
Multi-Way Hash Join Effectiveness
by

Michael Henderson

B.Sc. Hons., The University of British Columbia, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE COLLEGE OF GRADUATE STUDIES

(Interdisciplinary Studies)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

July 2013

c© Michael Henderson, 2013

Abstract

In database systems most join algorithms are binary and will only oper-
ate on two inputs at a time. In order to join more than two input relations
a database system will use the results of a binary join of two of the inputs
in a second join. This way any number of input relations can be combined
into a single output. There is additional cost to having multiple joins as the
results of each intermediate join must be cached and processed.

Recent research into joins on more than two inputs, called multi-way
joins, has shown that the intermediate partitioning steps of a traditional
hash join based query plan can be avoided. This decreases the amount of
disk based input and output (I/Os) that the join query will require which
is desirable since disk I/O is one of the slowest parts of a join.

This thesis studies the advantages and disadvantages of implementing
and using different multi-way join algorithms and their relative performance
compared to traditional hash joins. Specifically, this work compares dynamic
hash join with three multi-way join algorithms, Hash Teams, Generalized
Hash Teams and SHARP. The results of the experiments show that in some
limited cases these multi-way hash joins can provide a significant advantage
over the traditional hash join but in many cases they can perform worse.
Since the cases where these multi-way joins have better performance is so
limited and their algorithms are much more complex, it does not make
sense to implement Hash Teams or Generalized Hash Teams in production
database management systems. SHARP provides enough of a performance
advantage that it makes sense to implement it in a database system used
for data warehousing.

ii

Preface

A version of Chapter 3 and Section 4.1 has been published. Henderson,
Michael and Lawrence, Ramon. Are Multi-Way Joins Actually Useful? In
Proceedings of the 15th International Conference on Enterprise Information
Systems, ICEIS 2013. SciTePress. I conducted the experiments and analysis
and it was written in collaboration with my supervisor, Dr Ramon Lawrence.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . viii

Acknowledgements . ix

Dedication . x

Chapter 1: Introduction . 1

Chapter 2: Background . 4
2.1 Relational Databases . 4

2.1.1 Cardinality . 5
2.1.2 Keys . 5
2.1.3 Relational Algebra . 6
2.1.4 Joins . 6
2.1.5 Structured Query Language 7
2.1.6 Query Evaluation . 8

2.2 Hash Join . 8
2.2.1 Hash Functions . 9
2.2.2 Hash Tables . 9
2.2.3 Classic Hash Join . 10
2.2.4 Grace Hash Join . 10
2.2.5 Hybrid Hash Join . 11
2.2.6 Dynamic Hash Join 11

iv

TABLE OF CONTENTS

2.2.7 Further Improvements on Join Algorithms 14
2.3 Multi-Way Join Algorithms 15

2.3.1 Hash Teams . 16
2.3.2 Generalized Hash Teams 18
2.3.3 SHARP . 22
2.3.4 Summary . 26

Chapter 3: Multi-Way Join Implementation 27
3.1 Implementation in PostgreSQL 27
3.2 Standalone C++ Implementation 28

Chapter 4: Experimental Results 31
4.1 PostgreSQL Results . 31

4.1.1 Direct Partitioning with Hash Teams 31
4.1.2 Indirect Partitioning with Generalized Hash Teams . . 35
4.1.3 Multi-Dimensional Partitioning with SHARP 36

4.2 Standalone C++ Results . 38
4.2.1 Database Schema . 38
4.2.2 Direct Partitioning with Hash Teams 38
4.2.3 Indirect Partitioning with Generalized Hash Teams . . 40
4.2.4 Multi-Dimensional Partitioning with SHARP 44

Chapter 5: Discussion and Conclusion 46

Bibliography . 48

v

List of Tables

Table 2.1 Example Part Relation 4
Table 2.2 Example Lineitem Relation 4
Table 2.3 Result of Joining Part and Lineitem Relations 8
Table 2.4 Example Data for A and B 13
Table 2.5 Partitions for A . 13
Table 2.6 Partitions for B . 13
Table 2.7 Results of Joining A and B 13
Table 2.8 Example Data for A, B, and C 17
Table 2.9 Partitions for A . 17
Table 2.10 Partitions for B . 17
Table 2.11 Partitions for C . 17
Table 2.12 Results of Joining A, B, and C 17
Table 2.13 Example Data for TPC-H join 20
Table 2.14 Customer Partitions . 20
Table 2.15 Orders Partitions . 21
Table 2.16 Bitmap for orderkey to custkey 21
Table 2.17 Lineitem Partitions. False Drops Appear Bold. 21
Table 2.18 Results of Joining Customer, Orders, and Lineitem. . . 22
Table 2.19 Example Data for a Star Schema. 24
Table 2.20 Partitions for Customer. 24
Table 2.21 Partitions for Product. 24
Table 2.22 Partitions for Saleitem. 24
Table 2.23 Star Join Results. 25
Table 2.24 Multi-way Join Algorithms and Queries 26

Table 3.1 Tuple Data Format . 29
Table 3.2 Relation Data Format 29
Table 3.3 Page Data Format . 29

vi

List of Figures

Figure 2.1 A and B Binary Relational Algebra 12
Figure 2.2 A, B, and C Binary Relational Algebra 18
Figure 2.3 A, B, and C N-Way Relational Algebra 18
Figure 2.4 Customer, Orders, and Lineitem with Binary Joins . . 19
Figure 2.5 Customer, Orders, and Lineitem with N-Way Join . . 19
Figure 2.6 Customer, Product, and Saleitem Binary Join. 23
Figure 2.7 Customer, Product, and Saleitem N-Way Join. 23

Figure 4.1 TPC-H 10 GB Relation Sizes 32
Figure 4.2 Time for Three Way Orders Join 32
Figure 4.3 I/O Bytes for Three Way Orders Join 33
Figure 4.4 Time for Part-PartSupp-Lineitem 34
Figure 4.5 I/O Bytes for Part-PartSupp-Lineitem 34
Figure 4.6 Time for Customer-Orders-LineItem 35
Figure 4.7 I/O bytes for Customer-Orders-LineItem 36
Figure 4.8 Time for Part-Orders-LineItem 37
Figure 4.9 I/O Bytes for Part-Orders-LineItem 37
Figure 4.10 Time for 3-Way TPC-H Order Join 39
Figure 4.11 I/O Bytes for 3-Way TPC-H Order Join 39
Figure 4.12 Time for 3-Way TPC-H Customer, Orders, Lineitem

Join . 40
Figure 4.13 I/O Bytes for 3-Way TPC-H Customer, Orders, Lineitem

Join . 41
Figure 4.14 Time for 3-Way TPC-H Customer, Orders, Lineitem

Join with Small Memory Sizes 42
Figure 4.15 I/O Bytes for 3-Way TPC-H Customer, Orders, Lineitem

Join with Small Memory Sizes 42
Figure 4.16 Time for Bitmap Size with 3-Way TPC-H Customer,

Orders, Lineitem Join 43
Figure 4.17 False Drops for Bitmap Size with 3-Way TPC-H Cus-

tomer, Orders, Lineitem Join 43

vii

LIST OF FIGURES

Figure 4.18 Time for 3-Way Star Join on Orders, Part, and Lineitem 44
Figure 4.19 I/O Bytes for 3-Way Star Join on Orders, Part, and

Lineitem . 45

viii

Acknowledgements

I would like to thank Dr. Ramon Lawrence for supervising my Master’s
degree. I am especially grateful for his support and patience as the comple-
tion of the degree has taken a lot longer than we had originally planned. I
would not likely have finished my Master’s program without his guidance,
motivation, and support as I attempted to complete my thesis while also
being employed full-time.

I am also thankful for the support my family and friends have given me.
They were always encouraging me to complete my Master’s degree which
helped motivate me when I was tired and did not want to work on my thesis.

I would like to thank Dr. Yong Gao for the opportunity to work with
him with my first Undergraduate Student Research Award and my first
publication.

Thank you to everyone else at UBC, VeriCorder Technology, Bawtree
Software, the Government of Canada, and elsewhere that have supported
me in completing the Master’s degree.

ix

Dedication

To my family and friends.

x

Chapter 1

Introduction

Large amounts of data is collected and stored by individuals, organiza-
tions, corporations, and governments for many reasons. Businesses collect
sales data in order to better target customers with products they will be
more likely to purchase. Organizations collect data to help track their mem-
bers. Governments collect as much data on their citizens in order to serve
and tax them efficiently. To allow for the efficient and robust storage and
retrieval of this data, it is very common for it to be stored using a relational
database system.

Relational database systems provide an efficient way for data to be
stored, retrieved, and analysed. Users interact with these systems through a
standardized language called structured query language (SQL). Using SQL
allows the users to quickly access the data that is required by writing queries
that the database system understands without the user needing a deep un-
derstanding of the underlying database system.

In relational database systems, data is organized into relations. Relations
are often referred to as database tables. Each table has a set of rows which
are divided up into a set of attributes with each attribute being a specific
piece of data. In relational databases, a single relation will usually only
contain data that is directly related. For example a Customer relation would
contain all the data for a set of customers such as names, addresses, phone
numbers, and other information about those customers.

Each relation is usually related to other relations in a database in some
way. An Order relation would be related to the Customer relation since each
order is for a specific customer. The user can create SQL queries that take
multiple relations and join the data together using the defined relationships
to gain a different look at the data. For example, a user could create a query
that returns all the rows in Order that are for a specific customer.

One of the main algorithms for joining large relations is called the Dy-
namic Hash Join (DHJ). DHJ [DN95, NKT88] works by taking two input
relations and producing an output relation that is a combination of the two
inputs. DHJ is a binary join algorithm since it works on exactly two inputs
at a time. In order to join more than two relations, the output of a DHJ

1

Chapter 1. Introduction

join can be used as an input of another. This can be repeated to join an
arbitrary number of relations together.

Much of the research in join algorithms is performed to find faster and
more efficient ways to perform the joins. Reducing the time or resources
a join requires allows a relational database system to respond quicker to
user queries, to respond to more users in the same amount of time, and to
respond to larger queries in more reasonable amounts of time. Increases
in efficiency are often achieved by reducing the amount of disk input and
output operations (I/Os) that the join algorithm performs since disk I/Os
are much slower than operations performed in memory. Improvements to
the standard hash join algorithms used by relational databases have often
involved smarter partitioning schemes and more efficient use of the memory
available for the join.

Multi-way joins attempt to improve upon DHJ by joining multiple re-
lations at one time. Traditional joins can only join two relations at a time
and must be chained together for multiple relations to be joined. The main
advantages of multi-way joins over the traditional binary joins are improved
efficiency in memory use and lower I/O operations.

This thesis provides an analysis of three different multi-way join algo-
rithms. The first algorithm is Hash Teams [GBC98]. It is a multi-way join
algorithm that works on relations that are being joined on the same at-
tributes. Its advantage over DHJ is that it avoids multiple partition steps
and performs fewer I/Os. The second algorithm is Generalized Hash Teams
(GHT) [KKW99]. GHT attempts to extend Hash Teams by joining relations
using indirect partitioning. To do this GHT builds and uses a map that re-
quires extra memory. The third multi-way join algorithm is SHARP [BD06].
SHARP is a multi-way join algorithm that works only on star joins. Like
the other multi-way join algorithms SHARP is able to make more efficient
use of memory in order to perform fewer I/Os than DHJ.

This thesis seeks to answer the following questions:

− Does Hash Teams provide an advantage over DHJ?

− Does Generalized Hash Teams provide an advantage over DHJ?

