Using Codeboard and Mantra to
Run and Grade SQL Assignments

Liam Tarr
Supervisor: Dr. Ramon Lawrence

An honours thesis submitted in partial
fulfillment of the requirements for the
degree of
B. Sc. Data Science Honours

Irving K. Barber Faculty of Science
UBC Okanagan
April 2021

Using Codeboard and Mantra to Run and Grade
SQL Assignments

Liam Tarr

Abstract

Students who want to work with data need to know fundamental database skills like
SQL. Courses for these subjects are often very large. This makes manually grading
assignments tedious. This paper explores two methods to solve this problem by
automatically grading SQL assignments using Codeboard and Mantra. The first
implementation harnesses the power of Python to do this. The second explores
directly executing SQL on Codeboard and Mantra. Suggestions are then made on
how to improve this second implementation.

Contents

Introduction

Codeboard and Mantra

2.1 Codeboard
2.1.1 Imstructors.
2.1.2 Students

2.2 Mantra

SQL in Codeboard Using Python

3.1 Behind the Sceneso
3.1.1 Configuration
3.1.2 Helper Files

3.2 Writing Tests

Adding Native SQL Support to Mantra

4.1 Adding a Language to Codeboard and Mantra
4.1.1 Codeboard
4.1.2 Mantra.

4.2 Trying Out SQL Implementation

4.3 Areastolmprove

10

12

Listings

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

codeboard.jsono 8
filednput.pyo 8
"SQLTable()” 8
"SQLPopulate()” 9
"SQLSelect()” ... 10
An Example of Tests 10
sqlite.docker 12
dbTemplateProjects.js (pt 1)o L. 13
dbTemplateProjects.js (pt 2) 14
Adding language configuration (pt 1) 14
Adding language configuration (pt2) 15
Adding SQLite option to New Project Form 15
CONSE.JS . o o v o 15
salite.js (Pt 1) . o o o oo 15
salite.js (Pt 2) - o o o o 16
languages/index.jso 16

Chapter 1

Introduction

Knowledge of databases and SQL are in high demand. Everybody who needs to
work with data should know SQL. Courses like COSC 304: Introduction to Database
Systems teach students these valuable skills.

These courses usually have a large number of participants. This makes
manually grading assignments time consuming and tedious.

Some students may find it difficult to get the proper Database Manage-
ment System working on their computer. Different operating systems and database
management systems have different setups and not everything will work the same.
This could discourage students and lead to worse outcomes.

It would be nice if we could solve both these problems at once. Is there a
better way than manually grading SQL assignments? Can we automatically grade
them? These are questions we will explore in this paper.

Chapter 2

Codeboard and Mantra

Codeboard is a "web-based IDE to teach programming in the classroom.” [1] Many
languages are supported out of the box, such as C, C++, Java, and Python. In
general we refer to Codeboard as the front-facing part of the application, such as
the IDE, and Mantra is the behind the scenes service that creates Docker containers,
and evaluates the code.

2.1 Codeboard

The most essential front-facing feature of Codeboard is the Integrated Development
Environment (IDE). There students can compile, run and submit their programming
projects for marking. Instructors can create projects, code, and test files in order
to mark projects. The instructor can then share a link to the project with their
students, and then see and mark their submissions.

2.1.1 Instructors

We will first consider Codeboard from an instructors point of view. Instructors
create projects, which they then can share with their students. These projects
usually include a main file for running, a test file, and another test file for grading.

Figure 2.1 shows what a project looks like from the view of an instructor. It
is worth noting that files marked with an ”(h)” are hidden from the student’s point
of view. This means, for example, that students can not see the tests an instructor
has written in order to grade the assignment.

The instructor can see the grades of their students, and check each stu-
dents progress on the assignments. Figure 2.2 shows an example of what kind of
information an instructor can get on a student’s submission. They can click on the
”Open in IDE” button to see the code that the student has written.

