
1

Benchmarking performance for Neo4j in a Social

Media Application

by

Michael Sheroubi

Supervisor: Dr. Ramon Lawrence

The Irving K. Barber School of Arts and Sciences

Undergraduate Degree in Bachelor of Science

Honours Major in Computer Sciences

And

 Minor in Mathematics

The University of British Columbia – Okanagan Campus

April 2020

Revised December 2022

2

Abstract

Starting around the mid-late 2000s, ACID compliant graph databases such as Neo4j began being

used to optimize data retrieval in use cases where relational databases struggled. This paper

attempts to benchmark the performance of two widely used databases, one from each category, for

a social media application. Logging the process from data modelling and generation to writing

queries to answer real questions. The performance of the queries is evaluated based on the rate of

increase in time as the sample sizes grow. Concluding that the relational database is faster at a

small scale, but the rate of increase is slower for the graph database, meaning that a point exists at

a sufficiently large sample size where the graph database becomes more efficient.

3

Table of Contents

Abstract .. 2

Table of Contents .. 3

1. Introduction ... 4

2. Background ... 4

2.1 Introduction to Graph Theory ... 4

2.2 The Labeled Property Graph Model ... 5

2.2 Overview of Graph Databases .. 6

2.3 YCSB .. 6

3. Social Media Application ... 7

3.1 Project Summary ... 7

3.2 ER Diagrams ... 7

3.2.1 Original Design .. 7

3.2.2 Updated Version .. 8

4. Data Modelling ... 9

4.1 Mapping Relational to Graph Model .. 9

4.2 Sample Data .. 11

4.3 Data Generation .. 13

4.4 Data Loading ... 13

5. Testing and Results ... 14

5.1 Inserting Data .. 14

5.2 Queries .. 15

Q0 - Find specific User by user_id ... 15

Q1 - Find all users with matching interests to user with specific user_id 15

Q2 - Find all friends of a User (One-Way Relationship) .. 16

Q3 - Find all the Groups that a User's friends are in ... 16

Q4 - Find All Users Y attending an Event E hosted by any Group G that a User X is a

member of ... 17

Q5 - Find the interests of any user that is attending any events hosted by any groups that

share any interest(s) with a user X .. 17

6. Conclusions and Future Work ... 19

Bibliography .. 19

4

1. Introduction

There has been a rise in NoSQL databases over the last few years. More developers are

realising that the relational model can be limiting or suboptimal for their applications. This led to

the formation of many different methods of storing data. One of these methods revolves around

utilizing a graph model derived from graph theory. This is the Graph Database.

Released in 2007, Neo4j is an open-source, NoSQL, graph database created to efficiently

utilize the property graph model as a means of storage. Graph databases are meant to excel at

managing highly connected data and managing complicated queries [1], allowing for quick

traversal between adjacent nodes and easy visualization of the data structure. With its own query

language, CYPHER, Neo4j queries are designed to be visually intuitive and simple to create. We

will explore how Neo4j’s graph approach to storing data and querying data performs in its ideal

setting and compare its performance with a relational database.

2. Background

2.1 Introduction to Graph Theory

 Graph Theory is a field of mathematics that has been heavily integrated into various

software applications. First noted in 1736 when Leonhard Euler, a swiss mathematician, worked

on solving the Seven Bridges of Königsberg problem [2]. Given four landmasses separated by a

river and connected with seven bridges (Figure 1), is there a path where one can cross every bridge

exactly once? While a solution does not exist, Euler’s proof for its non-existence is the foundation

for graph theory.

Graphs represent entities as nodes/vertices and the ways in which those entities relate to

other entities as relationships/edges. Mapping the seven bridges problem to a graph of this form

with each landmass as a node and each bridge as relationship.

Figure 1. Seven Bridges of Königsberg Figure 2. Königsberg problem as a graph

https://github.com/UBCO-COSC499-Summer2017/project-2-ion-ion-field-network

5

By the definition of the problem, Euler deduced that every node must have an even number of

edges connected to it, one to enter the node and one to leave it, with the exception of the first and

last nodes (def. Eulerian Path). Since each node in this problem has an odd number of edges, a

solution cannot exist.