− Does SHARP provide an advantage over DHJ?

− Should these algorithms be implemented in a relational database sys-
tem in addition to the existing binary join algorithms?

The results from Chapter 4 show that in some cases the multi-way join
algorithms provide a benefit over DHJ. Hash Teams provide a benefit over

2

Chapter 1. Introduction

DHJ, but there is only a very limited set of queries where it can be used.
Generalized Hash Teams can provide a benefit when it is doing a significantly
lower number of I/O operations than DHJ, but due to its nature this only
happens when the memory available for the query is in a specific range.
Outside of that range Generalized Hash Teams can perform worse than DHJ.
SHARP shows a performance advantage over DHJ, but it is limited to star
queries. Since star queries are often used in data warehousing, SHARP can
be recommended for database systems that are used for data warehousing.
Hash teams and Generalized Hash Teams are not recommended because
their performance benefit over DHJ is too limited.

3

Chapter 2

Background

Databases are used to store, manage, and process data in many domains.
Modern business and university research could not be conducted without
the ability to process the ever-growing data volumes. A key requirement
is that a database be able to process data in the form of questions, called
queries, efficiently. This is a significant challenge as the queries become
more complicated and as the data grows. This background provides an
introduction to relational databases and query processing before focusing on
the hash join algorithm which is designed for relating data between tables
efficiently.

2.1 Relational Databases

Relational databases are collections of related data that is organized into
tables. These tables are called relations. Each relation consists of a set of
tuples where each tuple in a specific relation contains the same attributes. A
tuple is also referred to as row. An attribute defines a specific type of data
for the tuple. The possible set of values for an attribute is its domain. For
example, if a particular attribute stores a person’s age, the domain of that
attribute is the set of non-negative integers. Attributes are also referred to
as columns in a relation.

Table 2.1: Example Part Re-
lation

Part

partkey name retailprice

1 Box 0.50
2 Hat 25.00
3 Bottle 2.50

Table 2.2: Example Lineitem Relation
Lineitem

linenumber partkey quantity saleprice

1 1 1 0.50
2 1 1 0.50
3 2 3 22.50
4 3 15 2.50

The relational model also describes how each relation in a database is
related to other relations. For example the Lineitem relation in Table 2.2 is
related to the Part relation in Table 2.1 because each tuple in the Lineitem

4

2.1. Relational Databases

relation refers to an individual tuple in the Part relation using its partkey
attribute. By separating the data into the two relations the database is
able to avoid duplicated data every time a specific part is ordered. This is
important because it localizes changes made to a specific part to a single
tuple in the Part relation. If all the data was kept in a single Lineitem
relation the database would need to scan the entire relation looking for
every tuple that contains the specific part that will be changed since the
part was ordered potentially many times.

2.1.1 Cardinality

Cardinality describes the relationship between two tables. The relation-
ship between the Part and Lineitem tables in Section 2.1 is a one-to-many
relationship (1:M) since one Part tuple can be referred to by many Lineitem
tuples but only one Part tuple is referred to by each Lineitem tuple. The
other possible cardinalities are one-to-one (1:1) and many-to-many (M:N).
One-to-one means that any tuple in one table is related to at most one tuple
in the other and vice versa. Many-to-many means that every tuple from
one table can have many related tuples in the other and vice versa. These
relationships are defined by the keys of a relation.

2.1.2 Keys

Relations need a way of identifying which tuples in a particular relation
are related to tuples in other relations. This is accomplished using keys.
A unique key for a relation is defined as a set of attributes in the relation
that uniquely identify each tuple in the relation. A unique key functionally
determines the attributes in its tuple because each unique key is associated
with exactly one tuple. A relation can have more than one unique key. For
example, in the Part relation, one unique key is partkey. Another unique
key is the combination of the partkey and name attributes. A candidate key
is a minimal unique key for a relation. One minimal unique key is selected
to be the primary key for the relation. There is only one primary key for
any relation. In the Part relation the partkey attribute is the primary key.

Foreign keys are used to relate a relation to another in a relational
database. A foreign key references a primary or unique key in another
relation. It is also referred to as a relational constraint because foreign key
values are constrained to the set of values of the primary or unique key in
the other relation. Foreign keys can also be NULL if there is no related tuple
in the referenced relation. In the example Lineitem relation, the attribute

5

2.1. Relational Databases

partkey is a foreign key to the primary key of the Part relation.

2.1.3 Relational Algebra

Relational algebra [Cod70] is used to describe the operations that we want
to do on a database. A selection is a unary operation that returns tuples from
a relation that satisfy a given predicate. A predicate is a function that returns
true or false depending on certain conditions. A selection is represented as
σϕ(R) where R is a relation and ϕ is the predicate. An example of a selection
using the Part relation from Table 2.1 is σretailPrice>1.0(Part). This will
return tuples that have a price greater than $1.00.

A projection is a unary operation that determines a subset of the at-
tributes to return. A projection is written as Πa1,...,an(R) where a1, ..., an
is the set of attribute names that you want. For example, to get a relation
that only includes the name attribute of the Part relation we would use
Πname(Part).

A natural join is a binary operation that joins the tuples of two relations
where their common attributes are equal. A natural join of two relations R
and S is written as R ./ S. An equijoin is a binary operation that joins two
relations according to where their designated attributes are equal. If R has
an attribute a and S has an attribute b then an equijoin on R and S where
a = b is written as R ./a=b S.

2.1.4 Joins

The database can combine the data from its relations to provide different
views of the data. This combination of relations is called a join. For example,
to see the details of which part belongs to a specific Lineitem tuple, the
database will take the foreign key from that tuple and look up the tuple in
Part that it relates to.

The naive way to perform these joins is for the database to take the first
tuple from the first relation and note the value for the key that is being
joined on. It then will need to scan the other relation to find all the tuples
that have the same values for the key. This process is then repeated for each
other tuple in the original relation. This naive join is called a nested-loop
join.

The nested-loop join is the most ubiquitous join algorithm. The basic
version of MySQL and early versions of Microsoft SQL Server only imple-
mented nested-loop join. If an index exists on the attribute that is being
joined, the nested-loop join will use an index based scan to find all the

6

2.1. Relational Databases

matches faster. The index based scan allows the algorithm to avoid loading
every tuple of the relation into memory since it will look up where on disk
each matching tuple exists. However, since index based scans rely on the
attribute that is being joined to have an index built for the join attributes
it not always possible to use it. Because a join can involve millions or more
tuples spanning multiple terabytes, it is important for databases to perform
joins as efficiently as possible. Although there are some cases where the
nested-loop join is the most efficient choice, sort-merge joins and hash joins
are usually much more efficient [Gra99]. A nested loop join is usually the
slowest join type as it runs in O(n2) time where n is the number of tuples
in each relation.

Sort-merge join first sorts both of its input relations on the attribute
that will be joined. It will then scan both relations alternating the input
from which it takes tuples. Because they are sorted, tuples in both relations
with the same join attributes will appear at the same time while scanning.
This allows the merge phase of the join to efficiently produce all matching
tuples in a single interleaved pass over the sorted relations. A sort-merge
join has a large advantage if it knows that its inputs are already sorted such
as using an index based scan of the inputs or if the input relations are the
results of a previous merge join. The sort in the sort-merge join runs in
O(n log n) where n is the number of tuples in each relation. The merge step
runs in linear time. The sort can be avoided if the relations are already in
sorted order which will make the entire sort-merge join run in linear time.
If the relations are not in sorted order, the sort will dominate the run-time
of the join making the entire join run in O(n log n) time.

Each time a tuple from the first relation is joined to a tuple of the
second the database combines the data in the tuples by appending the second
to the first. This new tuple is the combination of the joined tuples. For
example if we are joining Part and Lineitem the resulting relation is the
combination of the two (partkey, name, retailprice, linenumber, partkey,
quantity, saleprice). The result of joining these relations can be seen in
Table 2.3.

2.1.5 Structured Query Language

In order to get information from a database we need to perform queries
on the database. A query is a relational algebra expression that is de-
signed to return the desired data. Relational Database Management Sys-
tems (RDBMS) use a formal language called Structured Query Language
(SQL) [Dat94]. SQL provides an easy to understand language to represent

7

2.2. Hash Join

queries. The database will take the SQL and convert it into relational alge-
bra when executing queries. The SQL for the join that produced Table 2.3
can be seen in Listing 2.1.

Listing 2.1: Query for the Part and Lineitem Join.

select ∗ from Part , Lineitem
where Part . partkey = Lineitem . partkey ;

In this query we want to combine only the tuples in the two tables that
have the same value in their partkey columns. The * is used by the projection
operator. It means that we want to receive all the columns from both input
tables.

Table 2.3: Result of Joining Part and Lineitem Relations
Part-Lineitem

partkey name retailprice linenumber partkey quantity saleprice

1 Box 0.50 1 1 1 0.50
1 Box 0.50 2 1 1 0.50
2 Hat 25.00 3 2 3 22.50
3 Bottle 2.50 4 3 15 2.50

2.1.6 Query Evaluation

RDBMS will usually have multiple join algorithms and other operators
implemented. It is the job of the query optimizer to decide when and how
these algorithms should be used [Gra93]. RDBMS also keep statistics about
the stored data to help with these decisions. When the RDBMS receives a
query such as Listing 2.1 it parses the SQL to find which relations need to
be joined. Using the statistics, the size of the input relations, the cardinality
relationship between the inputs, and the memory available to it the query
optimizer will choose which join algorithms to use for the query.

2.2 Hash Join

To perform a hash-join the database first decides which input it will
choose as the build relation. The build relation is the relation that the
database will build an in-memory hash table for its tuples. This is usually
the smaller of the two inputs. It does this by scanning the build relation
and placing each tuple in the hash table. Once the build relation has been

8

2.2. Hash Join

scanned, the database starts scanning the other relation. This relation is
called the probe relation since the database probes the in-memory hash table
to find matches. The database only needs to check the tuples with the same
hash value.

2.2.1 Hash Functions

A hash function is an algorithm that takes a large set of variable length
input data and maps it to a much smaller fixed length data set. The large
set of data is called the keys while the small set is called the values. A hash
function we can use for an integer primary key relation to map these keys
to x hash buckets could simply be i = k modulo x where i is the bucket
and k is the primary key attribute value for a specific tuple. Because we are
mapping a large set to a smaller one, we know that multiple possible keys
will map to the same value. Each time multiple inputs map to the same
value we get a hash collision. We need to be aware of this limitation when
building the hash tables and selecting a hash function.

2.2.2 Hash Tables

The data structure used to store the tuples in a hash join is called a
hash table. A separate chaining hash table is an implementation of a hash
table that is often used for hash joins. With separate chaining, each bucket
in the table is also a linked list. This allows the buckets to hold more than
one entry each. To make the most efficent use of the table we can chose a
number of buckets equal to the number of tuples that we expect to place
into the table. However, it is possible that we will receive more tuples than
we were expecting or that many of the tuples will hash to a small subset
of the buckets. Separate chaining attempts to keep the hash table efficient
even in these cases. With a good hash function that evenly distributes the
tuples each lookup is O(1). However, in the worst case it reduces the hash
table to a single linked list making the lookups O(n) where n is the number
of tuples in the hash table.

After the hash table has been built we start probing it for matches. We
hash the join attributes of the probe tuple to find the bucket in the table that
may contain matches for the tuple. However, because of the possibility of
hash collisions, we cannot just take all the tuples from the matching bucket
and output joined tuples. For each tuple in the bucket we need to evaluate
if the join attributes match and only if they match can we output a new
tuple. The simple in-memory hash join runs in linear time [ZG90].