Figure 2.1: Instructors View on Codeboard

examplesqgluser (# of Submissions: 1) (Student Number: 11995544)
Created Result Tests passed Tests failed LTl

Apr 29, 2021 5:26:39 PM 0.5 2 2 no Open in IDE

Figure 2.2: Instructor’s View of a Submission

2.1.2 Students

The students view of the IDE is much like the instructors view of the IDE. Stu-
dents can check their code by running tests, and when they feel comfortable with
their answer, they can submit their code for marking. The student is given instant
feedback on the mark that their submission got.

2.2 Mantra

Mantra could be described as the middleman between Codeboard and Docker.
Mantra can create and destroy Docker containers, and command these contain-
ers to execute a students code. It is also responsible for getting the containers to
run tests and grade assignments.

Chapter 3

SQL in Codeboard Using Python

We can utilize the ability of Mantra to run Python along with unit tests to indirectly
run and grade SQL queries.

3.1 Behind the Scenes

Since we are going to use Python, nothing needs to change on the Mantra side.
However, we need to change some things in Codeboard.

We need to choose a project structure for our Python SQL projects. This
should have files for running. testing, and grading submissions. One way to configure
such a project is as below.

Root
| _codeboard. json
| __init__.py
| Questionl.txt
| Question2.txt
| Question3d.txt
| _src
main.py
SQLService.py
file_input.py
__init__.py
| test

ttest.py
__init__.py

| _testSubmission
subTest.py
__init__.py

3.1.1 Configuration

First, we need to include a codeboard. json file.

1 {
2 "_comment": "Configuration for this Python-SQL-UnitTest project."
3 "MainFileForRunning": "./Root/src/main.py",
4 "DirectoryForSourceFiles": "./Root/src",
"DirectoryForTestFiles": "./Root/test",
6 "DirectoryForTestSubmissionFiles": "./Root/testSubmission"
7}

Listing 3.1: codeboard.json

These properties point to important locations in our project structure. As
configured, the file that will be run by pressing the "run” button is main.py. Also,
we relegate test files to the test folder and grading tests to the testSubmission
folder.

3.1.2 Helper Files

To make this implementation work, some methods were needed in order to read and
process student’s code. One such file is file_input.py
1 def getUserQuestionContent (questionNumber) :

2 result = ""
3 for line in open("Root/Question" + str(questionNumber) + ".txt"
):
li=line.strip()
if not li.startswith("#"):
6 result = result + line.rstrip()

8 return result

Listing 3.2: file_input.py

This file creates a method getUserQuestionContent(questionNumber)
which takes as input the question number of the code that needs to be read. This
method iterates through each line of a question text file, and returns only the code
that is not marked as a comment with a ”#” sign. This is important, as we only
want to run the SQL part of a students answer.

Another helpful file is SQLService.py. This file contains three function
that are essential to the functionality of testing and grading SQL assignments. We
will look at each of these functions individually.

The first function to consider is SQLTable(sql, tbname). This function
is designed to be helpful in testing CREATE TABLE statements.

1 def SQLTable(sql, tbname):
2 if(sql.split(’ ’)[2] != tbname): #Compares the table name
argument with the table name from the CREATE TABLE statement

V)

return "Did not find correct table name, please use CREATE
TABLE (tablename) ;\nWe are looking for table name ’" + tbname +
"> but we found " + sql.split(’ ’)[2] + ">
conn = sqglite3.connect(":memory:")
cursor = conn.cursor ()
result = ""
try:
cursor .execute (sql)
cursor .execute ("pragma table_info(’" + tbname + "’)")
result = cursor.fetchall ()
except:
pass
return result

Listing 3.3: ”SQLTable()”

It takes as input sql, which is the CREATE TABLE statement to test. The
argument tbname is used to drop the table when we’re finished with it. The function
executes the CREATE TABLE statement, and then returns table info on the column
names and types. This information is used to compare answers on tests.