This proof established the foundation for what is now known as graph theory. Now, graph

theory is an important field of study in Computer Science and Mathematics. It has a variety of real-

world applications with many books and resources available that dive deeper into the subject

matter.

2.2 The Labeled Property Graph Model

For our application, we will be focusing on the Labeled Property graph model, a graph

model where nodes can contain properties as key-value pairs and nodes can have one or more

labels. In this model, relationships can also contain properties as key-value pairs, have labels and

directions, but they must always have a node on both ends. The labels on the nodes and

relationships make it easy to draw the context from the data [3].

Figure 3. Example graph of User nodes and their relationships

6

2.2 Overview of Graph Databases

A graph database is a database that is designed to store data using the graph model. By

definition, a graph database is any database where connected elements are linked together without

an index or key.

Figure 4. Comparing Data Models (https://www.nextplatform.com/2018/09/19/the-graph-database-poised-to-

pounce-on-the-mainstream/)

A graph database is a NoSQL database designed to work around certain limitations in

relational databases. Graph databases allow quick and easy retrieval of data from complex data

structures. Traversing relationships in a graph database is fast because the relationship between

nodes are not calculated at query times but are persisted in the database. See The Power of Graph

Databases in O`Reilly’s Graph Databases: 2nd Edition.

2.3 YCSB

Yahoo! Cloud Serving Benchmark (YCSB) is an open-source framework most used for

evaluating the capabilities of NoSQL database management systems. This framework runs a set of

workloads to evaluate their performance. While it does have a support for various existing NoSQL

databases, it does not have support for Neo4j. More can be found here:

(https://github.com/brianfrankcooper/YCSB/wiki).

https://www.nextplatform.com/2018/09/19/the-graph-database-poised-to-pounce-on-the-mainstream/
https://www.nextplatform.com/2018/09/19/the-graph-database-poised-to-pounce-on-the-mainstream/
https://github.com/brianfrankcooper/YCSB/wiki

7

3. Social Media Application

3.1 Project Summary

 This project is based off a real social media application that a colleague was developing.

This social media site is designed to match and connect people from communities that share similar

interests. Users can find groups that match specific interests and similarly can find events for a

given interest. However, the main goal is to connect users with similar interests.

Each user is prompted to input their interests and location, and an algorithm matches users

by interests and proximity. Users can join Groups, attend Events and become friends with other

Users. This project will focus on the database aspect of this social media site. It will encompass

the data modelling, application architecture decisions, testing, capacity planning, and

importing/loading of bulk data (and in this case data generation). After the database is setup, the

focus will shift towards designing ad hoc queries (“saved cypher queries”) to answer questions

posed by the social media (e.g. matching common interests). This project does not examine the

integration of the database into the website or any front-end programming.

3.2 ER Diagrams

3.2.1 Original Design

Figure 5. Original ER Diagram made for the application

8

This ER diagram is made from the DDL schema file I first received for the project. There were

attributes in some entities that were only needed for production. The cardinalities between the

entities were not defined.

3.2.2 Updated Version

Figure 6. Updated ER Diagram designed for the purpose of this thesis

 This is an updated ER diagram designed to fit the requirements for the testing for the

purposes of this thesis. The bottom entities are referencing the same entities as the main diagram,

but showing how each entity relates to itself (Done to keep the diagram clean and easy to read).

9

4. Data Modelling

4.1 Mapping Relational to Graph Model

The following table shows each relation in the relational database from the original design,

along with its role in a graph-model. If more than one type is present, then there are two

possibilities with the first one being more favored. This table is later trimmed to fit the updated

version of the design.

