Benchmarking performance for Neo4j in a Social
Media Application

by
Michael Sheroubi
Supervisor: Dr. Ramon Lawrence

The Irving K. Barber School of Arts and Sciences

Undergraduate Degree in Bachelor of Science

Honours Major in Computer Sciences
And
Minor in Mathematics

The University of British Columbia — Okanagan Campus

April 2020
Revised December 2022

Abstract

Starting around the mid-late 2000s, ACID compliant graph databases such as Neo4j began being
used to optimize data retrieval in use cases where relational databases struggled. This paper
attempts to benchmark the performance of two widely used databases, one from each category, for
a social media application. Logging the process from data modelling and generation to writing
queries to answer real questions. The performance of the queries is evaluated based on the rate of
increase in time as the sample sizes grow. Concluding that the relational database is faster at a
small scale, but the rate of increase is slower for the graph database, meaning that a point exists at
a sufficiently large sample size where the graph database becomes more efficient.

Table of Contents

N 0] 1 (o TSR PRPR 2
TaDIE OF CONTENTSeiiieceiei ettt ettt e et e neesreebeeneesreennens 3
I 1 011 oo (8 o1 o] o F TSRS PSPPSR 4
2. BACKGIOUNG ... bbbttt r bbb 4
2.1 Introduction t0 Graph TREOIY ..o 4
2.2 The Labeled Property Graph MOdelccooieiiiiiiccccce e 5
2.2 Overview Of Graph DatahaSsescceiveieiiieiieii e sre et ee e sre e a e re e 6
A T O PSPPSR 6
3. Social Media APPHCALIONcociiiiiiiiee et sre e 7
3.1 PrOJECE SUMMIAIYiiuiiiieeite ettt ettt ettt e et e st e e te e st e s saesteesaeeteesteeseesseestaeneennenreensens 7
I = o B T To] 221 0 0 TS T ST PP PP PP URR 7
3.2.1 OrigiNal DESIONccvveiiieie ettt s e st e et e st e st e e e s e e sreeneeaneearaenreas 7
I 1o 110 ANV =T £ [0 USSR 8
4. Data MOGEIING ..o bbbt 9
4.1 Mapping Relational to Graph MOdelcccooiiiiiii i 9
4.2 SAMPIE DALA......cueeeiiieie ettt ettt a et et e e nre e e 11
G BT L W C1=] T - U1 o] SRR 13
A BT (v W o= To |1 T TSSO 13
5. TeStING ANA RESUILSociiiieciice ettt re e e anas 14
5.1 INSEITING DALA.......eieieiieiiieee ettt e bbb 14
5.2 QUETIES ...ttt ettt et et ettt et e st e et e e et e e ebe e sat e e b e e asb e e ebeesabe e beesabaesbeesabe e beeanraesbeeanbeeareeanreen 15
QO - Find specific USer DY USEr 10cccuiiieieiie et 15
Q1 - Find all users with matching interests to user with specific user_idc.ccocevernee. 15
Q2 - Find all friends of a User (One-Way Relationship)..........cccccoevveiiiiieiiecie e 16
Q3 - Find all the Groups that a User's friends are iN...........ccccevvieieeiieeiic e 16
Q4 - Find All Users Y attending an Event E hosted by any Group G that a User X is a
L0700 0T o) SRR 17
Q5 - Find the interests of any user that is attending any events hosted by any groups that
share any INterest(S) WIth @ USEI Xuiiiiiiie ittt ne e 17
6. ConClusions and FULTUIE WOTK...........ooiiiiiiieiie e 19
BIBIIOGIaPNY ... 19

1. Introduction

There has been a rise in NoSQL databases over the last few years. More developers are
realising that the relational model can be limiting or suboptimal for their applications. This led to
the formation of many different methods of storing data. One of these methods revolves around
utilizing a graph model derived from graph theory. This is the Graph Database.