The second function we will consider is SQLPopulate(). This function is
used to help test INSERT, DELETE, and UPDATE statements.

def SQLPopulate(setup, inputQuery, outputQuery, tbname):
if (setup [0].split(’ ’)[2] != tbname): #Compares the table name
argument with the table name from the CREATE TABLE statement
return "Did not find correct table name, please use

CREATE TABLE (tablename) ;\nWe are looking for table name °’" +
tbname + "’ but we found ’" + setup[0].split(’ ’)[2] + ">
conn = sqlite3.connect(":memory:")

cursor = conn.cursor ()

result = ""

try:

length = len(setup)
for i in range(length):
cursor .execute (setup[il)

cursor.execute (inputQuery)
cursor .execute (outputQuery)
result = cursor.fetchall ()
except:
pass
return result

Listing 3.4: "SQLPopulate()”

The argument setup is an array of strings containing the queries to create
the table to be tested on. The argument inputQuery is the SQL query we will
be testing, which should be an INSERT, DELETE, or UPDATE statement. The
outputQuery is the SQL query we will use to obtain output. Finally, tbname is the
name of the table, which is used for comparison and to drop the table.

The function begins by creating the table for which we will be running
the query on. The function then executes the INSERT/DELETE/UPDATE statement to
modify the table. It will then return the output from the output query specified

as an argument. This information is then returned so that it be used to compare
answers in tests.

The last helpful function in this file is SQLSelect (). This function is
designed to aid in testing SELECT queries.

def SQLSelect(setup, inputQuery, tbname):
if (setup [0].split(’ ’)[2] != tbname): #Compares the table name
argument with the table name from the CREATE TABLE statement
return "Did not find correct table name, please use

CREATE TABLE (tablename) ;\nWe are looking for table name " +
tbname + "’ but we found ’" + setup[0].split(’ ’)[2] + ">
conn = sqlite3.connect(":memory:")

cursor = conn.cursor ()

result = ""

try:

length = len(setup)
for i in range(length):
cursor .execute (setup[il)

cursor .execute (inputQuery)
result = cursor.fetchall ()
except:
pass
return result

Listing 3.5: ”SQLSelect()”

The argument setup is used similarly to the previous function in that it cre-
ates and modifies the table to be what we want to run queries on. The inputQuery
is an argument that represents the SELECT statement we want to test. The argument
tbname is used the same way as the previously mentioned functions.

The function starts by executing the setup code to create and modify the
table. The SELECT statement is then executed and the results returned for use in
comparison on tests.

3.2 Writing Tests

An instructor needs to write tests in order to mark SQL assignments. We will see
an illustrative example of a test that an instructor could write.

Below is an example of a unit test that an instructor might write.

def test_Create_Table(self):

qlTable = """CREATE TABLE Recipe (
id int NOT NULL,
name VARCHAR (40) ,

authorId int,

directions VARCHAR (255),

PRIMARY KEY (id),

FOREIGN KEY (authorId) REFERENCES Author (id)
ON DELETE SET NULL ON UPDATE NO ACTION

10

11

)ll nn
self .assertEqual (SQLTable (qlTable, "Recipe"), SQLTable (
getUserQuestionContent (1), "Recipe"))

Listing 3.6: An Example of Tests

The above unit test is to grade an assignment that asks for a student to
create a specific table. We can see that the table is specified in the unit test. This
table is then compared to the student’s created table using the assertEqual method
and the SQLTable function we examined earlier in the paper.

Similar tests can be written for UPDATE, INSERT, DELETE, and SELECT state-
ments using the helper functions we defined earlier.

11

1
2
3
1

Chapter 4

Adding Native SQL Support to
Mantra

4.1 Adding a Language to Codeboard and Mantra

The below will serve as a guide to adding support for a new language to Mantra
and Codeboard. We will show how this is done, using sqlite as an example.

It would be nice if we could run SQL queries natively in Codeboard. This
could have several advantages over running SQL through Python. To do this, we
must add SQL support to Mantra.

There are various steps which must be taken in order to add a new language
to the Mantra program.

4.1.1 Codeboard

The first step is to create a docker file, which will be used to configure the containers
used by Mantra. For this container, we want to be able to run SQL on it. I
have chosen to use SQLite since this is a simple implementation of a Database
Management System.

