieve one of
the clients messages, it still cannot do anything with it. Even if the attacker
found a hash collision that produces the same HMAC value for that one
request, it is not guaranteed to work with any subsequent requests, as the
actual authentication token will produce a different hash value. Because of
the timestamp, an attacker cannot even echo the original request again, as
the timestamp will be invalidated by the server.

4.3.2 Request and Response Structure
The basic format for any request is as follows:

Listing 4.15: Example HTTP request made to the Factor Friends API web
service

1 POST https://api.factorfriends.com/:hmac
2 Content-Type: application/json
3 Accept: application/json
4 Accept-Version: 1.0.x
5 {
6 type: ":requestType",
7 pid: ":playerID",
8 ...
9 }

Each request POSTs to the API Server with the computed HMAC as the
end of the route URL. The client sends the appropriate headers, including
the requested API version. Finally, a JSON body is sent along with the
request.

33

Each request requires a type. This key tells the server what type of
request is being made. Authenticated requests (ones that require the user to
be logged in), also require a pid (player ID). The current version of the API
(1.0.x), supports the following types:

API Request Types

• login - Logs the user in as an anonymous user or through Facebook,
starting a new active session.

• logout - Logs the user out, closing the active session.

• check - Check the validity of a session.

• listen - Report back any new messages this user should care about.

• games - Gather game information for all active games the user is par-
ticipating in.

• data - Gather game information on a specific game the user is partic-
ipating in.

• random - Enter the random game queue.

• qrandom - Quit the random game queue.

• move - On your turn, make a move in a particular game.

• device - Update a user’s device credentials so the server can send push
notifications to the device.

• craft - Validate the user has found a new crafting recipe.
Based on the type, the server initializes an appropriate Request Handler,

and immediately allows it to handle the request. This may seem unconven-
tional to a normal RESTful web service, which makes use of URL routes to
discern data and HTTP verbs to indicate actions. It is. By placing all of the
request information into the request body, and not into the URL, we are able
to fully authenticate it. This separates the authenticated data, the JSON
request body, from the signature, the unique URL. Otherwise, the route and
any URL parameters would need to be authenticated separately, and then
somehow recombined. And so, it is a cleaner design to take the HMAC of
the request body keyed to the authentication token, at the expense of strict
REST design.

34

Listing 4.16: The server selects an appropriate Request Handler based on
the type field

1 # Each API request is a POST to the same URL with an HMAC and
a JSON body.

2 app.post
3 path: "#{server.path}/:hmac"
4 name: api.name
5 version: api.version,
6 (req, res, next) ->
7 # Only handle JSON requests.
8 if req.is(’application/json’) and req.accepts(’application

/json’)
9 req.log.debug request: req.params, ’REQUEST’

10 # Find the appropriate message handler.
11 handlerType = handlers[req.params.type]
12 if handlerType?
13 req.log.debug "Handling #{req.params.type} with #{

handlerType}"
14 klass = require handlerType
15 handler = new klass req.log, req.body, req.params, res
16 handler.handleRequest()
17 else
18 req.log.error "No request handler for #{req.params.

type}"
19 res.send new InvalidArgumentError
20 "Unrecognized handler: #{req.params.type}"
21 else
22 req.log.error "Sent invalid request: #{req.body}"
23 res.send new WrongAcceptError
24 ’Content-Type and Accepts headers must be application/

json’
25 next()

4.4 Client-side Networking

4.4.1 Airtower
The client-side communication module to contact the web service is named
Airtower. The Airtower module has classes which encapsulate the under-
lying REST protocol.

Airtower Module

35

• AirtowerRequest (class) - An instance of AirtowerRequest represents
one, single-use request that can be made to the server. It is capable
of serializing and sending the request to the server and handling the
response. Subclasses of AirtowerRequest are used for each specific re-
quest.

• AirtowerResponse (protocol) - An instance of a class conforming to
AirtowerResponse represents a response from an AirtowerRequest. It
is capable of deserializing a response from the server. Each type of
response has a custom class which conforms to this protocol.