Released in 2007, Neo4j is an open-source, NoSQL, graph database created to efficiently
utilize the property graph model as a means of storage. Graph databases are meant to excel at
managing highly connected data and managing complicated queries [1], allowing for quick
traversal between adjacent nodes and easy visualization of the data structure. With its own query
language, CYPHER, Neo4j queries are designed to be visually intuitive and simple to create. We
will explore how Neo4;j’s graph approach to storing data and querying data performs in its ideal
setting and compare its performance with a relational database.

2. Background
2.1 Introduction to Graph Theory

Graph Theory is a field of mathematics that has been heavily integrated into various
software applications. First noted in 1736 when Leonhard Euler, a swiss mathematician, worked
on solving the Seven Bridges of Konigsberg problem [2]. Given four landmasses separated by a
river and connected with seven bridges (Figure 1), is there a path where one can cross every bridge
exactly once? While a solution does not exist, Euler’s proof for its non-existence is the foundation
for graph theory.

Graphs represent entities as nodes/vertices and the ways in which those entities relate to
other entities as relationships/edges. Mapping the seven bridges problem to a graph of this form
with each landmass as a node and each bridge as relationship.

Flgure 1. Seven Brldges of Kdnigsberg Figure 2. Kénigsberg problem as a graph

https://github.com/UBCO-COSC499-Summer2017/project-2-ion-ion-field-network

By the definition of the problem, Euler deduced that every node must have an even number of
edges connected to it, one to enter the node and one to leave it, with the exception of the first and
last nodes (def. Eulerian Path). Since each node in this problem has an odd number of edges, a
solution cannot exist.

This proof established the foundation for what is now known as graph theory. Now, graph
theory is an important field of study in Computer Science and Mathematics. It has a variety of real-
world applications with many books and resources available that dive deeper into the subject
matter.

2.2 The Labeled Property Graph Model

For our application, we will be focusing on the Labeled Property graph model, a graph
model where nodes can contain properties as key-value pairs and nodes can have one or more
labels. In this model, relationships can also contain properties as key-value pairs, have labels and
directions, but they must always have a node on both ends. The labels on the nodes and
relationships make it easy to draw the context from the data [3].

Figure 3. Example graph of User nodes and their relationships

2.2 Overview of Graph Databases

A graph database is a database that is designed to store data using the graph model. By
definition, a graph database is any database where connected elements are linked together without

an index or key.

Relational
Database

= KEY
:

Key-Value
Database

VALUE

<

|
1

XXXXX

20000000

—_ XXXXX) I/”“-{‘:/

=3
==

— [xoox |

Graph
Database

Voo 3
: :: \/ RESIDES ‘/ \:]
\ 4) 4

$; _
il Location | = Warehouse

Location 2 = Delivery Location

. Migid Schema . Highly flvid schema/no schema
+ High Pedformance for hansachions

or performance for deep analyfics

* High pedormance for simple kansochions

* Pocr performance deep analyfice

* Hexible schemo
+ High performance for complex transactions

. High performance for deep analylics

Figure 4. Comparing Data Models (https://www.nextplatform.com/2018/09/19/the-graph-database-poised-to-

pounce-on-the-mainstream/)

A graph database is a NoSQL database designed to work around certain limitations in
relational databases. Graph databases allow quick and easy retrieval of data from complex data
structures. Traversing relationships in a graph database is fast because the relationship between
nodes are not calculated at query times but are persisted in the database. See The Power of Graph

Databases in O'Reilly’s Graph Databases: 2" Edition.

2.3 YCSB

Yahoo! Cloud Serving Benchmark (YCSB) is an open-source framework most used for
evaluating the capabilities of NoSQL database management systems. This framework runs a set of
workloads to evaluate their performance. While it does have a support for various existing NoSQL
databases, it does not have support for Neo4j. More can be found here:

(https://github.com/brianfrankcooper/Y CSB/wiki).

https://www.nextplatform.com/2018/09/19/the-graph-database-poised-to-pounce-on-the-mainstream/
https://www.nextplatform.com/2018/09/19/the-graph-database-poised-to-pounce-on-the-mainstream/
https://github.com/brianfrankcooper/YCSB/wiki

3. Social Media Application

3.1 Project Summary

This project is based off a real social media application that a colleague was developing.
This social media site is designed to match and connect people from communities that share similar
interests. Users can find groups that match specific interests and similarly can find events for a
given interest. However, the main goal is to connect users with similar interests.