FROM cobo/ubuntu

RUN \
update the package manager
apt-get update && \

install sqlite
apt-get install -y --force-yes sqlite3 libsqglite3-dev

Listing 4.1: sqlite.docker
The next step is to set up the default template for what an SQL project

12

1

looks like.

We want the file structure on the Docker container to be as below:

Root
tcodeboard . json
src

| main. sql

To do this we have to edit the dbTemplateProjects. js file.

var addTemplateForSQLite

return new Promise(function (resolve,

db.TemplateProject
.find ({

where: {language

function () {
reject) {

: >SQLite’}

}) .then(function(result) {

if (result
var _templateP

db.TemplatePro
language:
}) .then(functi
_templatePro

// the Root

null) {

rojectId = -1;

ject.create ({

>’SQLite’

on(templatePrj) {
jectld templatePrj.id;

folder

return db.TemplateFile.create ({

filename:
path: ’7,
uniqueld:
parentUId:
isFolder:
content: ~’
isHidden:
TemplatePr
B

’Root’,

0,

_1’
true,
)
false,

ojectId: _templateProjectId

}) .then(function(templateFile) {
// the Src folder
return db.TemplateFile.create ({

filename:
path:
uniqueld:
parentUId:
isFolder:
content: ~’
isHidden:
TemplatePr
b

}) .then(functi

_content

Root/codeboard. json’,

’Roo

var

return db.Te

’src’,
t’,
1’

O’

true,

2
H

true,
ojectId: _templateProjectId
on(templateFile) {

fs.readFileSync (’db_templates/SQLite/
‘utf8’);

mplateFile.create ({

filename: ’codeboard. json’,
path: ’Root’,

uniquelId: 2,

parentUId: O,

isFolder: false,

content: _content,

13

w N e

isHidden: true,
TemplateProjectId: _templateProjectId
3}
}) .then(function(templateFile) {
var _content = fs.readFileSync(’db_templates/SQLite/
Root/src/main.sql’, ’utf8’);

return db.TemplateFile.create ({
filename: ’main.sql’,
path: ’Root/src’,
uniqueId: 3,
parentUId: 1,
isFolder: false,
content: _content,
isHidden: false,
TemplateProjectId: _templateProjectId
IOl
}) .then(function(templateFile) {
resolve () ;
b
}
else {
// the template project already exists
resolve () ;
}
b

P

Listing 4.2: dbTemplateProjects.js (pt 1)

We must also add another section of code as seen in the listing below:

}).then(function() {
return addTemplateForSQLite () ;
}) .then(function () {

Listing 4.3: dbTemplateProjects.js (pt 2)

There are certain configuration options that Codeboard and Mantra expect

L~V R CR

for each supported language. For sqlite, we recognize that it is not compiled, and
that (as of this moment) testing is not supported. We must let Codeboard and
Mantra know this by editing the codeboard/lib/config/env/all. js file.

We must first add information about our sqlite setup to the containers
object in the file. We do this by adding a property to it.

sqlite:{
name: ’SQLite’,
isEnabled: true,
isDynamic: true,
isTestable: false

Listing 4.4: Adding language configuration (pt 1)
In the same file, we must also add some information to the templates

14

object. This information again reiterates that the language will be enabled, and
points to the language information object we previously set up.
>’SQLite’ : {
language: containers.sqlite,
isEnabled: true

N

Listing 4.5: Adding language configuration (pt 2)

The last thing we need to do in Codeboard, is allow a user to select the lan-
guage as a project type. This is done in the file app/views/partials/projectNew.html.
We simply need to add an option tag in a form.

| <option value="SQLite">SQLite</option>

Listing 4.6: Adding SQLite option to New Project Form

4.1.2 Mantra

A change also has to be made to some configuration files on the Mantra side of
things. The mantra/server/config/const. js file defines some constants that are
used throughout Mantra. We must add the name of the newly supported language.
In the case of sqlite, we add the name as a property to the LANGUAGE_NAME object.