Relation Type Dependency Purpose

Users Node N/A Holds User data

Feedbacks Node/Property User User feedback on site

Posts Node/Relationship User User’s personal posts

Comments Relationship Post, User Comments on a User

Post

Conversations Relationship Users User-to-User

Conversations

Messages Property Conversation Content of

Conversations

Friendships Relationship Users User-to-User

Relationships Relationship Users User-to-User

Interests Node User? Interest Information

Interest Relationships to Groups Relationship Interest, Group Interest-to-Group

Interest Relationships to Events Relationship Interest, Event Interest-to-Event

Interest Relationships Relationship Interests Interest-to-Interest

Groups Node/Label User? Group Users

Groups Relationships Relationship Groups Group-to-Group

Group Posts Node/Relationship Group, User Posts made to group

Group Comments Relationship Group Post, User Comments on Group

Post

Events Node Group, User Event information

hosted by a Group &

User

Event Notifications Relationship Event, User Notifications for

Users about events

10

Relation Type Dependency Purpose

Notification Events Relationship Users, Event User-to-User event

invitation

notification

Event Relationships Relationship Events Event-to-Event

relationship

Event Posts Property/Node Event, User Users posts under

Events

*Friendly ID Slugs Node N/A ID-to-String URL

Addon

Graph Modelling

The graph model of this relational database will have these two main components:

• Nodes

o Users

o Groups

o Events

o Interests

o Posts

• Relationships

o Comments

o Converses

o Notifies

o Creates

o Etc.

11

4.2 Sample Data

Relational Model

Users

Events

 Groups

Figures 7, 8, 9. Sample data taken from SQL Server after data generation and loading

12

Graph Model

Node - User Relationship- Has

Figures 10, 11, 12. Sample data taken from Neo4j after data generation and loading

Query: “MATCH p=()-[r:hasInterest]->() RETURN p LIMIT 25“

13

4.3 Data Generation

Data Generation Script

Language: Python 3 Libraries: Faker, random

Dependencies: common-verbs.txt common-nouns.txt common-interests.txt

The data generation is divided up into different functions, each responsible for generating

data for a specific table or node. Some cypher relationships are generated alongside the nodes they

connect to ensure consistency between SQL Foreign keys and Cypher relationships. Each function

can take a set of parameters; (n) is the number of tuples the function should create, (x, y, z) each

holds the number of one of (Users, Groups, Events, Interests, Posts) to make sure that a relationship

or foreign key does not reference a node that does not exist. Each table/node is indexed by an auto-

incremented integer. The script creates three files: sql_file, cypher_node_file, cypher_rel_file. The

first contains the INSERTS for every table to watch for dependencies. The cypher_node_file

contains the CREATE node statements for every node, and the cypher_rel_file contains the

MATCH CREATE statements that match the two nodes to connect, then creates a relationship

between them. The final function header generates All Data takes in a number for each table and

generates the data accordingly.

Relational Model

DBMS: SQL SERVER Management Studio

Host: localhost

Related Files: sql_data.sql

Graph Model

DBMS: Neo4J Browser

Host: localhost

Related Files: cypher_node_data.cql cypher_rel_data.cql

TEST CASE

Users: 250 | Groups: 50 | Interests: 100 | Events: 100 | Posts: 500 | isMember: 500 |

areFriends: 500 | comments: 750 | hasInterest: 1000 | isAttending: 500 | messages: 750 |

NOTES

● Data loads/insertion is exponentially faster in SQL Server than Neo4j

● Creating 100 nodes in Neo4j using browser took about 2 minutes

● Creating 365 relationships in Neo4j using its browser took 50+ minutes (55:11) – Don’t use

Neo4j Browser

4.4 Data Loading

14

 As part of the testing script, the data was loaded into the SQL Server instance and the Neo4j

graph in increments while recording run-time per transaction and other factors. In total, up to

1000000 (1e6) rows of data are generated for each database. There was a slight disparity in the

number of row rows of data that is mainly attributed to foreign keys not counting as a full row of

data in the relational model, as opposed to in the graph model, a relationship still must be defined

even if it has no parameters. Therefore, some relationships were added as separate transactions

into the Neo4j inserts.

5. Testing and Results

The following results are measuring the time (in milliseconds) to execute groups of

transactions. The time displayed is an average calculated from repeating the same test 6 times.

5.1 Inserting Data

Loading data into SQL Server takes monumentally less time than loading into Neo4j. The time

grows linearly with the sample size for SQL and grows exponentially for Neo4j.