Listing 4.17: Example AirtowerRequest implementation
1 @interface FacebookLoginRequest : AirtowerRequest
2 @property (nonatomic) FBSession *session;
3 - (id)initWithSession:(FBSession *)session;
4 @end
5

6

7 @implementation FacebookLoginRequest
8 @synthesize session = _session;
9 - (id)initWithSession:(FBSession *)session

10 {
11 if ((self = [super init])) {
12 self.session = session;
13 }
14 return self;
15 }
16 - (NSDictionary *)JSONRequest
17 {
18 return @{
19 @"type": @"login",
20 @"method": @"fb",
21 @"fbaccess": self.session.accessToken
22 };
23 }
24 @end

Listing 4.18: Example AirtowerResponse implementation
1 @interface LoginResponse : NSObject <AirtowerResponse>
2 @property (nonatomic, copy) NSString *pid, *token, *method, *

nickname;
3 @property (nonatomic) NSUInteger msgc;

36

4 @end
5

6 @implementation LoginResponse
7 @synthesize pid = _pid;
8 @synthesize token = _token;
9 @synthesize method = _method;

10 @synthesize msgc = _msgc;
11 @synthesize nickname = _nickname;
12 - (id)initWithInfo:(id)info
13 {
14 if ((self = [super init])) {
15 self.pid = [info objectForKey:@"pid"];
16 self.token = [info objectForKey:@"token"];
17 self.method = [info objectForKey:@"method"];
18 self.msgc = [[info objectForKey:@"msgc"]

unsignedIntegerValue];
19 self.nickname = [info objectForKey:@"nickname"];
20 }
21 return self;
22 }
23 @end

Using the Airtower A request can be made to the web service by creating
a new instance of an AirtowerRequest. Then, optionally, callbacks can be
added to the request object to handle any response. The callbacks take the
form of closures, implemented using C Blocks.

Listing 4.19: Making a request to the web service using the Airtower
1 AirtowerRequest *req = [[FacebookLoginRequest alloc]

initWithSession:[FBSession activeSession]];
2 req.callback = ˆ(FacebookLoginRequest *request, LoginResponse

*response) {
3 [Login beginActiveLoginWithPid:response.pid
4 token:response.token
5 method:response.method
6 date:[NSDate date]
7 msgc:response.msgc
8 nickname:response.nickname];
9 FFLog(@"Login success: %@", [Login activeLogin]);

10 };
11 req.errorback = ˆ(FacebookLoginRequest *request, ErrorResponse

*response) {
12 [session closeAndClearTokenInformation];
13 FFLog(@"Login failed: %@", response);

37

14 };
15 [req start];

4.4.2 Secure Socket Layer
To further increase the security of client and server communication, HTTPS
is used instead of unencrypted HTTP. Normally, this involves submitting
a request for a certificate from a trusted Certificate Authority. However,
for development purposes, a self-signed certificate is good enough for testing
purposes. This presents a problem, because iOS does not by default allow an
HTTPS connection when the host is using a self-signed certificate. We can get
around this by adding the following methods to AirtowerRequest, which
implements the NSURLConnectionDelegate protocol. This overrides the
default behaviour to deny all self-signed certificates when we are in DEBUG
mode.

Listing 4.20: Allowing self-signed SSL certificates originating from factor-
friends.com in DEBUG mode

1 #ifdef DEBUG
2 - (BOOL)connection:(NSURLConnection *)connection

canAuthenticateAgainstProtectionSpace:(
NSURLProtectionSpace *)protectionSpace

3 {
4 if ([protectionSpace.authenticationMethod isEqualToString:

NSURLAuthenticationMethodServerTrust]) {
5 return YES;
6 } else {
7 FFLog(@"Can’t authenticate with method: %@",

protectionSpace.authenticationMethod);
8 return NO;
9 }

10 }
11

12 - (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(
NSURLAuthenticationChallenge *)challenge

13 {
14 if ([challenge.protectionSpace.authenticationMethod

isEqualToString:NSURLAuthenticationMethodServerTrust]) {
15 if ([challenge.protectionSpace.host isEqualToString:[[

Config sharedConfig] stringSetting:FFConfigServerHost
]]) {

38

16 NSURLCredential *credential = [NSURLCredential
credentialForTrust:challenge.protectionSpace.
serverTrust];

17 [challenge.sender useCredential:credential
forAuthenticationChallenge:challenge];

18 } else {
19 FFLog(@"Not going to trust: %@", challenge.

protectionSpace.host);
20 }
21 } else {
22 FFLog(@"Wrong authentication method: %@", challenge.

protectionSpace.authenticationMethod);
23 }
24 [challenge.sender

continueWithoutCredentialForAuthenticationChallenge:
challenge];

25 }
26 #endif

4.5 Implementing Game Play
While the gameplay of Factor Friends is fairly simple, it presented itself with
some difficulties in its implementation.