9

2.2. Hash Join

2.2.3 Classic Hash Join

When the memory available for the join is large enough to fit the entire
hash table for the build relation, the database can perform an in-memory
hash join. By placing the build relation into a hash table the database
minimizes the number of tuple comparisons to find all the matches since
the database only needs to compare tuples with keys that hash to the same
value.

If the build relation is too large to fit in memory the database loads as
much as it can into the in-memory hash table and then scans the probe
relation to find the relevant matches. Once it has finished scanning the
probe relation the hash table is emptied and the database loads as much of
the remaining build relation’s tuples into the hash table. The probe relation
is then scanned again to find more matches. This is repeated until all of
the tuples from the build relation have been loaded into memory. A major
drawback of the classic hash join is that the probe relation is scanned each
time a partial build relation is loaded into memory.

2.2.4 Grace Hash Join

The Grace Hash Join (GHJ) [KTMo83] was invented by Masaru Kit-
suregawa, Hidehiko Tanaka, Tohru Moto-Oka in 1983. Its name comes from
the GRACE database machine where it was originally implemented. GHJ
avoids scanning the entire probe relation multiple times by partitioning the
build relation into multiple memory sized partitions with a hash function on
the join attributes. These partitions are written to disk. The probe relation
is also partitioned into the same number of partitions with each partition
also written to disk. A hash value is calculated for each tuple using the join
attributes and this value is used to determine which partition the tuple will
be placed into. Since all tuples that have the same hash value are placed
into the same partition, we know that only the tuples in the same partition
of each relation can possibly join together. That is, only the tuples in the
first partition of the build relation can possibly be matches for tuples in the
first partition of the probe relation.

After both relations have been partitioned, the database loads each pair
of partitions by first taking the build partition and creating an in-memory
hash table for its tuples. It then loads the probe partition by scanning it a
tuple at a time and probing the hash table to find matches. It repeats this
until it has processed each pair of partitions.

To decide how large each partition should be the database checks how

10

2.2. Hash Join

much memory it has available for the join and it checks how large it thinks
the build relation will be. It takes these two measurements and divides the
build relation size by available memory to find the number of partitions it
needs. However, since the tuples in the build relation might not be evenly
distributed among the possible values for the join keys the hash table might
be too large to fit in available memory. To solve this issue the database might
choose to use a larger number of partitions than it calculates is needed up
front. If a partition does end up larger than memory the database will
recursively partition the large partition again.

2.2.5 Hybrid Hash Join

In 1984 DeWitt et al improved upon Grace Hash join with Hybrid Hash
Join (HHJ) [DKO+84]. It improves on GHJ by attempting to utilize the
memory available for the join. Although the build relation may be too large
to fit entirely in memory, some fraction of the tuples will fit in memory.
Unlike Grace Hash Join, HHJ keeps the first partition of the build relation
in memory instead of writing it to disk and reading it back in later. This
allows the join algorithm to perform fewer disk operations which are many
orders of magnitude slower than memory operations. Other than keeping
one partition in memory HHJ works in the same way as the Grace Hash
Join.

2.2.6 Dynamic Hash Join

As stated in Section 2.2.4 the tuples in the build relation might not be
evenly distributed across their possible values. The estimated size of the
build relation by the database could also be incorrect. This can cause the
amount of tuples in each partition to be too large or too few. If the number
of tuples in the first partition is too few then HHJ does not provide much
benefit over GHJ. In 1995 DeWitt and Naughton attempted to overcome
this problem with Dynamic Hash Join (DHJ) [DN95, NKT88]. DHJ does
this by dynamically deciding how many of its partitions should be kept in
memory.

When partitioning the build relation, DHJ starts with all of its partitions
in memory. As the partitions start to fill DHJ keeps track of how much
memory each partition is using. If it starts to use too much memory DHJ
will choose a partition and write its contents to disk. This partition is
marked by DHJ as frozen and any new tuples that belong to that partition
will now be written directly to disk while the remainder of the build relation

11

2.2. Hash Join

is being scanned. When the database is finished scanning the build relation,
DHJ will have one or more partitions still in memory. These partitions
combined are expected to fill more of the available memory for the join and
therefore allow DHJ to perform fewer expensive file operations than either
GHJ or HHJ. DHJ implementations can also use a much larger number of
partitions than it expects will be needed to help ensure that the join will
use as much of its available memory as possible while the build relation is
being partitioned [KNT89, ZG90].

In the query in Listing 2.2 we join the two relations in Figure 2.1. Re-
lation B has a foreign key to relation A as seen in Table 2.2.6. In the first
phase of the join A is partitioned on attribute a as shown in Table 2.2.6.
The first partition remains in memory while the other two are written out
to disk. Now that A has been partitioned we now begin to scan relation B.

B is scanned from disk and is also partitioned on attribute a as shown
in Table 2.2.6. Tuples that belong in the first partition are probed against
the in memory partition of A and matching tuples are joined and outputted.
All the tuples that belong to the other partitions are written out to disk for
later processing.

Once B has been entirely scanned, we move onto the clean-up phase of
the join. Here, each pair of partitions from A and B are loaded into memory
and joined. The results of the join are shown in Table 2.2.6.

Listing 2.2: Query for a Binary Hash Join.

select ∗ from A, B
where A. a = B. a ;

Figure 2.1: A and B Binary Relational Algebra

12

2.2. Hash Join

Table 2.4: Example Data for A and B
A B
a name b a colour
1 Ted 1 1 Red
2 Mark 2 2 Green
3 Jack 3 3 Yellow

4 1 Purple
5 2 Blue

Table 2.5: Partitions for A
A1 A2 A3

a name a name a name
1 Ted 2 Mark 3 Jack

Table 2.6: Partitions for B
B1 B2 B3

b a colour b a colour b a colour
1 1 red 2 2 green 3 3 yellow
4 1 purple 5 2 blue

Table 2.7: Results of Joining A and B
AB

a name b colour

1 Ted 1 red
1 Ted 4 purple
2 Mark 2 green
2 Mark 5 blue
3 Jack 3 yellow

13

2.2. Hash Join

2.2.7 Further Improvements on Join Algorithms

With hash based joins, the database needs to hash and partition the
build input, and with sort-merge based joins, the database needs to sort
the inputs before it can start returning joined tuples. These are considered
blocking operations since they block the join from making progress until
they are completed. In some cases you may be only interested in a small
number of join results or would like to start receiving join results quickly.
Progressive Merge Join (PMJ) [DSTW02, DSTW03] allows the database to
start returning results before the sort has been completed on the inputs.
This means the first joined tuples are produced much sooner than with the
traditional sort-merge join but they will not be returned in sorted order. The
authors also indicated that there is an opportunity to use the algorithm to
join multiple inputs at the same time.

Ripple joins [HH99, LEHN02] are a modification of nested loop and hash
joins that can quickly return a small sample of the output tuples that the
join will produce. This small sample can be used as an approximation of
the full join. When Ripple joins are run to completion, they will return
the full join results. XJoin [UF00] is a type of ripple join that takes tuples
from both inputs at the same time. This allows the join to progressively
return output tuples as it receives tuples from both its inputs. Partitioned
Expanding Ripple Join (PR-Join) [CGN10] attempts to increase the rate of
early join results while providing statistical guarantees on the early results.
Hash-Merge Join [MLA04] combines the techniques from PMJ and XJoin to
gain their advantages while avoiding their weaknesses. PermJoin [LKM08]
expands the idea of producing early results to queries that include multiple
joins instead of a single join.

Early Hash Join (EHJ) [Law05] is a variation of dynamic hash join that
processes tuples from both its inputs at the same time to produce join results
as soon as possible. It was implemented in PostgreSQL and combined with
a join cardinality detection algorithm [HCL09]. By knowing the cardinality
of the join, EHJ can increase its efficiency. For example, if the join is 1:1,
every time EHJ finds a match between the two inputs it can return the
result and throw out both tuples from memory since it knows that there is
only one possible match for any tuple in either table. EHJ was not only able
to return its first results sooner than the pre-existing HHJ implementation,
but by exploiting cardinality, it also has a lower total run time than HHJ
for 1:1 and 1:N joins.

Diag-Join [HWM98] is a sort-merge join that avoids the sort phase. Diag-
Join can exploit the fact that many 1:N joins have their matches clustered in

14

2.3. Multi-Way Join Algorithms

the tables. For example, when joining Order and Lineitem from the TPC-H
dataset each Lineitem tuple for a specific Order tuple is very likely to be
directly beside the other Lineitem tuples. The tuples in Lineitem are also
very likely to be in the same order as the tuples in the Order relation. This
allows us to treat both inputs as sorted when performing the join.

Other improvements to join algorithms include modifying sort-merge and
hash joins to take advantage of multi-core CPUs [KKL+09, BLP11]. Also
the efficiency of sorting and hashing can be improved by organizing tuples
in a way that allows for the best use of memory and CPU cache [CM03].
Using bitmaps as join indices [OG95] can make it quicker to find matches
with a simple lookup in a bit vector. Bloom filters, which are bitmaps built
during the build phase of a hash join can be used during the probe phase
to determine if there is the possibility of a match for the probe tuple. This
can give a significant advantage if the tuple maps to an on disk partition.
If the bloom filter does not indicate a possible match for the tuple then we
know that there is no match and we can throw it away instead of writing to
disk for later use.

2.3 Multi-Way Join Algorithms

The basic join operator is normally a binary operator. This means that
if we have more than two relations to join in a single query we need to
combine multiple binary joins in the join plan. For example, if we are joining
three relations we would need two binary joins to combine them. The first
join operator will take its inputs and produce an intermediate relation that
is the combination of its inputs. The second join operator will take this
intermediate result and join it to the third relation. For hash joins this
means that we will need multiple build and partitioning steps to perform
the query. Sort-merge joins will need multiple merge and sort steps but
might be able to avoid re-sorting the intermediate relation if both joins are
on the same keys because it should be sorted already from the first join.

The goal of multi-way join algorithms is to avoid the multiple steps
of the binary joins. Multi-way joins are n-ary operators where n is the
number of input relations to the join. That is, they operate on multiple
relations instead of being limited to exactly two. By avoiding the extra
partitioning and sorting steps that the binary algorithms require, multi-way
join algorithms can avoid a large number of slow disk operations. They also
may be able to use the memory given to the join more efficiently than binary
joins. However, multi-way join algorithms can be much more complex than

15

2.3. Multi-Way Join Algorithms

the binary version, and they may also require more memory for lookup tables
which will reduce the amount available for the join itself.

2.3.1 Hash Teams

Hash teams [GBC98] was invented by Goetz Graefe, Ross Bunker, and
Shaun Cooper at Microsoft and implemented in Microsoft SQL Server 7.0
in 1998. Hash teams perform a multi-way hash join where the inputs share
common hash attributes. Hash teams can also include other types of oper-
ators that use hashing such as grouping as long as they hash on the same
columns. A hash team is split into two separate roles. The hash operators
and a team manager.

The hash operators are responsible for consuming input records and
producing the output records. They manage their hash table and overflow
files. They also write partitions to disk and remove them from memory as
well as loading them back into memory on request of the team manager.

The team manager is separate from the regular plan operators. Memory
management and partition flushing are coordinated externally by the team
manager. It also maps hash values to buckets and buckets to partitions.
When the manager decides that a partition needs to be flushed, it asks all
of the operators in the team to flush the chosen partition.