ID SIZE DL-N (ms) DL-R (ms)

Neo4j 5000 14907.25 102017.75

Neo4j 10000 34749.5 411975.5

Neo4j 100000 453342.5 2156188.5

Neo4j 1000000 FAILED FAILED

ID SIZE DL (ms)

SQL 5000 6830.25 -

SQL 10000 6324.333333 -

SQL 100000 72904.8 -

SQL 1000000 685242 -

15

5.2 Query Results

The times shown in the charts below are different for Neo4j and SQL. The points for Neo4j

show the time per query, while the points for SQL show time per 100 queries. For the sample sizes

used, there is no doubt that SQL is far more efficient. But as the application starts to scale, we

want to know how each model will perform. So, we scaled the SQL times up to be able to plot

both the Neo4j and SQL times on the same charts.

The list of queries used are attached at the end of this paper.

Q0 - Find specific User using user_id

 Figure 14.

The first query is to

establish a baseline for

each model on how long

it takes to find data given

a unique index.

Q1 - Find users with matching interests to user with specific user_id

 Figure 15.

For this query, we begin

to match different entities

and their relationships.

This is a basic graph

traversal question of

finding user nodes that

are adjacent (have a

relationship) to the same

interest.

0

500

1000

1500

2000

2500

3000

5000 10000 100000 1000000

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Sample Size

Q0 - Query user by id

SQL*

Neo4j

0

500

1000

1500

2000

2500

5000 10000 100000 1000000

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Sample Size

Find users with matching interests

SQL

Neo4j

16

Q2 - Find friends of a User (One-Way Relationship)

Figure 16.

This query is a setup for

the next three queries. It

is a simple query to find

all adjacent user nodes to

a user with the

relationship “is Friends

With”. This is a one-way

relationship.

Q3 – Find Groups containing a friend of User

 Figure 17.

A step up from Q3

appending an extra layer

to the path.

0

500

1000

1500

2000

2500

5000 10000 100000 1000000

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Sample Size

Find friends

SQL*

Neo4j

0

500

1000

1500

2000

2500

5000 10000 100000 1000000

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Sample Size

Find Groups with friends

SQL*

Neo4j

17

Q4 - Find All Users Y attending an Event E hosted by any Group G that a User X is a

member of

 Figure 18.

This query asks another

graph traversal

question, this time to

find paths with a degree

of 4.

Q5 - Find the interests of any user that is attending any events hosted by any groups that

share any interest(s) with a user X

 Figure 19.

This is another graph

traversal question, this

time finding a path with

a degree of 5.

0

500

1000

1500

2000

2500

5000 10000 100000 1000000

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Sample Size

Find users attending events hosted by group...

SQL*

Neo4j

0

500

1000

1500

2000

2500

3000

5000 10000 100000 1000000

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Sample Size

Find users attending events

SQL*

Neo4j

18

Notes

• The slow query times for Neo4j can be attributed to the python neo4j-driver and iterating

over the result set. Measuring the query execution time sans iterating over the results

returned much faster results.

• Neo4j struggles with cold starts, the first query executed from new session takes

substantially longer time to execute. Neo4j recommends warming up the cache by iterating

over the whole graph at the start of the session. This was not done as it did not seem like a

practical solution.

• Neo4j excels at executing multiple queries to find results adjacent to the same pointer node.

Like the last point, this could be attributed to the cache being “warmed up”.

• Iterating over the result set from SQL queries barely increases the time from the query

execution time alone.

• Neither SQL nor Cypher queries were heavily optimized. Some queries may have the

potential to run faster.

• SQL Server is far more optimized to run locally than Neo4j. Both should have been

deployed to a server for more accurate results.

19

6. Conclusions and Future Work

 The relational model may be far more efficient for small to mid-sized applications. Both

inserting and querying anything less than 100,000 rows in SQL Server is exponentially faster.

However, queries using the graph model scale much more effectively as databases grow and

queries become more complex. The initial run-time disparity could be attributed to several factors

within the test environment. Taking away that disparity and comparing the run-time complexity

(how run-time compares to database size), we can conclude that Neo4j and the graph model

outperform SQL Server and its relational model,in querying data but is slower when it comes to

loading it.