4.5.1 Evaluating Equations
A major component of the game is evaluating mathematical equations. A
simple parser is capable of basic algebraic operators, it becomes much more
complicated once functions and unary operators are thrown into the mix. In
addition, the library has to be compatible with both the server and client,
considering both systems will need to compute these equations.

4.5.1.1 The bet.coffee Infix Equation Evaluator for CoffeeScript

This led to the development of a submodule to the API Server named bet.coffee13,
originally after Binary Expression Trees. the bet.coffee module has been open
sourced and can be used with any Node.js or Browser based application.

13Download the bet.coffee package on GitHub: https://github.com/paulmoore/
BET

39

Installing To install the library, include the source files in your project or
use NPM:

$ npm install bet

4.5.1.2 API

The library expects that you have some way of separating your tokens,
whether it is a string.split, or something more involved, is up to you.
For instance, if we wanted to evaluate 1+b

√
22c we would define an equation

as follows:

Listing 4.21: Input to the bet.coffee library
1 eqn = [’1’,’+’,’isqrt’,’(’,’2’,’ˆ2’,’)’]

It can then be evaluated using the evaluate function.

Listing 4.22: Evaluating an infix equation asynchronously using the bet.coffee
library

1 # Require the module
2 {evaluate} = require ’bet’
3 # Evaluating an equation
4 evaluate eqn, (error, result) ->
5 console.log error ? result

The library also provides a synchronous function evaluateSync

Listing 4.23: Synchronous API of the bet.coffee library
1 {evaluateSync} = require ’bet’
2 try
3 val = evaluateSync [1, ’+’, 2]
4 console.log val
5 # throws an error, invalid equation
6 evaluateSync [’*’, ’+’, 1, ’x’]
7 catch e
8 console.log e

4.5.1.3 The Shunting-Yard Algorithm

The library takes equations in infix notation. This means the operators are
placed between the operands. The problem with evaluating infix equations is
that order of operations must first be determined and applied to the equation
incrementally.

40

Reverse Polish Notation RPN notation places the operators at the end
of the operators. The equation is ordered such that the order of opera-
tions is intrinsic to the equation. For instance, taking the infix equation
1 + 2 * 3 + 4 ˆ 5, the same equation in RPN format is 1 2 3 * + 2 3 2 ˆ ˆ +.
The advantage to this format is that it can now be evaluated directly.

Shunting-Yard Algorithm The Shunting-Yard algorithm takes an infix
equation and produces its equivalent RPN format. This is the algorithm that
the bet.coffee library uses to evaluate arithmetic equations.

Listing 4.24: Pseudocode for the Shunting-Yard Algorithm
1 tokens := equation in infix notation
2 queue := an empty queue
3 stack := an empty stack
4 while tokens is not empty:
5 token = tokens.pop()
6 if token is Number:
7 queue.enqueue(token)
8 else if token is Function:
9 stack.push token

10 else if token is Comma,
11 until stack.peek() is Left Parenthesis:
12 output.enqueue(stack.pop())
13 else if token is Operator:
14 o1 := token
15 if o1.fix = ’pre’:
16 stack.push(o1)
17 else if o1.fix = ’post’:
18 output.enqueue(o1)
19 else
20 while stack is not empty:
21 if stack.peek() is Operator:
22 o2 := stack.peek()
23 if o1.assoc = ’left’ and o1.prec <= o2.prec or o1.

prec < o2.prec
24 output.enqueue(stack.pop())
25 continue
26 break
27 stack.push(o1)
28 else if token is Left Parenthesis:
29 stack.push(token)
30 else if token is Right Parenthesis:
31 until stack.peek() is Left Parenthesis:

41

32 output.enqueue(stack.pop())
33 stack.pop()
34 while stack is not empty:
35 queue.enqueue(stack.pop())
36 return queue