1 LANGUAGE_NAME: {

2 c: ’°C’,

3 CPP: ’C++’,

| HASKELL: ’Haskell’,

5 HASKELL_HSPEC: ’Haskell-HSpec’,
6 JAVA: ’Java’,

7 JAVA_JUNIT: ’Java-JUnit’,

8 PYTHON: ’Python’,

9 PYTHON_UNIT_TEST: °’Python-UnitTest’,
10 SQLITE: ’SQLite’
11 }

Listing 4.7: const.js

Next up is to add a "language file”. This file is important, as it tells Mantra
many of the properties the specific language you want to support has. I will give a
brief overview of the important parts of this file.

1 // mname of the language

2 name: CONST.LANGUAGE_NAME.SQLITE,
3

!

// file extension of the source files
5 filenameExtension: ’.sql’,

7 // is this a static or dynamic language? e.g. Python is dynamic
8 isDynamicLanguage: true,

10 // does the language come with supports for (unit) tests?
11 isLanguageWithTestSupport: false,

15

13

14

N N

// name of the docker image that is used to execute "compile" or
"run" for this language
dockerImage: ’cobo/sqlite’,

Listing 4.8: sqlite.js (pt 1)

The name property should be set to the constant we previously set in
const. js.

Next up, we need to provide the file extension of the files that will be run.
In this example it will be .sql files.

In lines 8 and 11 we see lines that should look familiar from previous
configurations that we've set up. The property isDynamicLanguage should be set
to true if the language is not compiled. The property isLanguageWithTestSupport
will give information to Mantra about whether the language should support tests.

The most important part of this file indicates how the files should be run.
Below is the configuration for our sqlite instances.
getCommandForRunAction: function (aCodeboardConfig) {
var cmd = ’sqlite3 ./Root/main.db < ’ + aCodeboardConfig.
MainFileForRunning;

return cmd;

3,
Listing 4.9: sqlite.js (pt 2)

This simple method pipes the input file (main.sql) to sqlite for it to run.

After this file has been set up, you need to update languages/index.js
to refer to it. In this case, we need to add the lines below.

{
name: CONST.LANGUAGE_NAME.SQLITE,
propertyFile: ’sqlite.js’

}

Listing 4.10: languages/index.js

4.2 Trying Out SQL Implementation

To start a new SQLite project, the project owner must first create a new project
with the language set as SQLite, as seen in figure 4.1.

The project owner is then brought to the IDE. From there they can setup
the main.sql file to contain some boilerplate code to instantiate a new table. One
way they might do this is seen in figure 4.2

Running the SQL code from figure 4.2, we get the expected output as seen
in figure 4.3.

16

New project

Project name

Example sqlite project

Description

Example description

Language
SQLite

Access control

Private project (only accessible by owners and users)

Figure 4.1: New Project View

‘ main.sql
1 | DROP TABLE people;
2
3 | CREATE TABLE people (
4 id INTEGER PRIMARY KEY,
5 first_name TEXT NOT NULL,
f last_name TEXT NOT NULL
T |);
8
5 | INSERT INTO people (first_name, last_name)
g | VALUES
11 | ("Clarence”, "Walmsley™),
2 | ("Tia", "Holloway™);
13
14 | SELECT * FROM people;

Figure 4.2: Example SQL

4.3 Areas to Improve

There are many ways to improve on this implementation of running SQL directly
on Codeboard and Mantra.

This implementation does not support testing and grading assignments.
An optimal solution would be able to do both of these things. To be able to do this
testing, SQLite might have to be abandoned in favour of other technologies that
support unit testing such as T-SQL with the tSQLt framework.

Something we need to be cautious with in our implementation is students
getting confused and altering the database on their own project. There’s not much of
a security issue with this, because each project in an isolated Docker container, but
it would still lead to confusion on assignments. One way we could protect students
from this is using permissions to limit the amount of damage a student can do to

17

1|Clarence|Walmsley
2| Tia|Holloway

Figure 4.3: SQL Output

their project.

18

Bibliography

[1] Codeboard - the IDE for the classroom. 2021. URL: https://codeboard.io/.

19