In the future, larger sample sizes can be used to validate or disprove the trends shown in

these test results. The testing process could be refined and standardized to support other databases.

YCSB support for neo4j could allow for a more uniform performance benchmark against other

NoSQL Databases. The range of tests can be expanded to include more performance metrics other

than time, such as memory usage. More queries can be added to encompass a wider variety of use

case questions.

Bibliography

[*] Ian Robinson, Jim Webber & Emil Eifrem (2015) Graph Databases: 2nd Edition,

O’Reilly

[1] NEO4J What is a Graph Database? (Online), https://neo4j.com/developer/graph-

database/. Accessed 2020.

[2] Levin, Oscar Discrete Mathematics: An Open Introduction (Online),

http://discrete.openmathbooks.org/dmoi2/ch_graphtheory.html. Accessed 2020.

[3] Frisendal, Thomas Property Graphs Explained (Online),

http://graphdatamodeling.com/Graph%20Data%20Modeling/GraphDataModeling/page/Property

Graphs.html. Accessed 2020.

https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/graph-database/
http://discrete.openmathbooks.org/dmoi2/ch_graphtheory.html
http://graphdatamodeling.com/Graph%20Data%20Modeling/GraphDataModeling/page/PropertyGraphs.html
http://graphdatamodeling.com/Graph%20Data%20Modeling/GraphDataModeling/page/PropertyGraphs.html

20

Queries
Q0:

SQL – SELECT * FROM Users WHERE user_id = {};

CYPHER - MATCH (u:User) WHERE u.user_id = {} RETURN u;

Q1:
SQL – SELECT Y.name FROM Users AS X, Users as Y, User_to_Interest as UI

WHERE X.user_id = 3 AND X.user_id = UI.user_id AND Y.user_id IN (SELECT

SUI.user_id FROM User_to_Interest as SUI WHERE SUI.interest_id =

UI.interest_id AND NOT SUI.user_id = X.user_id);

CYPHER - MATCH (x:User)-[:hasInterest]->(i:Interest)<-[:hasInterest]-

(y:User) WHERE x.user_id = 3 RETURN y;

Q2:
SQL – SELECT U.user_name FROM Users as U, isFriendsWith as IFW

WHERE IFW.user_id = {} AND IFW.friend_id = U.user_id;

CYPHER - MATCH (x:User), (y:User) WHERE x.user_id = {} AND (x)-

[:isFriendsWith]->(y) RETURN y;

Q3:
SQL – SELECT DISTINCT G.group_name FROM Users as U, Groups as G,

isFriendsWith as IFW, isMember as IM WHERE U.user_id = {} AND

G.group_id = IM.group_id AND U.user_id = IFW.user_id AND IFW.friend_id

= IM.user_id;

CYPHER - MATCH (x:User)-[:isFriendsWith]->(y:User)-[:isMember]-

>(g:Group) WHERE x.user_id = 250 RETURN g;

Q4:
SQL – SELECT U.user_name FROM Users as U, Events as E, isMember as IM,

isAttending as IA WHERE IM.user_id = 245 AND E.group_id = IM.group_id

AND IA.event_id = E.event_id AND IA.user_id = U.user_id;

CYPHER - MATCH (u:User)-[r:isMember]->(g:Group)-[c:creates]-

>(e:Event)<-[:isAttending]-(y:User) WHERE u.user_id = 245 RETURN y;

Q5:
SQL – SELECT DISTINCT I.interest_name FROM User_to_Interest as UI,

Group_to_Interest as GI, Events as E, isAttending as IA, User_to_Interest

as UI2, Interests as I WHERE UI.user_id = 2 AND UI.interest_id =

GI.interest_id AND E.group_id = GI.group_id AND IA.event_id = E.event_id

AND IA.user_id = UI2.user_id AND UI2.interest_id = I.interest_id;

CYPHER - MATCH (x:User)-[:hasInterest]->(i:Interest)<-[:hasInterest]-

(g:Group)-[:creates]->(e:Event)<-[:isAttending]-(y:User)-

[:hasInterest]->(j:Interest) WHERE x.user_id = 2 RETURN j;