The output of the algorithm produces a queue which represents the equa-
tion in RPN notation. Using a stack, the equation can then be evaluated
using the following procedure:

Listing 4.25: Evaluating equations in Reverse Polish Notation
1 queue := output from the Shunting-Yard Algorithm
2 stack := new empty stack
3 result := Not a Number
4 while stack or queue is not empty
5 if queue is not empty
6 token := queue.dequeue()
7 stack.push(token)
8 if stack is not empty
9 fnop := stack.peek()

10 if fnop is Operator or Function and stack.length >
fnop.argc

11 stack.pop()
12 args = new array of size fnop.argc
13 for i := fnop.argc to 1
14 args[i - 1] := stack.pop()
15 result = fnop.exec args
16 if stack or queue is not empty
17 stack.push(result)
18 return result

Evaluating an equation in Reverse Polish Notation notation
1. The procedure loops while the queue or the stack are not empty.

2. If the queue is not empty, a token is dequeued from it and pushed onto
the stack.

3. If the token at the top of the stack is a function or operator, and there
are enough operands on the stack to support that operator or function,
pop all of them from the stack.

4. Evaluate the operator or function given the operands popped from the
stack

5. Repeat

42

4.5.1.4 Custom Operators

One advantage to the Shunting-Yard Algorithm is that it is trivial to
implement custom operators and functions. One can add a custom operator
by adding a definition to the operators object of the bet package. Here is
an example of adding a C-style logical AND operator:

Listing 4.26: Creating or redefining an operator using bet.coffee
1 {evaluate, operators} = require ’bet’
2 operators[’&&’] =
3 assoc: ’left’
4 prec: 0
5 argc: 2
6 fix: ’in’
7 exec: (args) -> 1 if args[0] isnt 0 and args[1] isnt 0

else 0
8 evaluate [1,’&&’,1,’&&’,0], (error, result) ->
9 console.log error ? result

Operator Attributes

• assoc - Associativity [’left’ or ’right’] Associativity indicates the order
in which operators of the same precedence are executed. For instance,
&& has an associativity of ’left’ and thus a && b && c is evaluated as
(a && b) && c.

• prec - Precedence [integer] Operators with a higher precedence (higher
value) are executed first. For instance, 1+2∗3 is evaluated as 1+(2∗3).

• argc - Argument count [integer] The number of numerical operands an
operator needs to execute. In practice this is usually only 1 (for unary)
or 2 (for binary) operators. For instance, + requires 2 operands e.g.
1 + 2, whereas 1+ will produce an error.

• fix - How the operator is ’fixed’ [’in’, ’pre’, or ’post’] Most binary
operators are infixed, meaning the operator is between the operands
e.g. 1/2. Unary operators are usually either pre or post fixed, e.g.
5! (postfixed) or not1 (prefixed). However, you can also have infixed
unary operators (just be careful with associativity!) such as pre and
post increment/decrement, e.g. + + 1 and 1 + + are both valid.

43

• exec - Evaluator [function] This is the function that is called to evaluate
the operator. It is given a single argument as an array, with length argc.
All values are numerical.

4.5.1.5 Custom Functions

Functions are similar to operators. You can also define new or redefine func-
tions. Functions in this library are invoked C style fn(arg1, arg2, arg3).
Currently, variable argument functions are not supported. Function argu-
ments can be expressions in themselves. Functions cannot have the same
name as an operator.

Listing 4.27: Creating or redefining a function using bet.coffee
1 {evaluate, functions} = require ’bet’
2 # Averages 3 numbers
3 functions[’avg’] =
4 argc: 3
5 exec: (args) -> (args[0] + args[1] + args[2]) / 3
6 evaluate [’avg’,’(’,1,2,3,’)’], (error, result) ->
7 console.log error ? result

Declaration of a function is much like an operator. However it requires
only two attributes to be defined.

Function Attributes
• argc - Argument count [integer] The number or arguments the function

takes.

• exec - Evaluator [function] - This is the function that is called to evalu-
ate the function. It is passed an array of in order numerical arguments.

4.5.1.6 Crossplatform Implementation

Single code base Since the iOS API allows arbitrary JavaScript code to
be executed, as we will see later, this allowed for the development of a single
implementation of the library. Otherwise, a CoffeeScript and Objective-C
version would have had to been co-developed.