Each user is prompted to input their interests and location, and an algorithm matches users
by interests and proximity. Users can join Groups, attend Events and become friends with other
Users. This project will focus on the database aspect of this social media site. It will encompass
the data modelling, application architecture decisions, testing, capacity planning, and
importing/loading of bulk data (and in this case data generation). After the database is setup, the
focus will shift towards designing ad hoc queries (“saved cypher queries”) to answer questions
posed by the social media (e.g. matching common interests). This project does not examine the
integration of the database into the website or any front-end programming.

3.2 ER Diagrams

3.2.1 Original Design

| Groups Relationships |«——| Groups || GroupPosts |—| Group Comments |

Feedbacks
h

‘ Comments H Posts |<—:‘ Users }—){ Events Event Posts |

‘ IMessages H Conversations |<7 \—¢ r‘ Event Relationships ‘
|

Friendships ‘ Motification Events
Relationships |47 ¥

Interests Relationships
—[meress] T o v
—r{ Interests Relationships

Event Notifications ‘

.| Interests Relationships
To Groups

f

Friendly 1D Slugs

Figure 5. Original ER Diagram made for the application

This ER diagram is made from the DDL schema file I first received for the project. There were
attributes in some entities that were only needed for production. The cardinalities between the
entities were not defined.

3.2.2 Updated Version

0.r 0.r
g Posts R
* A
0. 0 *
Comments Has
Has Creates
1| 0.*
Creates I Users 1 Creates
| 0.r
0 MemberCf Attends 0+
T Groups Has . Events [—
‘ 0.* - ‘ 0.*
Has 1.7 RelatedTo
|—> Interests
1.x 1.7
RelatedTo
L A
Interests
RelatedTo
| V0.
IsFriends\With . . Messages
0y +0- | Events o
Users RelatedTo
0.F 0.r *
"FD.
Groups
0.*

Figure 6. Updated ER Diagram designed for the purpose of this thesis

This is an updated ER diagram designed to fit the requirements for the testing for the
purposes of this thesis. The bottom entities are referencing the same entities as the main diagram,
but showing how each entity relates to itself (Done to keep the diagram clean and easy to read).

4. Data Modelling

4.1 Mapping Relational to Graph Model

The following table shows each relation in the relational database from the original design,
along with its role in a graph-model. If more than one type is present, then there are two
possibilities with the first one being more favored. This table is later trimmed to fit the updated

version of the design.
Relation

Users

Feedbacks

Posts

Comments

Conversations

Messages

Friendships

Relationships

Interests

Interest Relationships to Groups
Interest Relationships to Events
Interest Relationships

Groups

Groups Relationships

Group Posts

Group Comments

Events

Event Notifications

Type
Node

Node/Property

Node/Relationship

Relationship

Relationship

Property

Relationship
Relationship
Node
Relationship
Relationship
Relationship
Node/Label

Relationship

Node/Relationship

Relationship

Node

Relationship

Dependency
N/A
User
User

Post, User

Users

Conversation

Users

Users

User?

Interest, Group
Interest, Event
Interests

User?

Groups

Group, User

Group Post, User

Group, User

Event, User

Purpose

Holds User data
User feedback on site
User’s personal posts

Comments on a User
Post

User-to-User
Conversations

Content of
Conversations

User-to-User
User-to-User
Interest Information
Interest-to-Group
Interest-to-Event
Interest-to-Interest
Group Users
Group-to-Group
Posts made to group

Comments on Group
Post

Event information

hosted by a Group &
User
Notifications for

Users about events

Relation

Notification Events

Event Relationships

Event Posts

*Friendly ID Slugs

Graph Modelling
The graph model of this relational database will have these two main components:

e Nodes
o]

o O O O

Users
Groups
Events
Interests
Posts

e Relationships

o

O O O O

Comments
Converses
Notifies
Creates
Etc.