Listing 2.3: Query for a Three Way Join

select ∗ from A, B, C
where A. a = B. a
and A. a = C. a ;

In the query in Listing 2.3 we join the three relations in Figures 2.2
and 2.3 where B and C both have foreign keys to the primary key of A as
seen in Table 2.3.1. Since A, B, and C are joining on the common attribute a
we can use a hash team to perform a three-way join. First, A is partitioned
on a as in Table 2.3.1. Next, B and C are also partitioned on a as seen in
Tables 2.10 and 2.11.

Now that the data has been partitioned, we can start the probing phase of
the join. We load the first partition of both A and B into memory. We then
read the tuples from the first partion of C one at a time and probe against
the B partition to find each match. Instead of outputing an intermediate
tuple for each match we probe against A to find all the matches for this pair
of tuples. We finally output a tuple that was joined from all three input
tuples. Once all the tuples from the first set of partitions have been joined

16

2.3. Multi-Way Join Algorithms

Table 2.8: Example Data for A, B, and C
A B C
a b a c a
1 1 1 1 3
2 2 2 2 1
3 3 3 3 2

4 1 4 2
5 2 5 1

Table 2.9: Partitions for A
A1 A2 A3

a a a
1 2 3

Table 2.10: Partitions for B
B1 B2 B3

b a b a b a
1 1 2 2 3 3
4 1 5 2

Table 2.11: Partitions for C
C1 C2 C3

c a c a c a
2 1 3 2 1 3
5 1 4 2

Table 2.12: Results of Joining A, B, and C
ABC

a b c

1 1 2
1 1 5
1 4 2
1 4 5
2 2 1
2 2 2
2 5 2
2 5 5
3 3 1

17

2.3. Multi-Way Join Algorithms

Figure 2.2: A, B, and C Binary Relational Algebra

Figure 2.3: A, B, and C N-Way Relational Algebra

we move on to the next partition and repeat until all the partitions have
been joined. The results can be seen in Table 2.3.1.

This process can be used to join any two or more relations as long as
they are joining on a common attribute. In [GBC98], performance gains
of up to 40% were reported. However, because of the limitations of Hash
Teams, there are only a very small number of joins that can take advantage
of the performance gains.

2.3.2 Generalized Hash Teams

Hash teams were extended to Generalized Hash Teams [KKW99] by
Alfons Kemper, Donald Kossman and Christian Wiesner in 1999. Like Hash
Teams, the tables are partitioned one time and the join occurs in one pass.
However, Generalized Hash Teams are not restricted to joins that hash on
the exact same columns as they allow tables to be joined using indirect
partitioning.

18

2.3. Multi-Way Join Algorithms

Listing 2.4: Query for a Three Way Join Using TPC-H Relations

select ∗ from Customer c , Orders o , Lineitem l
where c . custkey = o . custkey
and o . orderkey = l . orderkey ;

Figure 2.4: Customer, Orders, and Lineitem with Binary Joins

Figure 2.5: Customer, Orders, and Lineitem with N-Way Join

Indirect partitioning partitions a relation on an attribute that function-
ally determines the partitioning attribute. The TPC-H [tpc] query from
Listing 2.4 joining the relations Customer, Orders, and LineItem in Fig-
ures 2.4 and 2.5 as seen in Table 2.3.2 can be executed using a Generalized
hash team in the following steps.

First, Customer is partitioned on custkey. This is the smallest relation
and no mapping is needed yet. In a binary join we would choose partition
size based on how may of these tuples can fit in memory at a time. However,
since we are joining multiple relations at a time we need to base the partition
size on how many Orders and Customer can fit in memory together. If we
choose 3 partitions and partition the Customer relation from Table 2.3.2 we

19

2.3. Multi-Way Join Algorithms

Table 2.13: Example Data for TPC-H join
Customer Orders Lineitem
custkey orderkey custkey orderkey partkey
1 1 1 1 1
2 2 2 1 2
3 3 3 2 3

4 1 2 4
5 2 3 1

3 8
4 5
4 6
5 4

end up with a single tuple in each partition as seen in Table 2.3.2.

Table 2.14: Customer Partitions
Customer1 Customer2 Customer3
custkey custkey custkey
1 2 3

Second, Orders is also partitioned on custkey. However, since it also
joins with Lineitem on orderkey we need to build a map between custkey
and orderkey that we can use later to partition Lineitem. In [KKW99],
bitmap approximations are used that consume less space than an exact map
but introduce the possibility of mapping errors.

We require a separate bitmap of size n for each partition. To build the
bitmaps we take each tuple from Orders and place it in a partition X as
determined by its custkey. We then set the bit at index I of bitmap X where
I = (orderkey+ 1) mod n. Note that due to collisions in the hashing of the
key to the bitmap size, it is possible for a bit at index I to be set in multiple
partition bitmaps which results in mapping errors called false drops. A false
drop is when a tuple gets put into a partition where it does not belong.
These errors do not affect algorithm correctness but do affect performance
as each false drop can require additional CPU time and disk I/O.

Using the Orders relation from Table 2.3.2 we take the first tuple which
maps to partition Orders1. This tuple has an orderkey of 1 which corre-
sponds to bit index (1 + 1) mod 4 = 2. Therefore we set the second bit
of bitmap B1 to 1. After partitioning Orders we get the partitions in Ta-
ble 2.3.2 and bitmaps in Table 2.3.2. This mapping will cause false drops
since both bitmaps B1 and B2 have their third bit set.

20

2.3. Multi-Way Join Algorithms

Table 2.15: Orders Partitions
Orders1 Orders2 Orders3
orderkey custkey orderkey custkey orderkey custkey
1 1 2 2 3 3
4 1 5 2

Table 2.16: Bitmap for orderkey to custkey
B1 B2 B3

0 0 1

1 0 0

1 1 0

0 1 0

Now partition Lineitem using the bitmaps created in the previous step.
For each tuple in Lineitem, calculate the bit index I using the orderkey.
Place the tuple in each partition that has bit I set. If bit I is set in more
than one bitmap there is a false drop for each additional partition. However,
if no partition has bit I the tuple can be safely discarded as it will not join
with any tuple from the Orders relation. Table 2.3.2 shows the result of
partitioning Lineitem. There are three tuples that appear in both partition
Lineitem1 and Lineitem2 as false drops.

Table 2.17: Lineitem Partitions. False Drops Appear Bold.
Lineitem1 Lineitem2 Lineitem3

orderkey partkey orderkey partkey orderkey partkey
1 1 1 1 3 1
1 2 1 2 3 8
4 5 2 3
4 6 2 4
5 4 5 4

Now that all the inputs have been partitioned we start the probe phase of
the join. First, load the first partition of Customer and Orders into memory.
Next, load each tuple from Lineitem one at a time into memory and use it to
probe against Orders. For each match, proceed to probe against Customer
and output a new tuple for each match. Once all the tuples have been read
from the Lineitem partition throw away the current tuples in memory and
repeat the steps for each remaining partition. The results of the join are in

21

2.3. Multi-Way Join Algorithms

Table 2.3.2.

Table 2.18: Results of Joining Customer, Orders, and Lineitem.
Results

custkey orderkey partkey

1 1 1
1 1 2
1 4 5
1 4 6
2 2 3
2 2 4
2 5 4
3 3 1
3 3 8

The Generalized hash team algorithm as described does not have a “hy-
brid step” where it uses additional memory to buffer tuples beyond what
is required for partitioning. Further, the bitmaps must be relatively large
multiples of the input relation size to reduce the number of false drops.
Consequently, even the bitmap approximation is memory intensive as the
number of partitions increases. Each false drop creates additional CPU
and disk I/O costs. Creating and using the bitmaps also increase the CPU
costs. The query optimizer has to be modified to include these costs when
determining whether to use Generalized Hash Teams.

2.3.3 SHARP

Another multi-way join algorithm is the Streaming, Highly Adapative,
Run-time Planner (SHARP) [BD06]. SHARP was invented by Pedro Bizarro
and David DeWitt at the University of Wisconsin - Madison in 2006. Like
Hash Teams, SHARP is restricted to a specific set of joins. In this case it is
restricted to star joins. The key feature of star joins is that all tables join
with a single central fact table. The other tables are called dimension tables.
Star joins are very common in data warehousing which means the SHARP
algorithm can have practical uses. In the example in Table 2.3.3, the fact
table is Saleitem and the dimension tables are Customer and Product.

22

2.3. Multi-Way Join Algorithms

Listing 2.5: Query for a Three Way Star Join

select ∗ from Customer c , Product p , Sa le i tem s
where c . id = s . c i d
and p . id = s . p id ;

Figure 2.6: Customer, Product, and Saleitem Binary Join.

Figure 2.7: Customer, Product, and Saleitem N-Way Join.

SHARP joins multiple relations by performing multi-dimensional parti-
tioning on the probe relation. An example star query as seen in Listing 2.5
involves the relations in Table 2.3.3. In SHARP the build relations are par-
titioned in one dimension into partitions that are as big as can fit in the
memory allotted to each input relation. In this case Customer is partitioned
on id into two partitions as seen in Table 2.3.3. Product is partitioned on id
into three partitions as seen in Table 2.3.3.

Saleitem is the probe relation. It is partitioned simultaneously in two
dimensions on (c id,p id). The number of partitions of the probe table is
the product of the number of partitions in each build input. For example,
since Customer was partitioned into 2 partitions and Product partitioned
into 3 partitions, Saleitem is partitioned into 2 ∗ 3 = 6 partitions as seen in

23

2.3. Multi-Way Join Algorithms

Table 2.19: Example Data for a Star Schema.
Customer Product Saleitem
id name id name c id p id
1 Bob 1 Hammer 1 1
2 Joe 2 Drill 1 2
3 Greg 3 Screwdriver 2 3
4 Susan 4 Scissors 2 6

5 Toolbox 3 1
6 Knife 3 5

2 5
4 1
3 6

Table 2.20: Partitions for Customer.
Customer1 Customer2
id name id name
1 Bob 2 Joe
3 Greg 4 Susan

Table 2.21: Partitions for Product.
Product1 Product2 Product3
id name id name id name
1 Hammer 2 Drill 3 Screwdriver
4 Scissors 5 Toolbox 6 Knife

Table 2.22: Partitions for Saleitem.
Saleitem1 Saleitem2 Saleitem3

c id p id c id p id c id p id
1 1 1 2 3 6
3 1 3 5

Saleitem4 Saleitem5 Saleitem6

c id p id c id p id c id p id
4 1 2 5 2 3

2 6

24

2.3. Multi-Way Join Algorithms

Table 2.3.3.
For a tuple to be generated in the memory phase, the tuple of Saleitem

must have both its matching Customer and Product partitions in memory.
Otherwise, the probe tuple is written to disk. The cleanup pass involves
iterating through all partition combinations. The algorithm loads on-disk
partitions of the probe relation once and on-disk partitions of the build
relation i a number of times equal to

∏i−1
j=1Xj , where Xj is the number

of partitions for build relation j. Reading build partitions multiple times
may still be faster than materializing intermediate results, and the operator
benefits from memory sharing during partitioning and the ability to adapt
during its execution.

Table 2.23: Star Join Results.
Results

c id c name p id p name

1 Bob 1 Hammer
3 Greg 1 Hammer
1 Bob 2 Drill
3 Greg 5 Toolbox
3 Greg 6 Knife
4 Susan 1 Hammer
2 Joe 5 Toolbox
2 Joe 3 Screwdriver
2 Joe 6 Knife

In our example, we first load Partition 1 of both Customer and Product
and probe with Partition (1,1) of Saleitem. Next we leave partition 1 of
Customer in memory and replace Partition 1 of Product with Partition 2. We
then probe with Partition (1,2) of Saleitem. This is repeated with Partition
3 of Product and Partition (1,3) of Saleitem.