The bet.coffee package was written to not require any Node.js depen-
dencies. However, it can be loaded as a module into any Node or Browser
project. This is a required feature as the client does not have the Node.js
libraries available to it. In this case, the module functions are placed in the
window.BET object, which we will see in the next section.

44

4.5.1.7 Client Wrapper

UIWebView To run bet.coffee on iOS, we first need a method for execut-
ing JavaScript. Luckily, a standard UIWebView will do the trick. A web
view is normally meant for displaying a web page in an app. This means that
it also includes a JavaScript environment. Factor Friends uses an invisible
web view without a loaded page, and uses it to run bet.coffee.

Setting up the code library First, we have to load the library into the
web view’s JavaScript environment. This means loading the library from the
applications bundle (stored on disk). A UIWebView has a single method to
interface with the JavaScript engine, stringByEvaluatingJavaScriptFromString:.
This method takes a JavaScript string and evaluates it as an expression, re-
turning the result to the caller.

Listing 4.28: Setting up bet.coffee in a web view
1 - (void)setupCodeLibrary
2 {
3 NSError *error = nil;
4 NSString *js = [NSString stringWithContentsOfFile:[[

NSBundle mainBundle] pathForResource:@"BET" ofType:@"
js"] encoding:NSUTF8StringEncoding error:&error];

5 if (error) {
6 FFLog(@"Error loading BET.js! %@", [error description

]);
7 } else {
8 [self.webView stringByEvaluatingJavaScriptFromString:

js];
9 }

10 }

Interfacing with bet.coffee Next, we need a way of invoking the library
functions from our code. To do this, a small piece of code is used to call
the library function with the proper arguments. We use the JavaScript self-
invoking function module pattern to avoid any variable leaking. Notice the
%@ formatter at the end of the string. This will allow us to set the function’s
argument to whatever we specify later.

Listing 4.29: Interfacing to bet.coffee
1 static NSString* const JSEvaluate =
2 @"(function(eqn) {"

45

3 @" var ret = NaN;"
4 @" BET.evaluate(eqn, function(error, result) {"
5 @" ret = result;"
6 @" });"
7 @" return ret;"
8 @"}).call(this, %@);";

Calling the library Finally, we can actually use the library. To do this,
we need the input to the evaluate function, which is a JavaScript array
encoded as a string. This can be done any number of ways (using a JSON
serializer for example), but won’t be shown here. The method shown in the
following listing:
- (BOOL)evaluate:(NSString *)eqn resultRef:(NSInteger *)presult
expects an equation string, and a pointer to store the result to. If there was
an error with the library or the equation was invalid, the method returns
NO. Otherwise, it returns YES and stores the equation’s result in the result
pointer.

Listing 4.30: Evaluating an equation from Objective-C
1 - (BOOL)evaluate:(NSString *)eqn resultRef:(NSInteger *)

presult
2 {
3 NSString *result = [self.webView

stringByEvaluatingJavaScriptFromString:[NSString
stringWithFormat:JSEvaluate, eqn]];

4 if (!result || result.length == 0 || [result
isEqualToString:@"NaN"]) {

5 // invalid equation
6 return NO;
7 }
8 if (presult != NULL) {
9 NSInteger value = [result integerValue];

10 *presult = value;
11 }
12 return YES;
13 }

4.5.2 Game Messages
Game Messages are important events A standard request receives one
response from the server. Game messages differ from a standard request in

46

that they propagate somewhere else and are delivered to the client in an
asynchronous fashion. In other circumstances, they would be called events,
as they do not have a 1 : 1 relationship like the request/response system is
structured. For instance, if a player makes a move on his or her turn, we
need to notify the opponent that the game has changed state. In addition,
a game message is considered vital for the client to operate properly. This
means each game message cannot be lost or remain unsent indefinitely, and
must be received in the correct order that they were created. This posed
some problems in that Redis does not offer full transactional support and
the communication model does not maintain an open channel between the
client and the server.

Types of Messages Game messages, like requests, have a type to identify
how the message should be handled. In addition, just like requests, additional
information about the event is sent in JSON format. Below is a list of
currently available message types that the server may produce.