Type

Relationship

Relationship

Property/Node

Node

Dependency

Users, Event

Events

Event, User

N/A

Purpose

User-to-User event
invitation
notification

Event-to-Event
relationship

Users posts under
Events

ID-to-String URL
Addon

10

4.2 Sample Data

Relational Model

Users
user_id user_name name address city email created_at is_ad"lin
1 1 fmclaughlin Kathleen Ramos PSC 5528, Box 3510 APO AP 18631 hwinters@yahoo.com 2020-01-27 05:56:42.000 0
2 2 rebekah94 Adam White 93029 King Lights Jenkinsmouth xwilson@yahoo .com 2020-01-28 04:44:26.000 0
3 3 brianperez Jeffrey Hatman 5521 Espinoza Lakes Bradleyland mgonzalez@gmail.com 2020-03-01 10:41:59.000 0
4 4 monroeandrea Christine Frank 18590 Michael Points Hamisonton pottsmary@gmail.com 2020-03-06 06:10:16000 0
5 5 gpace Steven Calderon 5864 Klein Shoals Suite 108 West Jamesfort greensean@gmail.com 2020-01-22 20:35:43.000 0
6 6 robert93 Sara Garcia 106 Rios Crest Lisachester christopher36@hotmail.com 2020-02-27 15:51:57.000 0
7 7 jennferwood David Costa 864 Huang Plaza Apt. 863 Port Wiliammouth ucampos@yahoo.com 20200107 00:11:21000 0
8 8 james00 Crystal Alexan... 4726 Jones Circles Apt. 133 Nancystad snowjoseph@yahoo.com 2020-02-27 23:11:00000 0
9 9 rshelton Amanda Roberts 31769 Cook Tunnel Apt. 1... Lake Jamesville kennethwoods@gmail.com 2020-01-04 04:27:03.000 0
10 10 hallanthony David Carson 8884 Patrick Village Apt. 5... Greerhaven ncline@gmail. com 2020-02-25 03:02:48000 0
n n trujilomatthew Timothy Dunlap 7582 David Place Apt. 799 Port Stephen brandonyates@gmail.com 2020-02-20 08:01:50.000 0
122 |12 logan58 Courtney Fitzg... 597 Evan Fields Apt. 503 New Joshuamo... crystal62@gmail.com 2020-02-1306:35:12000 0
13 13 david01 Diane Lambert 84163 Pamela Orchard Ap... West Tiffany tiffany02@yahoo.com 2020-01-08 13:21:25.000 0
14 14 alexishuerta Mr. Robert My... 95630 Daniel Street Apt. 1... Fisherton jessica15@yahoo.com 2020-02-29 16:57:18.000 0
15 15 mooremary Molly Smith PSC 0644, Box 0048 APQ AP 04432 mclaughlinmark @gmail.com 2020-03-03 22:39:34000 0
16 16 nomanjoseph Scott Bradley 13231 Sandra Forks Apt. ... South Joshua wiliamestrada@hotmail. com 2020-01-22 13:29:32000 0
Events
evertid wuserid groupid event_name description created_at event_start event_end address city
1 1 53 NULL Geocaching Biding Evidence person indicate. Phone she past leave w. 2020-02-0103:10:14.000 2020-02-1221:31:04.000 2020-03-1301:43:46.000 54101 Morgan Extension Suite 746 New Jenniferport
2 2 127 NULL Skimboarding Fooling View rule education soon fish. Age figure environme... 2020-02-17 11:07:23.000 2020-03-10 16:29:50.000 2020-03-11 02:11:36.000 4087 Johnson Rapids New Richardhaven
3 3 9 NULL Rockets Sticking Defense represent yeah them. List most moming fed... 2020-01-14 04:57:27.000 2020-02-02 17:34:55.000 2020-03-10 10:47:33.000 447 Michael Parkway Andreaside
4 4 10 NULL Cigar Smoking Inlaying Hour establish wife foreign what, Stop hairmyseff t ..~ 2020-01-1323:26:25.000 2020-02-14 17:28:16.000 2020-03-05 22:41:40.000 009 Todd Points Apt. 250 Thompsoniand
5 5 NULL 50 Slacklining Calling Word stock break itseff. Rule join sure card already. 2020-01-07 10:14:35.000 2020-03-1107:33:09.000 2020-03-11 20:53:00.000 71800 Lee Ridges Suite 140 West Michaelvile
3 6 NULL 3% Intemet Playing Student beautiful create woman table impact. Team... 2020-01-26 00:16:03.000 2020-01-30 06:11:47.000 2020-02-23 14:27:52.000 2803 Oconnor Fall Suite 788 Port Thomas
7 7 NULL 21 Knapping Jailing May maybe during in that seven thought garden. Se... 2020-01-11 21:31:40.000 2020-02-03 13:30:14.000 2020-02-18 19:42:47.000 USNS Hanis FPO AE 15270