Now that we have probed with all the tuples of Saleitem that can join
with Partition 1 of Customer we can replace it with Partition 2 of Customer.
We load each Partition of Product again as in the previous three steps and
probe with Partition (2,1), (2,2), and (2,3) of Saleitem. In our example,
each Partition of the Customer and Saleitem relations were loaded one time
each and each Partition of Product was loaded twice. The results of the join
can be seen in Table 2.3.3.

25

2.3. Multi-Way Join Algorithms

2.3.4 Summary

The multi-way join algorithms in this section all attempt to improve
upon the standard dynamic hash join. Hash teams avoids the multiple par-
titioning steps of DHJ to reduce the amount of I/Os the join must perform.
Its use is limited to specific queries. Generalized Hash Teams extends Hash
Teams to more queries but adds extra complexity and memory requirements.
SHARP attempts to use memory more efficiently than DHJ but is limited
to star queries. Table 2.3.4 shows the query types that each algorithm can
be used for.

Table 2.24: Multi-way Join Algorithms and Queries
Algorithm Queries

Hash teams
Any query performing an inner join on identical at-
tributes in all relations.

Generalized Hash Teams
Any query performing an inner join on direct and in-
direct attributes. Requires extra memory for indirect
queries.

SHARP
Star queries only. Of limited use outside of data ware-
housing.

26

Chapter 3

Multi-Way Join
Implementation

Performance of the multi-way join algorithms depends on the implemen-
tation. Multiple implementations of the algorithms allow for testing the
algorithms in the different conditions and environments that database sys-
tems may encounter. It allows for testing the algorithms in very controlled
and ideal conditions as well as in real world conditions. To get a clearer
view of the effectiveness of these algorithms a custom implementation in
the open source database system PostgreSQL was created as well as a stan-
dalone C++ implementation. Three of the implementation challenges are
as follows:

− Partitioning - The standard Generalized Hash Teams algorithm does
not have a hybrid step. Our implementation calculates the expected
number of partitions required and uses a multiple of this number to
partially compensate for skew. Dynamic partition flushing allows a
“hybrid” component to improve performance.

− Materialization - An algorithm may either use lazy materialization
of intermediate results [BD06, Law08] where no intermediate tuples
are generated or eager materialization by generating all intermediate
tuples.

− Mapping - The algorithm uses either an exact mapping or bit map-
ping for indirect partitioning.

3.1 Implementation in PostgreSQL

To test the effectiveness of the multi-way join algorithms in a real world
setting, the algorithms were implemented in the open source database sys-
tem PostgreSQL [Pos]. PostgreSQL is an advanced enterprise class database
system. It includes a query planner and optimizer, memory manager, and a
hybrid hash join implementation.

27

3.2. Standalone C++ Implementation

Adding the Generalized Hash Teams and SHARP multi-way join algo-
rithms involved the addition of six source code files with more than 5000
lines of code. Each join had a file defining its hash table structure and
operations and a file defining the operator in iterator form. Generalized
Hash Teams (GHT) had two mapper implementations: exact mapper and
bit mapper.

In comparison to implementing the join algorithms themselves, a much
harder task was modifying the optimizer and execution system to use them.
The basic issue is both of these systems assume a maximum of two inputs per
operator, hence there are many changes required to basic data structures to
support a node with more than two inputs. The changes can be summarized
as follows:

− Create a multi-way hash node structure for use in logical query trees
and join optimization planning.

− Create a multi-way execution node that stores the state necessary for
iterator execution.

− Modify all routines associated with the planner that assume two chil-
dren nodes including EXPLAIN feature, etc.

− Create multi-way hash and join clauses (quals) from binary clauses.

− Create cost functions for the multi-way joins that conform to Post-
greSQL cost functions which include both I/O and CPU costs.

− Modify the mapping from logical query trees to execution plan to
support post-optimization creation of multi-way join plans.

The changes were made as general as possible. However, there are lim-
itations on what queries can be successfully converted and executed with
multi-way joins.

3.2 Standalone C++ Implementation

In order to directly compare the performance of the Multi-Way join
algorithms to DHJ the algorithms were implemented in C++. This allowed
the algorithms to be isolated from the entire system as the environment
can be strictly controlled without the overhead of PostgreSQL. Unlike the
PostgreSQL implementation, all the supporting data structures, algorithms,
and memory management also had to be implemented. This includes all code

28

3.2. Standalone C++ Implementation

that defines relations, tuples, attributes, and other basic relational database
data structures.

Each algorithm was implemented in a separate source file and extended
the same base Operator class. All the algorithms were implemented using
the same hashing algorithms and hash tables that were implemented in the
program. The source contains 8400 lines of code across 46 files. The source
code can be found online [Hen]. Source was built using Visual Studio 2012.

A Tuple class was created to store and manipulate tuple data. The class
consists of a pointer to the tuple data stored as a byte array and functions
to access and manipulate that data. Table 3.2 shows how the tuple data is
stored in memory.

Table 3.1: Tuple Data Format
Tuple Byte Array

1 Byte 1 Byte 2 Bytes 2 Bytes per Attribute Data Bytes

Header Number of Attributes Data Size Attribute Offsets Attributes

Each relation has its tuples stored on disk in pages in the format in
Table 3.2. Each page is an array of bytes in the format in Table 3.2. Each
page is 4096 bytes long and holds as many tuples as will fit in the 4096 bytes.
The current page format does not support splitting tuples that are too large
to fit in a page between multiple pages. When reading tuples from disk each
page is read one at a time. Once a page has been read into memory all its
tuples are available to be used. In general the Tuple class will contain a
pointer to the tuple data stored in a page.

Table 3.2: Relation Data Format
Relation Byte Array

4096 Bytes 4096 Bytes ... 4096 Bytes

Page 1 Page 2 ... Page n

Table 3.3: Page Data Format
Page Byte Array

2 Bytes 2 Bytes 2 Bytes per Attribute Data Bytes

Number of Tuples Offset of First Free Byte Tuple Offsets Tuples

The hash tables used in the C++ implementation use separate chaining.

29

3.2. Standalone C++ Implementation

Each hash table is an array of linked lists. Hash collisions are handled by
adding each tuple that hashes to a specific array index to the end of the
linked list for that array index. The array length is set to the number of
tuples that will be stored in it to obtain a load factor of 1. The load factor
α of a table of size m with n tuples is calculated with α = n/m. A low load
factor as well as a good hash function is needed to keep the average cost of
a hash lookup as small as possible. This is important since each probe tuple
that is looking for its matches will need to be checked against every tuple
stored in the hash table that hashes to the same array index as the probe
tuple.

When in the probe phase of a join each tuple of the probe relation is read
into memory, hashed and then probed against the existing in memory hash
table. Each tuple in the hash table that matches the hash of the probe tuple
must then be checked to see if its join attributes match the join attributes
of the probe tuple. If the tuples have more than one attribute that they are
joined on or they are joining on non-integer attributes this can be a very
CPU intensive operation.

The C++ implementation does not include a query parser or optimizer.
Each query was hand optimized and hard coded into the program. Multiple
runs of the program was scripted using Windows PowerShell.

30

Chapter 4

Experimental Results

To provide a good analysis of the multi-way join algorithms, they were
tested in many different situations. This provides a clear idea of when these
algorithms may provide an advantage over the existing join algorithms as
well as when they do not. Testing the algorithms in PostgreSQL as well as
in a stand-alone environment gives a better picture of their performance in
different situations.

4.1 PostgreSQL Results

All the PostgreSQL experiments were executed on a dual processor AMD
Opteron 2350 Quad Core at 2.0 GHz with 32GB of RAM and two 7200 RPM,
1TB hard drives running 64-bit SUSE Linux. Similar results were demon-
strated when running the experiments on a Windows platform. PostgreSQL
version 8.3.1 was used, and the source code modified as described. Since
PostgreSQL includes a hybrid hash join (HHJ) algorithm by default, all the
multi-way join algorithms were compared against it in order to see how they
performed against an optimized and tested hash join algorithm.

The data set was TPC-H benchmark [tpc] scale factor 10 GB1 (see Fig-
ure 4.1) generated using Microsoft’s TPC-H generator [CN], which supports
generation of skewed data sets with a Zipfian distribution. The results are
for a skewed data set with z=1. Experiments tested different join memory
sizes configured using the work mem parameter. The memory size is given on
a per join basis. Multi-way operators get a multiple of the join memory size.
For instance, a three-way operator gets 2*work mem for its three inputs.

4.1.1 Direct Partitioning with Hash Teams

One experiment was a three-way join of Orders relations. The join was on
the orderkey and produced 15 million results. The results are in Figure 4.2

1 The TPC-H data set scale factor 100 GB was tested on the hardware but run times
of many hours to days made it impractical for the tests.

31

4.1. PostgreSQL Results

Relation Tuple Size #Tuples Relation Size
Customer 194 B 1.5 million 284 MB
Supplier 184 B 100,000 18 MB

Part 173 B 2 million 323 MB
Orders 147 B 15 million 2097 MB

PartSupp 182 B 8 million 1392 MB
LineItem 162 B 60 million 9270 MB

Figure 4.1: TPC-H 10 GB Relation Sizes

(time) and Figure 4.3 (IOs). In these figures, Hybrid Hash Join referred to
as HHJ was compared with Hash Teams referred to as N-way (direct).

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (direct)

Figure 4: Three Way Orders Join (Time)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (direct)

Figure 5: Three Way Orders Join (I/O bytes)

Another direct partitioning join hashes Part, PartSupp
and LineItem on partkey and joins PartSupp and LineItem
on both partkey and suppkey. The results are in Figure 6
(time) and Figure 7 (IOs).

Unlike the one-to-one join, this join exhibited different
performance based on the implementations. The original
implementation (not shown) had the multi-way join being
slower over all memory sizes by 5-20% even though it had
performed significantly less I/O. The difference turned out
to be significantly more hash and join qualifier (clause) eval-
uations for the multi-way operator. Several optimizations
were made to reduce the number of qualifier evaluations and
probes to below that of HHJ. The multi-way join does not
have superior performance over all memory sizes. The ma-
jor improvement in I/Os at 500 MB is due to the multi-way
operator sharing memory between the inputs as the smaller
input Part fits in its 500 MB allocation and can provide an
extra 187 MB to buffer PartSupp tuples.

To test the potential benefit of eager materialization, we
modified the implementation to allow for materialization of
intermediate tuples unconstrained by memory limitations.
Thus, the materialization implementation is unrealistically
good as it could exceed the space allocated for the join con-
siderably without paying any extra I/O or memory costs.

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (direct,lazy)

N-way (direct,eager)

Figure 6: Part-PartSupp-LineItem (Time)

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (direct)

Figure 7: Part-PartSupp-LineItem (I/O bytes)

The result was only a 2% improvement in time2.
The clear impact of probing cost on the results moti-

vate the benefit of adaptive probe orders (not implemented)
which may improve results. CPU costs are often considered
a secondary factor to I/Os for join algorithms, although in
practice the costs can be quite significant.

6.2 Indirect Partitioning
Indirect partitioning was tested with a join of Customer,

Orders, and LineItem. We tested the original bit mapper
with no hybrid component, an exact mapper with a hy-
brid component, a bit mapper with a hybrid component,
and HHJ. The bit mapper with no hybrid component used
its entire memory allocation during partitioning for the bit
mapper. The hybrid bit mapper used 12 bytes * number
of tuples in the Orders relation as its bit map size which is
the same amount of space used by the exact mapper. The
results are in Figure 8 (time) and Figure 9 (IOs).