Game Message Types

• gj - Game Join: The player has joined a new game.

• gm - Game Move: An opponent has made a move in one of the player’s
active games.

• gq - Game Quit: An opponent has quit or was removed from the game,
the game is now over.

• gf - Game Finish: The last move was made in a game and is now
finished, results from the game should be collected.

• fl - Forced Logout: The server has logged the user out of the active
session. Most likely caused by logging in to the account from another
device.

• su - Service Unavailable: The server is going to be restarted or tem-
porarily unavailable.

QueueListen An algorithm called QueueListen (QL) was developed to
guarantee delivery of asynchronous events. QL works by assigning a message
ID to each game message. Messages get added to a queue for each player

47

when they are created. The client sends the last known ID to the server when
it requests to check the message queue. Messages are only deleted once the
server is assured the client has received them based on the client’s message
ID. A message is delivered in two phases: queueing the message for delivery,
and receiving the message by having the client listen for it.

4.5.2.1 Sending a Message

Queue Phase The first stage to delivering a message is to add it to the
player’s message queue. The message queue is analogous deposit box where
they are queued until the client is ready for them to be received. The follow-
ing script is the query used to send a message. It can send multiple messages
to multiple recipients with one call.

Listing 4.31: The Lua script to add an event to a player’s message queue
1 -- KEYS contains the player ids to send to messages to.
2 -- ARGV contains the messages to send.
3 for _, pid in ipairs(KEYS) do
4 -- Need access to the player, message queue, and player

channel keys.
5 local playerKey = "player:"..pid
6 local queueKey = "msg_queue:"..pid
7 local channelKey = "msg_channel:"..pid
8 -- For each message, increment message index.
9 local msgIndex = redis.call("hincrby", playerKey, "msgc", #

ARGV)
10 for k, msg in ipairs(ARGV) do
11 -- Add the message to the end of the message queue.
12 redis.call("zadd", queueKey, msgIndex, msg)
13 end
14 redis.call("publish", channelKey, "q")
15 end
16 return true

How it works First, the player’s message counter is incremented. This
new value will be used as the unique ID for the message (known as a message
index). Then, the message is added to a sorted set keyed to the message
index. Finally, a message is published to the player’s channel. The contents
of this message are not important, only in that they signify to any receiving
nodes that a new message has been saved.

48

4.5.2.2 Receiving a Message

Listen Phase The second stage is to wait for the client to come online
and ask for an updated list of messages. This is done by sending a listen
request to the API Server. The server will then either return right away with
new messages, or block until either it times out or a new message has been
generated.

Listing 4.32: Pseudocode for receiving new messages with a listen request
1 current_index := the latest message index in the player’s

message queue
2 last_known_index := the client’s last known message index
3

4 if last_known_index < current_index:
5 finish()
6 else
7 subscribe to the player’s channel
8 block until a message is received or the request times out
9 finish()

10

11 function finish():
12 remove all messages from the queue with index <

last_known_index
13 messages := get all remaining messages in the queue
14 current_index := get the latest message index from the queue
15 send_response(messages, current_index)

Check This procedure works by first checking if there are any new messages
for the player by comparing the current message index to the one the client
sends in the request. If the current message index is greater than that of the
clients, the procedure moves into the finish phase.

Wait Otherwise, the server subscribes to the player’s pub/sub channel14.
The server will unblock if another node sends a ”message received” event. It
will also unblock if it times out after a certain period.

Finish Finally, the server will perform the last operations on the queue.
First, all of the messages that are older than specified by the client’s last

14Each player is given a unique channel name. Redis supports publish and subscribe
operations that may block until a new message is received. More information here: http:
//redis.io/topics/pubsub

49

known message index are deleted. All of the remaining messages are ex-
tracted from the queue, but not deleted. Lastly, these messages, along with
the latex message index are sent to the client.

4.5.2.3 Long Polling

Real-time updates Because the server may not respond right away, this
type of request is known as long polling or a comet request. This method has
the advantage that the client does not need to repeatedly poll the server to
get near real-time updates. The server will instead hold the connection open
until an event occurs, to which it can then send a response.