8 8 NULL T Tombstone Rubbing Expecting d pply we kid. Hit then di si. 2020-02-20 04:50:38.000 2020-03-14 08:50:19.000 2020-03-14 13:11:20.000 881 Jonathan Mission South Charlesmouth
9 9 NULL 25 Spelunkering Shrinking Letter character mind suddenly city. Aready underst.. 2020-03-07 23:18:17.000 2020-03-14 05:09:56.000 2020-03-1500:20:12.000 55628 Isabel Shoal Suite 741 South Juanhaven
10 10 235 NULL Glassblowing Raining Base democratic not than sister much thousand. 2020-02-23 13:55:04.000 2020-03-14 23:11:46.000 2020-03-1500:28:06.000 2715 Lance Trafficway Port Tiffanyfort
n n 17 NULL Four Wheeling Biding Spring truth building road team . Direction reveal gue... 2020-02-28 16:06:31.000 2020-02-25 04:33:50.000 2020-03-09 23:32:59.000 9654 William Hills Suite 575 Emilyview
12 1 NULL 30 Field hockey Huming Medical grow number thousand through role behind. 2020-02-03 08:49:57.000 2020-02-13 22:45:24.000 2020-03-13 12:27:57.000 6839 Taylor Villages Suite 519 Nelsonchester
13 13 232 NULL Rock Collecting Preseting Card sing year film happy parent pull baby. Reflect b... 2020-02-02 11:12:26.000 2020-02-17 05:54:11.000 2020-02-18 15:34:55.000 Unit 6541 Box 5812 DPO AA 60135
14 14 170 NULL Stom Chasing Sensing Amything lead seem may stock. Street decide Ife sig... 2020-02-15 21:20:40.000 2020-03-06 08:21:16.000 2020-03-11 12:45:44.000 3907 Adriana Spring Apt. 738 Smithberg
15 15 2 NULL lce skating Gluing Account allow subject husband. Toward securty yo... 2020-01-1101:04:31.000 2020-02-17 00:27:26.000 2020-03-10 02:02:13.000 Unit 3003 Box 6429 DPO AE 37249
16 16 134 NULL Rugby league football Critiquing Responsibility name modem field dog crime. Charge. 2020-02-26 08:23:40.000 2020-03-1205:36:12.000 2020-03-1506:53:27.000 822 Mcintosh Roads East Guyport
Groups
group_id user_id group_name description created_at
1 1 13 Ring Step Group Thousand continue billion up church lawyer generat... 2020-02-03 03:39:57.000
2 2 70 Page Dream Group Head war clearly office indeed. Capital apply just ret... 2020-01-20 03:52:15.000
3 3 73 Cold Daughter Team Sttuation card main environmental product, Child sel... 2020-02-13 08:27:15.000
4 4 22 Help Bit Group Alone rest most improve remember with. Brother seri... 2020-02-06 03:58:43.000
5 5 44 Yard Sugar Fans Business fall occur response player simple ok Brea... 2020-02-12 13:27:40.000
& 6 187 Result Sex Team Reality well environmental financial. Modem all bet... 2020-02-02 16:17:35.000
7 7 119 Chance Love Group Sound pattem knowledge agency while country aff... 2020-01-11 18:08:05.000
8 8 63 Picture South Team Foor even agent poor cause. Leg deep late last. E... 2020-02-16 02:26:55.000
9 9 198 Act Teach Team Bad act sit. Goal long think single behind camerare... 2020-03-08 18:37:24.000
10 10 241 Nation Steal Group Situation type record whole east traditional. One trut... 2020-02-14 14:23:01.000
11 1 45 Number Length Fans Concem project instead food. Investment containm... 2020-02-23 13:56:37.000
12 12 129 Run Page Team Expect indicate budget generation womy exist they ... 2020-03-09 22:29:07.000
13 13 100 Break Length Group Network human trial this usually method against bes... 2020-03-13 12:43:54.000
14 14 217 Opposite King Group Qil fall down door compare wrong. Blue bilion back.... 2020-01-11 13:33:52.000
15 15 73 Substance Class Team Believe wonder guy service above into. Those sprin... 2020-02-22 09:21:10.000
16 16 241 Salt Hand Group Force method often television big response phone. ... 2020-01-14 19:24:57.000