For this join, the multi-way algorithms had fewer I/Os but
that did not always translate to a time advantage unless the
difference was large. The hybrid stage is a major benefit as
the join memory increases. HHJ had worse performance on a
memory jump from 2000 MB to 2500 MB despite performing

2The y-axis origin is at 500 seconds to show the difference
more clearly.

Figure 4.2: Time for Three Way Orders Join

The results clearly show a benefit for a multi-way join with about a 60%
reduction in I/O bytes for the join and approximately 12-15% improvement
in overall time. The multi-way join performs fewer I/Os by saving one
partitioning step. It also saves by not materializing intermediate tuples in
memory and by reducing the number of probes performed. The multi-way
join continues to be faster even for larger memory sizes and a completely
in-memory join.

Another direct partitioning join hashes Part, PartSupp and LineItem
on partkey and joins PartSupp and LineItem on both partkey and suppkey.
The results are in Figure 4.4 (time) and Figure 4.5 (IOs). In this test

32

4.1. PostgreSQL Results

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (direct)

Figure 4: Three Way Orders Join (Time)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (direct)

Figure 5: Three Way Orders Join (I/O bytes)

Another direct partitioning join hashes Part, PartSupp
and LineItem on partkey and joins PartSupp and LineItem
on both partkey and suppkey. The results are in Figure 6
(time) and Figure 7 (IOs).

Unlike the one-to-one join, this join exhibited different
performance based on the implementations. The original
implementation (not shown) had the multi-way join being
slower over all memory sizes by 5-20% even though it had
performed significantly less I/O. The difference turned out
to be significantly more hash and join qualifier (clause) eval-
uations for the multi-way operator. Several optimizations
were made to reduce the number of qualifier evaluations and
probes to below that of HHJ. The multi-way join does not
have superior performance over all memory sizes. The ma-
jor improvement in I/Os at 500 MB is due to the multi-way
operator sharing memory between the inputs as the smaller
input Part fits in its 500 MB allocation and can provide an
extra 187 MB to buffer PartSupp tuples.

To test the potential benefit of eager materialization, we
modified the implementation to allow for materialization of
intermediate tuples unconstrained by memory limitations.
Thus, the materialization implementation is unrealistically
good as it could exceed the space allocated for the join con-
siderably without paying any extra I/O or memory costs.

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (direct,lazy)

N-way (direct,eager)

Figure 6: Part-PartSupp-LineItem (Time)

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (direct)

Figure 7: Part-PartSupp-LineItem (I/O bytes)

The result was only a 2% improvement in time2.
The clear impact of probing cost on the results moti-

vate the benefit of adaptive probe orders (not implemented)
which may improve results. CPU costs are often considered
a secondary factor to I/Os for join algorithms, although in
practice the costs can be quite significant.

6.2 Indirect Partitioning
Indirect partitioning was tested with a join of Customer,

Orders, and LineItem. We tested the original bit mapper
with no hybrid component, an exact mapper with a hy-
brid component, a bit mapper with a hybrid component,
and HHJ. The bit mapper with no hybrid component used
its entire memory allocation during partitioning for the bit
mapper. The hybrid bit mapper used 12 bytes * number
of tuples in the Orders relation as its bit map size which is
the same amount of space used by the exact mapper. The
results are in Figure 8 (time) and Figure 9 (IOs).

For this join, the multi-way algorithms had fewer I/Os but
that did not always translate to a time advantage unless the
difference was large. The hybrid stage is a major benefit as
the join memory increases. HHJ had worse performance on a
memory jump from 2000 MB to 2500 MB despite performing

2The y-axis origin is at 500 seconds to show the difference
more clearly.

Figure 4.3: I/O Bytes for Three Way Orders Join

HHJ was compared against Hash Teams using lazy materialization (N-way
(direct,lazy)) as well as Hash Teams using eager materialization (N-way
(direct,eager)).

To test the potential benefit of eager materialization, we modified the
implementation to allow for materialization of intermediate tuples uncon-
strained by memory limitations. Thus, the materialization implementation
is unrealistically good as it could exceed the space allocated for the join
considerably without paying any extra I/O or memory costs. The result
was only a 2% improvement in time2.

Unlike the one-to-one join, this join exhibited different performance
based on the implementations. The original implementation (not shown)
had the multi-way join being slower over all memory sizes by 5-20% even
though it had performed significantly less I/O. The difference turned out
to be significantly more hash and join qualifier (clause) evaluations for the
multi-way operator. Several optimizations were made to reduce the number
of qualifier evaluations and probes to below that of HHJ. The multi-way
join does not have superior performance over all memory sizes. The major
improvement in I/Os at 500 MB is due to the multi-way operator sharing
memory between the inputs as the smaller input Part fits in its 500 MB
allocation and can provide an extra 187 MB to buffer PartSupp tuples.

2The y-axis origin is at 500 seconds to show the difference more clearly.

33

4.1. PostgreSQL Results

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (direct,lazy)

N-way (direct,eager)

Figure 4.4: Time for Part-PartSupp-Lineitem

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (direct)

Figure 4.5: I/O Bytes for Part-PartSupp-Lineitem

34

4.1. PostgreSQL Results

The clear impact of probing cost on the results motivate the benefit of
adaptive probe orders (not implemented) which may improve results. CPU
costs are often considered a secondary factor to I/Os for join algorithms,
although in practice the costs can be quite significant.

4.1.2 Indirect Partitioning with Generalized Hash Teams

Indirect partitioning was tested with a join of the Customer, Orders,
and LineItem relations. We tested the original bit mapper with no hybrid
component, an exact mapper with a hybrid component, a bit mapper with
a hybrid component, and HHJ. The bit mapper with no hybrid component
used its entire memory allocation during partitioning for the bit mapper.
The hybrid bit mapper used 12 bytes * number of tuples in the Orders
relation as its bit map size which is the same amount of space used by the
exact mapper. The results are in Figure 4.6 (time) and Figure 4.7 (IOs).

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (exact,hybrid)

N-way (bitmap,no hybrid)
N-way (bitmap,hybrid)

Figure 4.6: Time for Customer-Orders-LineItem

For this join, the multi-way algorithms had fewer I/Os but that did not
always translate to a time advantage unless the difference was large. The
hybrid stage is a major benefit as the join memory increases. HHJ had
worse performance on a memory jump from 2000 MB to 2500 MB despite
performing 20GB fewer I/Os! The difference was the optimizer changed the
query plan to join Orders with LineItem then the result with Customer at
2500 MB where previously Customer and Orders were joined first. This new

35

4.1. PostgreSQL Results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (exact,hybrid)

N-way (bitmap,no hybrid)
N-way (bitmap,hybrid)

Figure 4.7: I/O bytes for Customer-Orders-LineItem

ordering produced double the number of probes and join clause evaluations
and ended up being slower overall.

The major limitation was the mapper size. The mappers did not produce
results for the smaller memory sizes of 32 MB and 64 MB as the mapper
could not be memory-resident. For 128 MB, the bit mapper performed
significantly more I/Os and had larger time than the exact mapper due to
the number of false drops. The number of false drops was greatly reduced
as the memory increased. The bit mapper without a hybrid component
continued to read/write all relations and was never faster than HHJ.

4.1.3 Multi-Dimensional Partitioning with SHARP

One of the star join tests combined Part, Orders, and LineItem. The
performance of the SHARP algorithm versus hybrid hash join is in Figures
4.8 and 4.9. SHARP performed 50-100% fewer I/Os in bytes and was about
5-30% faster. Only at very small memory sizes did the performance become
slower than HHJ, and it was faster in the full memory case.

36

4.1. PostgreSQL Results

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (exact,hybrid)

N-way (bitmap,no hybrid)
N-way (bitmap,hybrid)

Figure 8: Customer-Orders-LineItem (Time)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (exact,hybrid)

N-way (bitmap,no hybrid)
N-way (bitmap,hybrid)

Figure 9: Customer-Orders-LineItem (I/O bytes)

20GB fewer I/Os! The difference was the optimizer changed
the query plan to join Orders with LineItem then the result
with Customer at 2500 MB where previously Customer and
Orders were joined first. This new ordering produced double
the number of probes and join clause evaluations and ended
up being slower overall.

The major limitation was the mapper size. The map-
pers did not produce results for the smaller memory sizes
of 32 MB and 64 MB as the mapper could not be memory-
resident. For 128 MB, the bit mapper performed signifi-
cantly more I/Os and had larger time than the exact mapper
due to the number of false drops. The number of false drops
was greatly reduced as the memory increased. The bit map-
per without a hybrid component continued to read/write all
relations and was never faster than HHJ.

6.3 Multi-Dimensional Partitioning
One of the star join tests combined Part, Orders, and

LineItem. The performance of the SHARP algorithm versus
hybrid hash join is in Figures 10 and 11. SHARP performed
50-100% fewer I/Os in bytes and was about 5-30% faster.
Only at very small memory sizes did the performance be-
come slower than HHJ, and it was faster in the full memory
case.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (multi)

Figure 10: Part-Orders-LineItem (time)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (multi)

Figure 11: Part-Orders-LineItem (I/O bytes)

6.4 Results Discussion
Multi-way joins can be added to the optimizer using post-

optimization. Post-optimization has a low barrier to entry
and catches many of the opportunities for exploiting multi-
way joins. The cost functions allow the optimizer to choose
between the binary and multi-way operators.

Implementing efficient, robust, and scaleable multi-way
joins is a non-trivial challenge. Multi-way joins being adap-
tive is great, but it is ideal if they also have improved or
comparable performance to binary plans when the optimizer
is “correct” in its optimization. The experimental results
clearly show that multi-way performance depends on the
join type. Direct partitioning joins are efficient and are
clearly superior when the hash attributes uniquely iden-
tify tuples in each input. However in that case, it is also
likely that interesting orders based on sorting may apply
(as the relations may be sorted on the primary/unique at-
tribute) which would have even better performance. Direct
partitioning joins where a tuple in one input may match
with many in the other inputs has better performance in
some cases primarily due to sharing memory over all inputs,
but despite numerous optimizations, we have been unable to
demonstrate improved performance over all memory sizes,
especially smaller memory sizes. Lazy materialization is su-
perior to eager materialization as it saves both memory and

Figure 4.8: Time for Part-Orders-LineItem
 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (exact,hybrid)

N-way (bitmap,no hybrid)
N-way (bitmap,hybrid)

Figure 8: Customer-Orders-LineItem (Time)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (exact,hybrid)

N-way (bitmap,no hybrid)
N-way (bitmap,hybrid)

Figure 9: Customer-Orders-LineItem (I/O bytes)

20GB fewer I/Os! The difference was the optimizer changed
the query plan to join Orders with LineItem then the result
with Customer at 2500 MB where previously Customer and
Orders were joined first. This new ordering produced double
the number of probes and join clause evaluations and ended
up being slower overall.

The major limitation was the mapper size. The map-
pers did not produce results for the smaller memory sizes
of 32 MB and 64 MB as the mapper could not be memory-
resident. For 128 MB, the bit mapper performed signifi-
cantly more I/Os and had larger time than the exact mapper
due to the number of false drops. The number of false drops
was greatly reduced as the memory increased. The bit map-
per without a hybrid component continued to read/write all
relations and was never faster than HHJ.