4.5.2.4 Correctness

Proof of correctness Each message is not deleted until it has confirmation
that it arrived successfully. This confirmation comes from when the client
initiates another listen request with the updated message index. If the listen
request fails for whatever reason, the client’s last known message index is not
updated. If the message index is not updated, the client will resend the old
message index during the next request. Because the server does not delete
a message until the client sends an index greater than it, the server will
attempt to resend the message. Each message is sent in the order in which it
was queued. Thus, each message is guaranteed to be delivered in order, and
no message is lost due to a failure on the client or server.

Further improvements A further improvement to the algorithm would
be to have the Database save a backlog of messages greater than what is
required to ensure integrity. This would allow separate devices attached to
the same account receive previous messages if necessary.

4.5.2.5 Client-side Game Message Handling

A QL receiver module is implemented in the client to handling incoming
game messages. The module works by making the long polling listen request
repeatedly. It also acts as an event dispatcher. If messages were received,
they are dispatched to the appropriate listener.

The below example illustrates how the menu scene listens for different
types of game messages. When a message occurs, the receiver will dispatch
an event to the scene and the scene will update the game list accordingly.

50

Listing 4.33: The menu scene listining for game messages
1 QueueListenReceiver *receiver = [QueueListenReceiver

sharedReceiver];
2 [receiver forConfigValue:FFConfigMessageGameJoin setListener

:ˆ(GameJoinMessage *msg) {
3 if (msg.src == RandomSource) {
4 [list setRandomCellVisible:NO];
5 }
6 [list addGame:msg.game];
7 }];
8 [receiver forConfigValue:FFConfigMessageGameMove setListener

:ˆ(GameMoveMessage *msg) {
9 [list changeGameStatus:msg.game];

10 }];
11 [receiver forConfigValue:FFConfigMessageGameQuit setListener

:ˆ(GameQuitMessage *msg) {
12 [list removeGame:msg.game];
13 }];
14 [receiver forConfigValue:FFConfigMessageGameFinished

setListener:ˆ(GameFinishedMessage *msg) {
15 [list finishedGame:msg.game];
16 }];

4.6 Additional Resources
In addition to what has been discussed in this article, more technology was
developed for Factor Friends which was not discussed here. There are several
other useful libraries which I have open sourced during development listed
below:

• Loading Facebook profile pictures into cocos2d: http://paul-moore.
ca/blog/2013/01/28/facebook-profile-pictures-in-cocos2d/

• Cocos2d utility library: https://github.com/paulmoore/CocosUtils

• The original Factor Friends prototype: https://github.com/paulmoore/
Factor-Friends

51

Chapter 5

Conclusions

Technology is enabling learning in drastically new ways. If mobile devices
are to be taken more seriously in education, they need to be utilized to their
maximum potential. More effort needs to go into integrating features that
have worked incredibly well for other applications. Social integration, push-
based content, multiplayer, and fun theory are all concepts that have made
a very positive impact in the mobile market.

Video games are just one more tool to deliver something of value to a
user. In this case, we want to deliver rich educational software on handheld
devices that people are motivated to use. If designed properly, video games
are incredible tools that can promote new ways of learning.

This is what Factor Friends does. It combines the proven concepts of a
successful mobile application with game design techniques that works. To
make math more interesting, Factor Friends uses the game like properties
of math to make math the primary component of the game, instead of an
obstacle around the fun.

In addition, Factor Friends uses scalable and extensible technology so
that future titles can be built on top of the same platform.

The problem isn’t that subjects such as math and computer science are
not being taught correctly. There are many great resources for learning a
science. The problem is these topics need to be made more fun. If students
find these topics interesting, they will be motivated to learn more.

If you want to learn more about this project, please visit Factor Friend’s
website at http://factorfriends.com or email me at info@factorfriends.
com.

52

Bibliography

[1] American Families See Tablets as Playmate, Teacher
and Babysitter Comments Feed., Nielsen. Available at:
http://www.nielsen.com/us/en/newswire/2012/
american-families-see-tablets-as-playmate-teacher-and-babysitter.
html

[2] Ryan Dahl History of Node.js, YouTube. Available at: http://www.
youtube.com/watch?v=SAc0vQCC6UQ

[3] Salvatore Sanfilippo BLPOP Documentation, Redis. Available at:
http://redis.io/commands/blpop

53