Figures 7, 8, 9. Sample data taken from SQL Server after data generation and loading

11

Graph Model

Node - User Relationship- Has
e .9® ©
e O O ¢ %o °© ®
e.! / \Qf “ o®
o i k
e o TTee o % e o oo by
o H '
) {
@ ¢ o
e o %o o e
o o © e @ ® e
) % @ e ®
] e @ ® e
f e e ®
- ®
® e ® e

Query: “MATCH p=()-[r:hasInterest]->() RETURN p LIMIT 25%

12

4.3 Data Generation
Data Generation Script

Language: Python 3 Libraries: Faker, random
Dependencies: common-verbs.txt common-nouns.txt common-interests.txt

The data generation is divided up into different functions, each responsible for generating
data for a specific table or node. Some cypher relationships are generated alongside the nodes they
connect to ensure consistency between SQL Foreign keys and Cypher relationships. Each function
can take a set of parameters; (n) is the number of tuples the function should create, (X, y, z) each
holds the number of one of (Users, Groups, Events, Interests, Posts) to make sure that a relationship
or foreign key does not reference a node that does not exist. Each table/node is indexed by an auto-
incremented integer. The script creates three files: sql_file, cypher_node_file, cypher_rel_file. The
first contains the INSERTS for every table to watch for dependencies. The cypher_node_file
contains the CREATE node statements for every node, and the cypher_rel _file contains the
MATCH CREATE statements that match the two nodes to connect, then creates a relationship
between them. The final function header generates All Data takes in a number for each table and
generates the data accordingly.

Relational Model
DBMS: SQL SERVER Management Studio
Host: localhost
Related Files: sql_data.sql
Graph Model
DBMS: Neo4J Browser
Host: localhost
Related Files: cypher_node_data.cql cypher_rel_data.cql

TEST CASE
Users: 250 | Groups: 50 | Interests: 100 | Events: 100 | Posts: 500 | isMember: 500 |
areFriends: 500 | comments: 750 | hasInterest: 1000 | isAttending: 500 | messages: 750 |

NOTES

e Data loads/insertion is exponentially faster in SQL Server than Neo4j

e Creating 100 nodes in Neo4j using browser took about 2 minutes

e Creating 365 relationships in Neo4j using its browser took 50+ minutes (55:11) — Don’t use
Neo4j Browser

4.4 Data Loading

13

As part of the testing script, the data was loaded into the SQL Server instance and the Neo4;j
graph in increments while recording run-time per transaction and other factors. In total, up to
1000000 (1e6) rows of data are generated for each database. There was a slight disparity in the
number of row rows of data that is mainly attributed to foreign keys not counting as a full row of
data in the relational model, as opposed to in the graph model, a relationship still must be defined
even if it has no parameters. Therefore, some relationships were added as separate transactions
into the Neo4j inserts.

5. Testing and Results

The following results are measuring the time (in milliseconds) to execute groups of
transactions. The time displayed is an average calculated from repeating the same test 6 times.

5.1 Inserting Data
Loading data into SQL Server takes monumentally less time than loading into Neo4j. The time
grows linearly with the sample size for SQL and grows exponentially for Neo4j.