6.3 Multi-Dimensional Partitioning
One of the star join tests combined Part, Orders, and

LineItem. The performance of the SHARP algorithm versus
hybrid hash join is in Figures 10 and 11. SHARP performed
50-100% fewer I/Os in bytes and was about 5-30% faster.
Only at very small memory sizes did the performance be-
come slower than HHJ, and it was faster in the full memory
case.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Memory Size (MB)

HHJ
N-way (multi)

Figure 10: Part-Orders-LineItem (time)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 500 1000 1500 2000 2500 3000

I/O
s

(M
B

)

Memory Size (MB)

HHJ
N-way (multi)

Figure 11: Part-Orders-LineItem (I/O bytes)

6.4 Results Discussion
Multi-way joins can be added to the optimizer using post-

optimization. Post-optimization has a low barrier to entry
and catches many of the opportunities for exploiting multi-
way joins. The cost functions allow the optimizer to choose
between the binary and multi-way operators.

Implementing efficient, robust, and scaleable multi-way
joins is a non-trivial challenge. Multi-way joins being adap-
tive is great, but it is ideal if they also have improved or
comparable performance to binary plans when the optimizer
is “correct” in its optimization. The experimental results
clearly show that multi-way performance depends on the
join type. Direct partitioning joins are efficient and are
clearly superior when the hash attributes uniquely iden-
tify tuples in each input. However in that case, it is also
likely that interesting orders based on sorting may apply
(as the relations may be sorted on the primary/unique at-
tribute) which would have even better performance. Direct
partitioning joins where a tuple in one input may match
with many in the other inputs has better performance in
some cases primarily due to sharing memory over all inputs,
but despite numerous optimizations, we have been unable to
demonstrate improved performance over all memory sizes,
especially smaller memory sizes. Lazy materialization is su-
perior to eager materialization as it saves both memory and

Figure 4.9: I/O Bytes for Part-Orders-LineItem

37

4.2. Standalone C++ Results

4.2 Standalone C++ Results

The standalone implementation of the join algorithms allows for the
algorithms to be tested in isolation from their environment. This allows for
the algorithms to be tested without the overhead of the caching and memory
management of PostgreSQL. Each aspect of the test can be easily controlled.

All experiments were performed on a PC running Windows 8 with a
quad core Intel Core i7 2600K processor at 4.4GHz with 24GB RAM and a
512 GB Crucial M4 solid state drive.

4.2.1 Database Schema

The database used to compare the algorithms was a 10GB TPC-H [tpc]
database. Figure 4.1 describes the size of each relation.

4.2.2 Direct Partitioning with Hash Teams

Hash Teams was compared to DHJ using the query in Listing 4.1. Both
left deep and right deep DHJ query plans were evaluated. The query was
repeated ten times for each memory size. The amount of memory for
each operator in the join plan was calculated using the following formula.
memory = memorySize ∗ (n − 1) where n is the number of inputs to the
operator. Since DHJ is a binary operator, both DHJ operators in the join
plan were given memorySize bytes of memory. Hash Teams is a n-ary op-
erator. Since Hash Teams had three inputs the solitary hash team received
2×memorySize bytes of memory.

Listing 4.1: Query for a Three Way Join on the Orders Relation

select ∗ from Orders o1 , Orders o2 , Orders o3
where o1 . orderkey = o2 . orderkey
and o2 . orderkey = o3 . orderkey ;

Figure 4.11 shows that Hash Teams performed 50% to 100% fewer I/Os
than the left deep DHJ query. The right deep DHJ query is able to perform
zero I/Os for the same memory sizes but the I/Os increase at a much faster
rate than Hash Teams. The right deep plan uses fewer I/Os than the left
deep plan because it always chooses a single Order relation to partition for
both DHJ operators while the second operator in the left deep plan partitions
the result of the first DHJ operator.

Figure 4.10 shows that Hash Teams performed 20% faster than the right
deep DHJ plan at all memory sizes and up to 42% faster than the left

38

4.2. Standalone C++ Results

0

20

40

60

80

100

120

391 781 1172 1563 1953 2344 2734 3125 3516 3906 4297 4688

Ti
m

e
 (

se
c)

Memory Size (MB)

DHJ Left Deep

DHJ Right Deep

Hash Teams

Figure 4.10: Time for 3-Way TPC-H Order Join

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

391 781 1172 1563 1953 2344 2734 3125 3516 3906 4297 4688

I/
O

s
(M

B
)

Memory Size (MB)

DHJ Left Deep

DHJ Right Deep

Hash Teams

Figure 4.11: I/O Bytes for 3-Way TPC-H Order Join

39

4.2. Standalone C++ Results

deep DHJ plan. This is mostly due to DHJ requiring multiple partitioning
steps and intermediate tuple materialization. Since Hash Teams only has
one partitioning step and only materializes tuples when producing the final
output it is able to gain a significant advantage over the widely used dynamic
hash join.

4.2.3 Indirect Partitioning with Generalized Hash Teams

Generalized Hash Teams (GHT) were compared to DHJ using the query
in listing 2.4. Both left deep and right deep DHJ query plans were evaluated.
The query was repeated five times for each memory size. First, GHT was
evaluated using a large amount of memory for the map in order to ensure
that there were no false drops. This is to show the behaviour of GHT in its
best possible conditions as the memory for the map is not counted against
the memory for the join. Second, GHT was evaluated with the map memory
counted against the join memory to show its behaviour in normal conditions.
The memory sizes were calculated the same way as in Section 4.2.2.

0

20

40

60

80

100

120

140

160

180

391 781 1172 1563 1953 2344 2734 3125 3516 3906 4297 4688

Ti
m

e
 (

se
c)

Memory Size (MB)

DHJ Left Deep

DHJ Right Deep

GHT

Figure 4.12: Time for 3-Way TPC-H Customer, Orders, Lineitem Join

Figure 4.13 shows that Generalized Hash Teams performed 70% to 100%
fewer I/Os than the left deep DHJ query. The GHT query is able to perform
zero I/Os for the lower memory sizes. The right deep DHJ query performs

40

4.2. Standalone C++ Results

0

5000

10000

15000

20000

25000

30000

391 781 1172 1563 1953 2344 2734 3125 3516 3906 4297 4688

I/
O

s
(M

B
)

Memory Size (MB)

DHJ Left Deep

DHJ Right Deep

GHT

Figure 4.13: I/O Bytes for 3-Way TPC-H Customer, Orders, Lineitem Join

fewer I/Os than the left deep plan since it avoids partitioning the interme-
diate result tuples but it still performs more I/Os than GHT because it is
less efficient in its use of memory.

Figure 4.12 shows that GHT is approximately 8% slower than the right
deep DHJ plan when performing zero I/Os and 25% slower than the left
deep DHJ plan. GHT is slower because of the extra hashing and probing of
the map GHT needs to match tuples when joining relations. It is not until
low memory sizes that GHT becomes faster than both the left and right
deep DHJ plans.

Figure 4.15 shows the I/Os used for GHT when the memory used by
the map is removed from the memory available to the join. GHT behaves
reasonably until there is not enough memory to keep the number of false
drops low. Once GHT has only a very small amount of memory the map-
ping places each Lineitem tuple in a large number of partitions causing the
amount of file I/O to increase significantly. Figure 4.14 shows that once the
I/Os increase for GHT it becomes the slowest join.

Figure 4.17 shows the effect of the number of bits per tuple that is used
for the map. When there is a small amount of memory available for the map
(approximately 1 bit for every 10 tuples) the number of false drops becomes
very large. Figure 4.16 shows the effect of the bitmap size on the runtime

41

4.2. Standalone C++ Results

0

50

100

150

200

250

300

350

400

450

500

39 78 117 156 195 234 273 313 352

Ti
m

e
 (

se
c)

Memory Size (MB)

DHJ Left Deep

DHJ Right Deep

GHT

Figure 4.14: Time for 3-Way TPC-H Customer, Orders, Lineitem Join with
Small Memory Sizes

0

10000

20000

30000

40000

50000

60000

70000

39 78 117 156 195 234 273 313 352

I/
O

s
(M

B
)

Memory Size (MB)

DHJ Left Deep

DHJ Right Deep

GHT

Figure 4.15: I/O Bytes for 3-Way TPC-H Customer, Orders, Lineitem Join
with Small Memory Sizes

42

4.2. Standalone C++ Results

0

50

100

150

200

250

300

350

400

0.1 0.25 0.5 1 1.5 2 4

Ti
m

e
 (

se
c)

Bitmap Size Multiplier

Figure 4.16: Time for Bitmap Size with 3-Way TPC-H Customer, Orders,
Lineitem Join

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0.1 0.25 0.5 1 1.5 2 4

Fa
ls

e
 D

ro
p

s

Bitmap Size Multiplier

Figure 4.17: False Drops for Bitmap Size with 3-Way TPC-H Customer,
Orders, Lineitem Join

43

4.2. Standalone C++ Results

of the algorithm.

4.2.4 Multi-Dimensional Partitioning with SHARP

SHARP was compared against DHJ using the query in listing 4.2. In
this star join, Lineitem is the fact table and Orders and Part are the di-
mension tables. The query was repeated ten times for each memory size.
As shown in Figure 4.19 SHARP is able to make much more efficient use of
the join memory to perform fewer I/Os in low memory conditions. This is
because SHARP partitions each relation independently. Since SHARP per-
forms fewer I/Os and does not need multiple partitioning steps, it is faster
than DHJ at all memory sizes as shown in Figure 4.18.

Listing 4.2: Three Way Star Join Query on the Orders, Part and Lineitem
Relations

select ∗ from Orders o , Part p , Lineitem l
where o . orderkey = l . orderkey
and p . partkey = l . partkey ;

0

50

100

150

200

250

300

350

391 781 1172 1563 1953 2344

Ti
m

e
 (

se
c)

Memory Size (MB)

SHARP

DHJ

Figure 4.18: Time for 3-Way Star Join on Orders, Part, and Lineitem

44

4.2. Standalone C++ Results

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

391 781 1172 1563 1953 2344

I/
O

s
(M

B
)

Memory Size (MB)

SHARP

DHJ

Figure 4.19: I/O Bytes for 3-Way Star Join on Orders, Part, and Lineitem

45

Chapter 5

Discussion and Conclusion

The storage, retrieval and analysis of large amounts of data is very com-
mon. Since large data sets can take a very large amount of time to process,
there has been a large amount of research to find faster ways to process this
data. Faster join algorithms reduce the amount of time it takes to anal-
yse data sets which make it possible to process even larger data sets in a
reasonable amount of time.

The goals presented in Chapter 1 of this thesis were to determine if Hash
Teams, Generalized Hash Teams, or SHARP improve the efficiency of the
standard hash joins in relational database systems and if it makes sense to
implement them. The experiments performed allowed each of the algorithms
to be tested directly against the standard hash joins in terms of both run
time efficiency and algorithmic complexity.

Hash Teams is a simple multi-way hash join that has a performance
benefit over dynamic hash join (DHJ). The experiments show that it out-
performs DHJ since it is able to avoid the intermediate partitioning step of
DHJ and can use memory more efficiently than DHJ. However, there are
only a very limited number of queries that Hash Teams can be used for. In
many cases a standard merge join would be more efficient than Hash Teams
for these queries where the data is already sorted. Hash teams is also more
complex to implement and maintain than DHJ. Because of the limited use
and complexity of Hash Teams it is not recommended to be implemented
in a database management system. This is also supported by Microsoft
dropping Hash Teams support in SQL Server 2003.