ID SIZE DL-N (ms) DL-R (ms)
Neo4j 5000 14907.25 102017.75
Neo4j 10000 347495 4119755
Neo4j 100000 4533425 2156188.5
Neo4j 1000000 FAILED FAILED
ID SIZE DL (ms)

SQL 5000 6830.25 -

SQL 10000 6324333333 -

SQL 100000 72904.8 -

SQL 1000000 685242 -

14

5.2 Query Results

The times shown in the charts below are different for Neo4j and SQL. The points for Neo4;j

show the time per query, while the points for SQL show time per 100 queries. For the sample sizes
used, there is no doubt that SQL is far more efficient. But as the application starts to scale, we
want to know how each model will perform. So, we scaled the SQL times up to be able to plot
both the Neo4j and SQL times on the same charts.

The list of queries used are attached at the end of this paper.

QO - Find specific User using user_id

3000

N
(O]
o
o

2000

1500

1000

Time (in milliseconds)

500

1111

5000

QO - Query user by id

10000 100000

Sample Size

1000000

mSQL*
B Neodj

Figure 14.

The first query is to
establish a baseline for
each model on how long
it takes to find data given
a unique index.

Q1 - Find users with matching interests to user with specific user_id

2500

2000

1500

1000

Time (in milliseconds)

500

Find users with matching interests

111]

5000

10000 100000

Sample Size

1000000

mSQL
B Neodj

Figure 15.

For this query, we begin
to match different entities
and their relationships.
This is a basic graph
traversal question of
finding user nodes that
are adjacent (have a
relationship) to the same
interest.

15

Q2 - Find friends of a User (One-Way Relationship)

2500

2000

1500

1000

500

Time (in milliseconds)

Q3 - Find Groups containing a friend of User

2500

2000

1500

1000

Time (in milliseconds)

500

111}

5000

5000

Find friends

10000 100000

Sample Size

Find Groups with friends

10000 100000

Sample Size

1000000

1000000

msQL*

B Neo4j

mSQL*

B Neodj

Figure 16.

This query is a setup for
the next three queries. It
is a simple query to find
all adjacent user nodes to
a user with the
relationship “is Friends
With”. This is a one-way
relationship.

Figure 17.

A step up from Q3
appending an extra layer
to the path.

16

Q4 - Find All Users Y attending an Event E hosted by any Group G that a User X is a
member of

Find users attending events hosted by group... Figure 18.

2500
This query asks another

2000
graph traversal
1500 question, this time to
saLs find paths with a degree
1000 of 4.
B Neodj
500
0

5000 10000 100000 1000000

Time (in milliseconds)

Sample Size

Q5 - Find the interests of any user that is attending any events hosted by any groups that
share any interest(s) with a user X

Find users attending events

Figure 19.

3000

200 This is another graph
i traversal question, this
§ 2000 time finding a path with
= 1500 a degree of 5.
E mSQL*
f: 1000 B Neodj
£
= 500

5000 10000 100000 1000000

Sample Size

17

Notes

The slow query times for Neo4j can be attributed to the python neo4j-driver and iterating
over the result set. Measuring the query execution time sans iterating over the results
returned much faster results.

Neo4j struggles with cold starts, the first query executed from new session takes
substantially longer time to execute. Neo4j recommends warming up the cache by iterating
over the whole graph at the start of the session. This was not done as it did not seem like a
practical solution.

Neo4j excels at executing multiple queries to find results adjacent to the same pointer node.
Like the last point, this could be attributed to the cache being “warmed up”.

Iterating over the result set from SQL queries barely increases the time from the query
execution time alone.

Neither SQL nor Cypher queries were heavily optimized. Some queries may have the
potential to run faster.

SQL Server is far more optimized to run locally than Neo4j. Both should have been
deployed to a server for more accurate results.

18

6. Conclusions and Future Work

The relational model may be far more efficient for small to mid-sized applications. Both
inserting and querying anything less than 100,000 rows in SQL Server is exponentially faster.
However, queries using the graph model scale much more effectively as databases grow and
queries become more complex. The initial run-time disparity could be attributed to several factors
within the test environment. Taking away that disparity and comparing the run-time complexity
(how run-time compares to database size), we can conclude that Neo4j and the graph model
outperform SQL Server and its relational model,in querying data but is slower when it comes to
loading it.

In the future, larger sample sizes can be used to validate or disprove the trends shown in
these test results. The testing process could be refined and standardized to support other databases.
YCSB support for neo4j could allow for a more uniform performance benchmark against other
NoSQL Databases. The range of tests can be expanded to include more performance metrics other
than time, such as memory usage. More queries can be added to encompass a wider variety of use
case questions.

Bibliography

[*] lan Robinson, Jim Webber & Emil Eifrem (2015) Graph Databases: 2" Edition,
O’Reilly

[1] NEO4J What is a Graph Database? (Online), https://neo4j.com/developer/graph-
database/. Accessed 2020.

[2] Levin, Oscar Discrete Mathematics: An Open Introduction (Online),
http://discrete.openmathbooks.org/dmoi2/ch_graphtheory.html. Accessed 2020.

[3] Frisendal, Thomas Property Graphs Explained (Online),
http://graphdatamodeling.com/Graph%20Data%20Modeling/GraphDataModeling/page/Property
Graphs.html. Accessed 2020.

19

https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/graph-database/
http://discrete.openmathbooks.org/dmoi2/ch_graphtheory.html
http://graphdatamodeling.com/Graph%20Data%20Modeling/GraphDataModeling/page/PropertyGraphs.html
http://graphdatamodeling.com/Graph%20Data%20Modeling/GraphDataModeling/page/PropertyGraphs.html

Queries
QO:
SQL - SELECT * FROM Users WHERE user_id = {};
CYPHER - MATCH (u:User) WHERE u.user id = {} RETURN u;

Q1.

SQL - SELECT Y.name FROM Users AS X, Users as Y, User to Interest as UI
WHERE X.user id = 3 AND X.user id = UI.user id AND Y.user id IN (SELECT
SUI.user id FROM User to Interest as SUI WHERE SUI.interest id =
UI.interest id AND NOT SUI.user id = X.user id);

CYPHER - MATCH (x:User)-[:hasInterest]->(i:Interest)<-[:hasInterest]-
(y:User) WHERE x.user_ id = 3 RETURN y;

Q2:
SQL - SELECT U.user name FROM Users as U, isFriendsWith as IFW
WHERE IFW.user id = {} AND IFW.friend id = U.user id;
CYPHER - MATCH (x:User), (y:User) WHERE x.user id = {} AND (x)-

[:isFriendsWith]->(y) RETURN vy;

Q3:

SQL — SELECT DISTINCT G.group name FROM Users as U, Groups as G,
isFriendsWith as IFW, isMember as IM WHERE U.user id = {} AND
G.group_id = IM.group id AND U.user id = IFW.user id AND IFW.friend id
= IM.user_ id;

CYPHER - MATCH (x:User)-[:isFriendsWith]->(y:User)-[:isMember]-
>(g:Group) WHERE x.user id = 250 RETURN g;

Q4.

SQL - SELECT U.user name FROM Users as U, Events as E, isMember as IM,
isAttending as IA WHERE IM.user id = 245 AND E.group id = IM.group id
AND IA.event id = E.event id AND IA.user id = U.user id;

CYPHER - MATCH (u:User)-[r:isMember]->(g:Group)-[c:creates]-
>(e:Event)<-[:isAttending]-(y:User) WHERE u.user id = 245 RETURN y;

Q5:

SQL - SELECT DISTINCT I.interest name FROM User to Interest as UI,
Group_ to Interest as GI, Events as E, isAttending as IA, User to Interest
as UI2, Interests as I WHERE UI.user id = 2 AND UI.interest id =
GI.interest id AND E.group id = GI.group id AND IA.event id = E.event id
AND TA.user id = UI2.user id AND UIZ.interest id = I.interest id;

CYPHER - MATCH (x:User)-[:hasInterest]->(i:Interest)<-[:hasInterest]-
(g:Group) - [:creates]->(e:Event)<-[:isAttending]- (y:User) -
[:hasInterest]->(j:Interest) WHERE x.user id = 2 RETURN j;

20