Generalized Hash Teams (GHT) can be used for a significantly larger
number of queries than Hash Teams. However, GHT is also much more
complex as it requires a mapper for indirect queries. The experiments show
that it also has a limited performance benefit in a small number of cases but
actually performs worse than DHJ in others. Due to its high complexity
and potential for poor performance, Generalized Hash Teams is not recom-
mended to be implemented in a relational database management system.

SHARP shows a significant benefit over DHJ. The experimental results
show that it performs fewer I/Os and is faster than DHJ. It is more efficient

46

Chapter 5. Discussion and Conclusion

in its use of the memory available for the join. A disadvantage is that it
can only be used for star queries which means it cannot be used for most
normal queries. However, star queries are very commonly used in data
warehousing. Data warehousing is often used to store historical data such
as sales transactions. For large companies such as Wal-Mart this means they
need to store and analyze multi-terabyte data sets. Because the database
sizes for data warehousing are usually very large, joins are also very slow.
Any increase in join efficiency can have a large impact. SHARP should
be implemented in database management systems that are used for data
warehousing.

This thesis has shown that even though multi-way hash joins can perform
fewer I/Os than traditional binary hash joins, they are quite limited in
their use in practice. Only SHARP can be recommended since it shows a
significant advantage in its relevant queries. Hash teams and Generalized
Hash Teams are too limited and complicated to be very useful in a relational
database management system.

Future work includes experiments on the algorithms with a larger num-
ber of relations in a single query. It also includes experiments with different
queries on other data sets. Future work for Hash Teams and Generalized
Hash teams includes implementing and experimenting with the GROUP BY
operator for use with the joins to see if it makes the algorithms more useful.
It is also possible to perform a study on how parallization of the algorithms
would affect their relative performance.

47

Bibliography

[BD06] Pedro Bizarro and David J. DeWitt. Adaptive and Robust Query
Processing with SHARP. Technical Report 1562, University of
Wisconsin, 2006. → pages 2, 22, 27

[BLP11] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and Eval-
uation of Main Memory Hash Join Algorithms for Multi-Core
CPUs. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, SIGMOD ’11, pages 37–48,
New York, NY, USA, 2011. ACM. → pages 15

[CGN10] Shimin Chen, Phillip B. Gibbons, and Suman Nath. PR-Join: A
Non-Blocking Join Achieving Higher Early Result Rate with Sta-
tistical Guarantees. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, SIGMOD ’10,
pages 147–158, New York, NY, USA, 2010. ACM. → pages 14

[CM03] Gene Cooperman and Xiaoqin Ma. DPG: A Cache-Efficient
Accelerator for Sorting and for Join Operators. CoRR,
cs.DB/0308004, 2003. → pages 15

[CN] S. Chaudhuri and V. Narasayya. TPC-D Data Generation
with Skew. Technical report, Microsoft Research, Available at:
ftp.research.microsoft.com/users/viveknar/tpcdskew.→ pages 31

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data
Banks. Commun. ACM, 13(6):377–387, 1970. → pages 6

[Dat94] C. Date. The SQL Standard. Addison Wesley, Reading, US,
third edition, 1994. → pages 7

[DKO+84] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker,
and D. Wood. Implementation Techniques for Main Memory
Database Systems. In ACM SIGMOD, pages 1–8, 1984. →
pages 11

48

http://doi.acm.org/10.1145/1989323.1989328
http://doi.acm.org/10.1145/1989323.1989328
http://doi.acm.org/10.1145/1989323.1989328
http://doi.acm.org/10.1145/1807167.1807186
http://doi.acm.org/10.1145/1807167.1807186
http://doi.acm.org/10.1145/1807167.1807186

Bibliography

[DN95] D. DeWitt and J. Naughton. Dynamic Memory Hybrid Hash
Join. Technical report, University of Wisconsin, 1995. → pages
1, 11

[DSTW02] J.-P. Dittrich, B. Seeger, D. Taylor, and P. Widmayer. Progres-
sive Merge Join: A Generic and Non-Blocking Sort-based Join
Algorithm. In VLDB 2002, pages 299–310, 2002. → pages 14

[DSTW03] Jens-Peter Dittrich, Bernhard Seeger, David Scot Taylor, and
Peter Widmayer. On Producing Join Results Early. In Pro-
ceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’03, pages
134–142, New York, NY, USA, 2003. ACM. → pages 14

[GBC98] Goetz Graefe, Ross Bunker, and Shaun Cooper. Hash Joins and
Hash Teams in Microsoft SQL Server. In VLDB, pages 86–97,
1998. → pages 2, 16, 18

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases.
ACM Computing Surveys, 25(2):73–170, 1993. → pages 8

[Gra99] Goetz Graefe. The Value of Merge-Join and Hash-Join in SQL
Server. In Proceedings of the 25th International Conference on
Very Large Data Bases, VLDB ’99, pages 250–253, San Fran-
cisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. →
pages 7

[HCL09] Michael Henderson, Bryce Cutt, and Ramon Lawrence. Exploit-
ing Join Cardinality for Faster Hash Joins. In Proceedings of the
2009 ACM symposium on Applied Computing, SAC ’09, pages
1549–1554, New York, NY, USA, 2009. ACM. → pages 14

[Hen] Michael Henderson. C++ Source Code for Multi-Way Join Al-
gorithms. https://bitbucket.org/mikecubed/hashjoins. →
pages 29

[HH99] Peter J. Haas and Joseph M. Hellerstein. Ripple Joins for Online
Aggregation. In Proceedings of the 1999 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’99, pages
287–298, New York, NY, USA, 1999. ACM. → pages 14

[HWM98] Sven Helmer, Till Westmann, and Guido Moerkotte. Diag-Join:
An Opportunistic Join Algorithm for 1:N Relationships. In Pro-
ceedings of the 24rd International Conference on Very Large

49

http://doi.acm.org/10.1145/773153.773167
http://dl.acm.org/citation.cfm?id=645925.671528
http://dl.acm.org/citation.cfm?id=645925.671528
http://doi.acm.org/10.1145/1529282.1529629
http://doi.acm.org/10.1145/1529282.1529629
https://bitbucket.org/mikecubed/hashjoins
http://doi.acm.org/10.1145/304182.304208
http://doi.acm.org/10.1145/304182.304208
http://dl.acm.org/citation.cfm?id=645924.671197
http://dl.acm.org/citation.cfm?id=645924.671197

Bibliography

Data Bases, VLDB ’98, pages 98–109, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc. → pages 14

[KKL+09] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, An-
thony D. Nguyen, Nadathur Satish, Jatin Chhugani, Andrea
Di Blas, and Pradeep Dubey. Sort vs. Hash Revisited: Fast
Join Implementation on Modern Multi-Core CPUs. Proc. VLDB
Endow., 2(2):1378–1389, August 2009. → pages 15

[KKW99] Alfons Kemper, Donald Kossmann, and Christian Wiesner. Gen-
eralised Hash Teams for Join and Group-by. In VLDB, pages
30–41, 1999. → pages 2, 18, 20

[KNT89] Masaru Kitsuregawa, Masaya Nakayama, and Mikio Takagi. The
Effect of Bucket Size Tuning in the Dynamic Hybrid GRACE
Hash Join Method. In VLDB, pages 257–266, 1989. → pages 12

[KTMo83] M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Application of
Hash to Database Machine and Its Architecture. New Generation
Computing, 1(1), 1983. → pages 10

[Law05] Ramon Lawrence. Early Hash Join: A Configurable Algorithm
for the Efficient and Early Production of Join Results. In VLDB
2005, pages 841–852, 2005. → pages 14

[Law08] Ramon Lawrence. Using Slice Join for Efficient Evaluation of
Multi-Way Joins. Data and Knowledge Engineering, 67(1):118–
139, October 2008. → pages 27

[LEHN02] Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F.
Naughton. A Scalable Hash Ripple Join Algorithm. In Pro-
ceedings of the 2002 ACM SIGMOD international conference on
Management of data, SIGMOD ’02, pages 252–262, New York,
NY, USA, 2002. ACM. → pages 14

[LKM08] Justin J. Levandoski, Mohamed E. Khalefa, and Mohamed F.
Mokbel. PermJoin: An Efficient Algorithm for Producing Early
Results in Multi-join Query Plans. In Proceedings of the 2008
IEEE 24th International Conference on Data Engineering, ICDE
’08, pages 1433–1435, Washington, DC, USA, 2008. IEEE Com-
puter Society. → pages 14

50

http://dl.acm.org/citation.cfm?id=1687553.1687564
http://dl.acm.org/citation.cfm?id=1687553.1687564
http://doi.acm.org/10.1145/564691.564721
http://dx.doi.org/10.1109/ICDE.2008.4497580
http://dx.doi.org/10.1109/ICDE.2008.4497580

Bibliography

[MLA04] M. Mokbel, M. Lu, and W. Aref. Hash-Merge Join: A Non-
Blocking Join Algorithm for Producing Fast and Early Join Re-
sults. In ICDE, pages 251–263, March 2004. → pages 14

[NKT88] Masaya Nakayama, Masaru Kitsuregawa, and Mikio Takagi.
Hash-Partitioned Join Method Using Dynamic Destaging Strat-
egy. In VLDB, pages 468–478, 1988. → pages 1, 11

[OG95] Patrick E. O’Neil and Goetz Graefe. Multi-Table Joins Through
Bitmapped Join Indices. SIGMOD Record, 24(3):8–11, 1995. →
pages 15

[Pos] PostgreSQL. Open Source Relational Database Management
System. http://www.postgresql.org/. → pages 27

[tpc] TPC-H Benchmark. Technical report, Transaction Processing
Performance Council. http://www.tpc.org/tpch/. → pages
19, 31, 38

[UF00] T. Urhan and M. Franklin. XJoin: A Reactively Scheduled
Pipelined Join Operator. IEEE Data Engineering Bulletin,
23(2):7–18, 2000. → pages 14

[ZG90] H. Zeller and J. Gray. An Adaptive Hash Join Algorithm for
Multiuser Environments. In VLDB 1990, pages 186–197, 1990.
→ pages 9, 12

51

http://www.postgresql.org/
http://www.tpc.org/tpch/

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	2 Background
	2.1 Relational Databases
	2.1.1 Cardinality
	2.1.2 Keys
	2.1.3 Relational Algebra
	2.1.4 Joins
	2.1.5 Structured Query Language
	2.1.6 Query Evaluation

	2.2 Hash Join
	2.2.1 Hash Functions
	2.2.2 Hash Tables
	2.2.3 Classic Hash Join
	2.2.4 Grace Hash Join
	2.2.5 Hybrid Hash Join
	2.2.6 Dynamic Hash Join
	2.2.7 Further Improvements on Join Algorithms

	2.3 Multi-Way Join Algorithms
	2.3.1 Hash Teams
	2.3.2 Generalized Hash Teams
	2.3.3 SHARP
	2.3.4 Summary

	3 Multi-Way Join Implementation
	3.1 Implementation in PostgreSQL
	3.2 Standalone C++ Implementation

	4 Experimental Results
	4.1 PostgreSQL Results
	4.1.1 Direct Partitioning with Hash Teams
	4.1.2 Indirect Partitioning with Generalized Hash Teams
	4.1.3 Multi-Dimensional Partitioning with SHARP

	4.2 Standalone C++ Results
	4.2.1 Database Schema
	4.2.2 Direct Partitioning with Hash Teams
	4.2.3 Indirect Partitioning with Generalized Hash Teams
	4.2.4 Multi-Dimensional Partitioning with SHARP

	5 Discussion and Conclusion
	Bibliography

